A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions
Abstract
1. Introduction
- Modeling and analysis of a UAV-assisted CR-CC system with multi-objective optimization.
- Formulation of CC dynamics as a GAN-based adversarial game.
- Proposal of the GAN-CC algorithm, including network design and training procedures.
- Comprehensive performance validation through simulations.
2. Materials and Methods
2.1. System Model
2.2. Communication Parameter Analysis
2.3. System Equation Derivation
3. Algorithm Design
3.1. Principles of Counter CC
3.2. Introduction of Full-Label Sample Condition
3.3. Design of Discriminator and Generator Network Structure
3.4. GAN-CC Network Model Training
Algorithm 1 Training Procedure of GAN-CC |
Initialization
|
4. Results and Discussion
4.1. Convergence Performance Analysis
4.2. Covert Communication Performance Analysis
4.3. Parameter Discussion
5. Conclusions
- System modeling: A comprehensive framework for UAV-assisted CR-CC that integrates underlay spectrum access, Rayleigh fading channels, and multi-objective optimization constraints.
- Algorithm design: A GAN-based adversarial training mechanism where the generator synthesizes optimal interference schemes and the discriminator emulates adaptive eavesdropper detection, achieving Nash equilibrium through iterative optimization.
- Performance validation: Numerical simulations demonstrate that GAN-CC outperforms conventional methods (e.g., block coordinate descent) in terms of convergence speed, stability, and CC rate maximization, particularly under non-ideal channel conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CR-CC | Cognitive Covert Communication |
CC | Covert Communication |
CR | Cognitive Radio |
GANs | Generative Adversarial Networks |
AWGN | Additive White Gaussian Noise |
CNU | CC with Noise Uncertainty |
BSC | Binary Symmetric Channels |
DMC | Discrete Memoryless Channel |
DL | Deep Learning |
RC | Radio Communication |
RF | Radio Frequency |
UAV | Unmanned Aerial Vehicle |
ACO | Approximate Convex Optimization |
BCD | Block Coordinate Descent |
CSI | Channel State Information |
CDI | Channel Distribution Information |
References
- Mitola, J.; Maguire, G.Q. Cognitive Radio: Making Software Radios More Personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Ahmad, I.; Höyhtyä, M.; Khan, S.; Gurtov, A. Deep Learning Frameworks for Cognitive Radio Networks: Review and Open Research Challenges. J. Netw. Comput. Appl. 2025, 233, 104051. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; You, G.; Zhang, J.; Zhao, W. ISAC-Assisted Defense Mechanisms for PUE Attacks in Cognitive Radio Networks. Int. J. Intell. Syst. 2025, 2025, 6618969. [Google Scholar] [CrossRef]
- Alahmadi, A.; Abdelhakim, M.; Ren, J.; Li, T. Defense against Primary User Emulation Attacks in Cognitive Radio Networks Using Advanced Encryption Standard. IEEE Trans. Inf. Forensics Secur. 2014, 9, 772–781. [Google Scholar] [CrossRef]
- Goeckel, D.; Vasudevan, S.; Towsley, D.; Adams, S.; Ding, Z.; Leung, K. Artificial Noise Generation from Cooperative Relays for Everlasting Secrecy in Two-Hop Wireless Networks. IEEE J. Sel. Areas Commun. 2011, 29, 2067–2076. [Google Scholar] [CrossRef]
- Wang, X.; Du, H.; Gao, Y.; Zhang, J.; Niyato, D.; Letaief, K.B. Secure Body-Centric Internet of Things Networks: Physical Layer Security versus Covert Communication. IEEE Trans. Wirel. Commun. 2024, 23, 12731–12748. [Google Scholar] [CrossRef]
- Shen, W.; Chen, J.; Zheng, S.; Zhang, L.; Pei, Z.; Lu, W.; Yang, X. Deep Learning for Covert Communication. China Commun. 2024, 21, 40–59. [Google Scholar] [CrossRef]
- Lee, S.; Baxley, R.J.; McMahon, J.B.; Frazier, R.S. Achieving Positive Rate with Undetectable Communication over MIMO Rayleigh Channels. In Proceedings of the 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, 22–25 June 2014. [Google Scholar] [CrossRef]
- Shahzad, K.; Zhou, X.; Yan, S. Covert Wireless Communication in Presence of a Multi-Antenna Adversary and Delay Constraints. IEEE Trans. Veh. Technol. 2019, 68, 12432–12436. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D.; Guha, S. Hiding Information in Noise: Fundamental Limits of Covert Wireless Communication. IEEE Commun. Mag. 2015, 53, 26–31. [Google Scholar] [CrossRef]
- Bash, B.A.; Goeckel, D.; Towsley, D. Limits of Reliable Communication with Low Probability of Detection on AWGN Channels. IEEE J. Sel. Areas Commun. 2013, 31, 1921–1930. [Google Scholar] [CrossRef]
- He, B.; Yan, S.; Zhou, X.; Lau, V.K.N. On Covert Communication with Noise Uncertainty. IEEE Commun. Lett. 2017, 21, 941–944. [Google Scholar] [CrossRef]
- Che, P.H.; Bakshi, M.; Jaggi, S. Reliable Deniable Communication: Hiding Messages in Noise. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013. [Google Scholar] [CrossRef]
- Wang, L.; Wornell, G.W.; Zheng, L. Fundamental Limits of Communication with Low Probability of Detection. IEEE Trans. Inf. Theory 2016, 62, 3493–3503. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, B.; Cao, K. Physical Layer Security Technology Based on Nonorthogonal Multiple Access Communication. Mob. Inf. Syst. 2022, 2022, 6303210. [Google Scholar] [CrossRef]
- Meng, R.; Xu, B.; Xu, X.; Sun, M.; Wang, B.; Han, S.; Lv, S.; Zhang, P. A Survey of Machine Learning-Based Physical-Layer Authentication in Wireless Communications. J. Netw. Comput. Appl. 2024, 235, 104085. [Google Scholar] [CrossRef]
- Saravanan, K.; Gurumoorthy, K.B.; Stalin, A.D.; Kumar, O.P. Secure Channel Estimation Model for Cognitive Radio Network Physical Layer Security Using Two-Level Shared Key Authentication. Sci. Rep. 2025, 15, 2445. [Google Scholar] [CrossRef]
- Sun, L.; Ke, D.; Wang, X.; Huang, Z.; Huang, K. Robustness of Deep Learning-Based Specific Emitter Identification under Adversarial Attacks. Remote Sens. 2022, 14, 4996. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, Z.; Zhang, H.; Chen, F.; Xian, H. MRFE: A Deep-Learning-Based Multidimensional Radio Frequency Fingerprinting Enhancement Approach for IoT Device Identification. IEEE Internet Things J. 2024, 11, 30442–30454. [Google Scholar] [CrossRef]
- Toma, A.; Krayani, A.; Farrukh, M.; Qi, H.; Marcenaro, L.; Gao, Y.; Regazzoni, C.S. AI-Based Abnormality Detection at the PHY-Layer of Cognitive Radio by Learning Generative Models. IEEE Trans. Cogn. Commun. Netw./IEEE Trans. Cogn. Commun. Netw. 2020, 6, 21–34. [Google Scholar] [CrossRef]
- Krishnan, M.; Lim, Y.; Perumal, S.; Palanisamy, G. Detection and Defending the XSS Attack Using Novel Hybrid Stacking Ensemble Learning-Based DNN Approach. Digit. Commun. Netw. 2022, 10, 716–727. [Google Scholar] [CrossRef]
- Li, Z.; Shi, J.; Si, J.; Lv, L.; Guan, L.; Hao, B.; Tie, Z.; Wang, D.; Xing, C.; Quek, T.Q.S. Intelligent Covert Communication: Recent Advances and Future Research Trends. Engineering 2024, 44, 101–111. [Google Scholar] [CrossRef]
- Wen, Y.; Huo, Y.; Li, J.; Qian, J.; Wang, K. Generative Adversarial Network-Aided Covert Communication for Cooperative Jammers in CCRNs. IEEE Trans. Inf. Forensics Secur. 2025, 20, 1278–1289. [Google Scholar] [CrossRef]
- Qin, J.; Wang, J.; Tan, Y.; Huang, H.; Xiang, X.; He, Z. Coverless Image Steganography Based on Generative Adversarial Network. Mathematics 2020, 8, 1394. [Google Scholar] [CrossRef]
- Ashok, P.; Latha, B. Develop an Improved Mel-Frequency Cepstral Coefficients Signal Processing Algorithms for Enhancing Underwater Acoustic Signal through Wireless Network. Measurement 2024, 243, 116414. [Google Scholar] [CrossRef]
- Liao, L.; Lai, Y.; Yang, F.; Zeng, W. Online Computation Offloading with Double Reinforcement Learning Algorithm in Mobile Edge Computing. J. Parallel Distrib. Comput. 2023, 171, 28–39. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L.; Chen, H.-H.; Shen, X. Physical Layer Covert Communication in B5G Wireless Networks—Its Research, Applications, and Challenges. Proc. IEEE 2024, 112, 47–82. [Google Scholar] [CrossRef]
- Frisiani, G.; Parisini, T.; Siccardi, L.; Zoppoli, R. Team Theory and Backpropagation for Dynamic Routing in Communication Networks. In Proceedings of the IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 2002. [Google Scholar] [CrossRef]
- Rosa, G.H.; Papa, J.P. A Survey on Text Generation Using Generative Adversarial Networks. Pattern Recognit. 2021, 119, 108098. [Google Scholar] [CrossRef]
- Allouche, M.; Girard, S.; Gobet, E. EV-GAN: Simulation of Extreme Events with ReLU Neural Networks. J. Mach. Learn. Res. 2021, 23, 1–39. [Google Scholar]
- Yang, W.; Zhang, H.; Lim, J.B.; Zhang, Y.; Meng, H. A New Chiller Fault Diagnosis Method under the Imbalanced Data Environment via Combining an Improved Generative Adversarial Network with an Enhanced Deep Extreme Learning Machine. Eng. Appl. Artif. Intell. 2024, 137, 109218. [Google Scholar] [CrossRef]
- Huang, L.; Bi, S.; Zhang, Y.J. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [Google Scholar] [CrossRef]
- Tang, Q.; Fei, Z.; Li, B.; Yu, H.; Cui, Q.; Zhang, J.; Han, Z. Stochastic Computation Offloading for LEO Satellite Edge Computing Networks: A Learning-Based Approach. IEEE Internet Things J. 2023, 11, 5638–5652. [Google Scholar] [CrossRef]
- Memduh, K. Signal-To-Noise Ratio Estimation of Noisy Transient Signals. Commun. Fac. Sci. Univ. Ank. 2015, 57, 11–19. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
Parameter Setting | Minimum Detection Error Probability | Maximum CC Rate |
---|---|---|
Training learning rate | (a) | (b) |
Primary users’ minimum transmission rate | (c) | (d) |
Cognitive users’ transmission power | (e) | (f) |
UAV channel parameter | (g) | (h) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Li, B.; Wang, H.; Gong, H.; Lin, X. A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions. Technologies 2025, 13, 283. https://doi.org/10.3390/technologies13070283
Fu W, Li B, Wang H, Gong H, Lin X. A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions. Technologies. 2025; 13(7):283. https://doi.org/10.3390/technologies13070283
Chicago/Turabian StyleFu, Wenxuan, Bo Li, Haipeng Wang, Haochen Gong, and Xiang Lin. 2025. "A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions" Technologies 13, no. 7: 283. https://doi.org/10.3390/technologies13070283
APA StyleFu, W., Li, B., Wang, H., Gong, H., & Lin, X. (2025). A GAN-Based Method for Cognitive Covert Communication UAV Jamming-Assistance Under Fully Labeled Sample Conditions. Technologies, 13(7), 283. https://doi.org/10.3390/technologies13070283