Injection Mold Design Technology to Locate Weld Lines Away from Highly Loaded Structural Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Metaheuristic Optimization Algorithm
- -
- a new generation is created based on the unit of best solutions, mutation, crossover, and random seeding sets,
- -
- each set is generated by the genetic operator’s parallel execution,
- -
- removing repeated nodes’ function is implemented to clear each generation from solutions with coordinates so close that they are projected onto the same node.
2.2.2. Algorithm Implementation
- (1)
- Geometric model of the manufactured product.
- (2)
- Mechanical characteristics of the part material required for strength (Young’s modulus and Poisson’s ratio) and technological (viscosity model) calculations.
- (3)
- Operating conditions determining the calculation of the stress–strain state (loading and fastening method).
- (4)
- Technological parameters of the injection molding process (injection rate, melt temperature, and mold temperature).
- -
- setting boundary conditions—methods of fixing and loading the part,
- -
- setting technological constraints—selecting the surface on which the melt entry points can be located as Named Selection,
- -
- generating a strength calculation mesh,
- -
- calculating the stress–strain state,
- -
- exporting the strength calculation mesh (static_structural.db) and the equivalent stress field (static_structural.rst).
2.2.3. Molding Mesh Generation Module
2.2.4. Strength Modulus
2.2.5. Interpolation Module
2.2.6. Considering Technological Constraints
2.2.7. Molding Calculation Module
2.2.8. Optimization Module
Algorithm 1: Determining the values of the objective function |
*dim, inlet_quality, array, inlet_nodes_num,6 *do,i,1,inlet_nodes_num stress_max= 0.0 stress_avg = 0.0 stress_avg_p = 0.0 inlet_quality(i, 1) = spay_nodes%i%(1) *do,1,2, spay_nodes_num%i% (1)+1 id=map_ids (spay_nodes%i%(j)) *if,s_eqv(id), ge, stress_max, then stress_max=s_eqv(id) *endif stress_avg = stress_avg+s_eqv(id) stress_avg_p stress_avg_p+ s_eqv(id)**3 *enddo stress_avg = stress_avg spay_nodes_num%i%(1) stress_avg_p = (stress_avg_p)**(1/3) inlet_quality(1,2)= 0.5*stress_max + 0.5*stress_avg inlet_quality(1,3)= stress_max inlet_quality(i,4)= stress_avg |
3. Results
3.1. Optimal Gate Location Mold Design
3.2. Test Study Brackets’ Molding
3.3. Mechanical Tests
3.4. Microstructure Evaluation
4. Discussion
4.1. Injection Molded Model Validation
4.2. Weld Line Influences the Part Stiffness and Strength
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.; Hrymak, A. Injection Molding of Polymers and Polymer Composites. Polymers 2024, 16, 1796. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xu, H.; Liu, Y.; Yang, Z.; Kormakov, S.; Wu, D.; Sun, J. Overview of Injection Molding Technology for Processing Polymers and Their Composites. ES Mater. Manuf. 2020, 8, 3–23. [Google Scholar] [CrossRef]
- Baaijens, F.; Elsheikhi, S.; Eldressi, K. Polymer Injection Molding: Modeling for Properties; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- De Lacalle, L.N.L.; Lamikiz, A.; Salgado, M.A.; Herranz, S.; Rivero, A. Process planning for reliable high-speed machining of moulds. Int. J. Prod. Res. 2002, 40, 2789–2809. [Google Scholar] [CrossRef]
- Del Pozo, D.; López de Lacalle, L.N.; López, J.M. Prediction of press/die deformation for an accurate manufacturing of drawing dies. Int. J. Adv. Manuf. Technol. 2008, 37, 649–656. [Google Scholar] [CrossRef]
- Krizsma, S.; Széplaki, P.; Suplicz, A. Coupled injection moulding simulation–thermal and mechanical simulation method to analyse the operational behaviour of additively manufactured polymeric injection moulds. Results Eng. 2024, 23, 102558. [Google Scholar] [CrossRef]
- Bociąga, E.; Skoneczny, W. Characteristics of injection molded parts with the areas of weld lines. Polimery 2020, 65, 337–345. [Google Scholar] [CrossRef]
- Dzulkipli, A.A.; Azuddin, M. Study of the Effects of Injection Molding Parameter on Weld Line Formation. Procedia Eng. 2017, 184, 663–672. [Google Scholar] [CrossRef]
- Gao, R.; Chen, H.; Hu, Z.; Cheng, X.; Gao, S.; Zhou, S.; Zhao, P. An integrated simulation method for analyzing mechanical properties of injection molded fiber-reinforced polymers. Polym. Compos. 2022, 43, 4530. [Google Scholar] [CrossRef]
- Liparoti, S.; De Piano, G.; Salomone, R.; Pantani, R. Analysis of Weld Lines in Micro-Injection Molding. Materials 2023, 16, 6053. [Google Scholar] [CrossRef]
- Bejgerowski, W.; Gupta, S.K.; Bruck, H.A. Multifunctional structures using filled polymers for in-mold assembly of embedded electronic components. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Albuquerque, NM, USA, 1–4 June 2009; Volume 1, pp. 436–448. [Google Scholar]
- Maghsoudi, K.; Jafari, R.; Momen, G.; Farzaneh, M. Micro-Nanostructured Polymer Surfaces Using Injection Molding: A Review. Mater. Today Commun. 2017, 13, 126–143. [Google Scholar] [CrossRef]
- Zhou, H.; Dequn, L. Modelling and prediction of weld line location and properties based on injection moulding simulation. Int. J. Mater. Prod. Technol. 2004, 21, 526–538. [Google Scholar] [CrossRef]
- Kurkin, E.; Kishov, E.; Barcenas, O.U.E.; Chertykovtseva, V. Gate Location Optimization of Injection Molded Aerospace Brackets Using Metaheuristic Algorithms. In Proceedings of the 2021 International Scientific and Technical Engine Conference (EC), Samara, Russia, 23–25 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Luangpaiboon, P.; Atthirawong, W.; Hirunwat, A.; Aungkulanon, P. Statistical learning-driven parameter tuning in injection molding using modified simplex method. Results Eng. 2025, 27, 106690. [Google Scholar] [CrossRef]
- Eixeres, B.; Sanchez-Caballero, S.; Peydro, M.A.; Parres, F.; Selles, M.A. Influence of injection molding process conditions on the mechanical properties of CF-PPS/PTFE composites. Alex. Eng. J. 2025, 123, 381–391. [Google Scholar] [CrossRef]
- Hashemi, S. Thermal Effects on Weld and Unweld tensile Properties of Injection Moulded Short Glass Fibre-Reinforced ABS Composites. Express Polym. Lett. 2007, 1, 688–697. [Google Scholar] [CrossRef]
- Jadhav, G.; Gaval, V.; Solanke, S.; Divekar, M.; Darade, N.; Satpute, A.; Goutham, G. Weld-lines and its strength evaluation in injection molded parts: A review. Polym. Eng. Sci. 2023, 63, 3523–3536. [Google Scholar] [CrossRef]
- Kurkin, E.I.; Spirina, M.O.; Zakhvatkin, Y.V.; Chertykovtseva, V.O. The influence of the weld line location on the mechanical characteristics of lugs from short fibers reinforced composite material. In Proceedings of the 18th International Conference “Aviation and Cosmonautics” (AviaSpace-2019), Moscow, Russia, 18–22 November 2019. [Google Scholar] [CrossRef]
- Fujita, Y.; Noda, S.; Takahashi, J.; Emile, S. Greenhalgh; Soraia Pimenta Predicting failure in injection-moulded short-fibre subcomponents under varied environmental conditions through fracture mechanics. Compos. Part B Eng. 2024, 275, 111343. [Google Scholar] [CrossRef]
- Solymossy, B.; Kovacs, J. The Examination of Weld Line Properties in Injection Molded PP Composites. Mater. Sci. Forum. 2008, 589, 263–267. [Google Scholar] [CrossRef]
- Quintana, C.; Frontini, P. Weld line strength factors in a reinforced injection molded part: Relationship with predicted fiber orientation. J. Reinf. Plast. Compos. 2019, 39, 219–230. [Google Scholar] [CrossRef]
- Lu, C.; Guo, S.; Wen, L.; Wang, J. Weld Line morphology and strentgh of polystyrene/polyamide-6/poly(styrene-co-maleic anhydride) blends. Eur. Polym. J. 2004, 40, 2565–2572. [Google Scholar] [CrossRef]
- Merah, N.; Irfan-ul-Haq, M.; Khan, Z. Temperature and Weld-Line Effects on Mechanical Properties of CPVC. J. Mater. Process. Technol. 2003, 142, 247–255. [Google Scholar] [CrossRef]
- Chen, S.C.; Jong, W.R.; Chang, J.A. Dynamic Mold Surface Temperature Control Using Induction Heating and Its Effects on the Surface Appearance of Weld. J. Appl. Polym. Sci. 2006, 101, 1174–1180. [Google Scholar] [CrossRef]
- Mezghani, K. Modeling and Simulation of Weldlines in Injection Molding Process. In Proceedings of the 6th Saudi Engineering Conference, Dhahran, Saudi Arabia, 14–17 December 2002. [Google Scholar]
- Bujanić, B.; Šercer, M.; Rujnić-Sokele, M. Comparison of MOLDEX3d and MOLDFLOW injection moulding simulations. In Proceedings of the 10th International Research/Expert Conference «Trends in the Development of Machinery and Associated Technology» TMT, Barcelona, Spain, 11–15 September 2006. [Google Scholar]
- Kurkin, E.I.; Lukyanov, O.E.; Chertykovtseva, V.O.; Espinosa Barcenas, O.U. Molding gate optimization for weld line location away from structures loaded area. In Proceedings of the 19th International Conference “Aviation and Cosmonautics” (AviaSpace-2020), Moscow, Russia, 23–27 November 2020. [Google Scholar] [CrossRef]
- Prem, B.; Muhammad Idrees, K.; Singh, H. Recent methods for optimization of plastic injection molding process—A retrospective and literature review. Int. J. Eng. Sci. Technol. 2010, 2, 4540–4554. [Google Scholar]
- Kamaruddin, S.; Khan, Z.A.; Foog, S.H. Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blend. Int. J. Web Eng. Technol. 2010, 2, 574–580. [Google Scholar] [CrossRef]
- Lee, K.S.; Lin, J.C. Design of the runner and gating system parameters for a multi-cavity injection mould using FEM and neural network. Int. J. Adv. Manuf. Technol. 2006, 27, 1089–1096. [Google Scholar] [CrossRef]
- Shie, J.R. Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network. Int. J. Adv. Manuf. Technol. 2008, 36, 1091–1103. [Google Scholar] [CrossRef]
- Lee, C.; Na, J.; Park, K.; Yu, H.; Kim, J.; Choi, K.; Park, D.; Park, S.; Rho, J.; Lee, S. Development of Artificial Neural Network System to Recommend Process Conditions of Injection Molding for Various Geometries. Adv. Intell. Syst. 2020, 2, 2000037. [Google Scholar] [CrossRef]
- Lee, H.; Liau, Y.; Ryu, K. Real-time parameter optimization based on neural network for smart injection molding. In Proceedings of the 5th International Conference on Mechanical Engineering, Materials Science and Civil Engineering, Kuala Lumpur, Malaysia, 15–16 December 2017; Volume 324. [Google Scholar] [CrossRef]
- Fernandes, C.; Pontes, A.; Viana, J.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review. Adv. Polym. Technol. 2016, 37, 429–449. [Google Scholar] [CrossRef]
- Swapnil, P.; Swapnil, D.; Sanket, P.; Ghanshyamp, A.; Mayur, M. Design And Structural Analysis Of Heavy Duty Industrial Blower Casing Using FEA. IJSART. 2018, 4, 70–80. [Google Scholar]
- Armamid PA6 GF 50-1 TDS TDS. Available online: https://polyplastic-compounds.ru/images/pdf/Armamid/Armamid_PA6_GF_50-1.pdf (accessed on 19 July 2025).
- Kurkin, E.; Spirina, M. Accuracy of the Short Fibers Reinforced Composite Material Plasticity Models. J. Phys. Conf. Ser. 2021, 1925, 12040. [Google Scholar] [CrossRef]
- Gamma Plast UPA 6 30 M TDS. Available online: https://gamma-plast.ru/poliamid/uglenapolnenniy/poliamid-upa-6-30-m/ (accessed on 19 July 2025).
- Kurkin, E.; Spirina, M.; Espinosa Barcenas, O.U.; Kurkina, E. Calibration of the PA6 Short-Fiber Reinforced Material Model for 10% to 30% Carbon Mass Fraction Mechanical Characteristic Prediction. Polymers 2022, 14, 1781. [Google Scholar] [CrossRef]
- ISO-527-2-2012; Plastics—Determination of Tensile Properties; Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/56046.html (accessed on 1 July 2025).
- Semenichev, V.K.; Kurkin, E.I.; Semenichev, E.V.; Danilova, A.A.; Fisun, G.A.; Kasatkina, E.I. Non-renewable Recourses Life Cycles Modeling Aspects. Procedia Comput. Sci. 2015, 65, 872–879. [Google Scholar] [CrossRef]
- Kishov, E.A.; Kurkin, E.I. Evaluation of a New Evolutionary Optimization Algorithm for Finding the Global Optimum in General Tasks. In Proceedings of the 20th International Conference “Aviation and Cosmonautics” (AviaSpace2021), Moscow, Russia, 22–26 November 2021. [Google Scholar]
- GateOptWeld3D Code for Optimizing the Location of Melt Entry Points During Molding of Spatial Structures. Available online: https://github.com/Vladislava-Chertykovtseva/GateOptWeld3D (accessed on 25 September 2025).
- Mokarizadehhaghighishirazi, M.; Buffel, B.; Lomov, S.V.; Desplentere, F. Investigation of microstructural and mechanical properties of weld lines in injection-molded short glass fiber-reinforced polyamide 6. Polym. Compos. 2024, 45, 8905–8920. [Google Scholar] [CrossRef]
- Kurkin, E.I.; Spirina, M.; Chertykovtseva, V.; Zakhvatkin, Y. Mechanical characteristics of short fiber composite samples located behind circle, rectangle, triangle obstacles. In Proceedings of the 18th International Conference “Aviation and Cosmonautics” (AviaSpace-2019), Moscow, Russia, 18–22 November 2019; Volume 868. [Google Scholar]
- Azawqari, A.A.; Rahim, S.; Fathullah, M.; Saad, M.N.M.; Huzaim, N.H. Multi-objective optimization and evaluation of shrinkage and weld line strength in flat plastic parts using response surface methodology in injection molding. Int. J. Adv. Manuf. Technol. 2025, 138, 757–782. [Google Scholar] [CrossRef]
Node_ID | Criteria |
---|---|
158.0000 | 9.8645 |
45035.0000 | 10.1049 |
4481.0000 | 10.1457 |
48508.0000 | 10.3422 |
4913.0000 | 11.0257 |
421.0000 | 11.2119 |
39557.0000 | 15.7199 |
2658.0000 | 40.3989 |
25681.0000 | 41.1663 |
7341.0000 | 42.5090 |
17508.0000 | 42.8299 |
23992.0000 | 48.2619 |
17886.0000 | 51.0144 |
31201.0000 | 51.3535 |
17938.0000 | 51.6137 |
175.0000 | 51.7236 |
17580.0000 | 52.0905 |
17854.0000 | 52.7470 |
25592.0000 | 53.1188 |
23999.0000 | 53.4022 |
36147.0000 | 60.2192 |
17293.0000 | 60.7792 |
17961.0000 | 62.7508 |
663.0000 | 62.8980 |
9664.0000 | 64.1144 |
49651.0000 | 66.8427 |
5113.0000 | 69.7721 |
31734.0000 | 70.6678 |
36026.0000 | 82.6672 |
32619.0000 | 96.8143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chertykovtseva, V.O.; Kishov, E.A.; Kurkin, E.I. Injection Mold Design Technology to Locate Weld Lines Away from Highly Loaded Structural Areas. Technologies 2025, 13, 454. https://doi.org/10.3390/technologies13100454
Chertykovtseva VO, Kishov EA, Kurkin EI. Injection Mold Design Technology to Locate Weld Lines Away from Highly Loaded Structural Areas. Technologies. 2025; 13(10):454. https://doi.org/10.3390/technologies13100454
Chicago/Turabian StyleChertykovtseva, Vladislava O., Evgenii A. Kishov, and Evgenii I. Kurkin. 2025. "Injection Mold Design Technology to Locate Weld Lines Away from Highly Loaded Structural Areas" Technologies 13, no. 10: 454. https://doi.org/10.3390/technologies13100454
APA StyleChertykovtseva, V. O., Kishov, E. A., & Kurkin, E. I. (2025). Injection Mold Design Technology to Locate Weld Lines Away from Highly Loaded Structural Areas. Technologies, 13(10), 454. https://doi.org/10.3390/technologies13100454