Aerospace 2018, 5(3), 93; https://doi.org/10.3390/aerospace5030093
Effect of Ramie Fabric Chemical Treatments on the Physical Properties of Thermoset Polylactic Acid (PLA) Composites
1
School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
2
Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China
3
Key Laboratory of Hollow Fiber Membrane Material and Membrane Process of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
4
Chinatesta Textile Testing & Certification Services, Beijing 100025, China
5
Beijing Institute of Aeronautical Materials, Beijing 100095, China
6
Aviation Composite (Beijing) Science and Technology Co., Ltd., Beijing 101300, China
*
Author to whom correspondence should be addressed.
Received: 13 July 2018 / Revised: 28 August 2018 / Accepted: 30 August 2018 / Published: 2 September 2018
(This article belongs to the Special Issue ECO-COMPASS: Ecological and Multifunctional Composites for Application in Aircraft Interior and Secondary Structures)
Abstract
Ramie fabric-reinforced thermoset polylactic acid (PLA) composites were prepared by using heat pressing technology. Fabrics were treated with alkali, silane, and alkali–silane respectively, expecting an improvement of the interface between the fabric and the matrix. Scanning electron microscopy (SEM) results indicated that after alkali treatment, impurities on the fiber surface were removed and its diameter became finer. After the silane, and alkali–silane treatments, the contact angles of the ramie fibers increased by 14.26%, and 33.12%, respectively. The contact angle of the alkali–silane treated fiber reached 76.41°; this is beneficial for the adhesion between ramie fiber and the PLA. The research revealed that the tensile strength of the fiber increased after the alkali and silane treatments. A slight decrease was noticed on the tensile strength of fibers treated with alkali–silane. After all, three chemical treatments were done, the flexure strength of the ramie fabric-reinforced PLA composites, improved in all cases. Among the three treatments, the alkali–silane treatment demonstrated the best result, as far as the flexure strength and modulus of the fabricated composites were concerned. On the other hand, water absorption of the related composites decreased by 23.70%, which might contribute to the closer contact between the ramie fiber and the matrix. The ramie fabric-reinforced PLA composites, prepared in this study, can meet the standard requirements of aircraft interior structures and have favorable application foreground. View Full-TextKeywords:
fabric; interface; physical properties; thermosetting resin
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article
MDPI and ACS Style
Wang, C.; Ren, Z.; Li, S.; Yi, X. Effect of Ramie Fabric Chemical Treatments on the Physical Properties of Thermoset Polylactic Acid (PLA) Composites. Aerospace 2018, 5, 93.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Aerospace
EISSN 2226-4310
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert