Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme
Abstract
:1. Introduction
2. Research Method
2.1. Comprehensive Evaluation Indicator
2.2. Variable Step Search
2.3. Flow Field Calculation
3. Model Establishment and Grid
4. Results and Discussion
4.1. Equal Weight Coefficients
4.2. Aerodynamic Force Priority
4.3. Aerodynamic Moment Priority
5. Conclusions
- (1)
- Under the condition of equal weight coefficients, the presented search algorithm can provide the optimal solution for the front fin position to achieve the minimum value of the comprehensive evaluation indicator. The difference between the optimized solution for the front fin position and the initial value can reach half of the installation interval;
- (2)
- When prioritizing the influence of a lateral aerodynamic force, the distribution of data points in the comprehensive evaluation indicator changes, and the optimal solution for the front fin position also changes accordingly. After optimization, the position of the front fin is close to the front end of the forebody, and the aerodynamic force indicator along the wingspan is significantly weakened;
- (3)
- For the situation where the aerodynamic moment is prioritized, the data point distribution of the comprehensive evaluation indicator shows a state of high in the middle and low on both sides, where the pressure coefficient corresponding to the optimal solution on the sample observation section is kept at a low level.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Cs1 | Cp2 | Cx2 | Cv3 | Cp4 |
---|---|---|---|---|---|
Value | 0.1 | 0.3 | 0.5 | 0.2 | 0.1 |
Parameter | Z0 (m) | R0 (m) | Hf0 (m) | Lft (m) | X0 (m) |
---|---|---|---|---|---|
Value | 0.2 | 0.27 | 0.3 | 2.8 | 0.5 |
References
- Yin, J.; Lei, J.; Jiang, S.; Yin, X. The aerodynamic characteristics and its estimation method of finned missile experiencing spin-deformation coupling motion. Aerosp. Sci. Technol. 2021, 115, 106806. [Google Scholar] [CrossRef]
- Alsaidi, S.B.; Huh, J.; Selim, M.Y.E. Combustion of Date Stone and Jojoba Solid Waste in a Hybrid Rocket-like Combustion Chamber. Aerospace 2024, 11, 181. [Google Scholar] [CrossRef]
- Huang, H.; Sun, T.; Zhang, G.; Sun, L.; Zong, Z. Modeling and computation of turbulent slot jet impingement heat transfer using RANS method with special emphasis on the developed SST turbulence model. Int. J. Heat Mass Transf. 2018, 126, 589–602. [Google Scholar] [CrossRef]
- Song, Y.; He, Y.; Leng, H. Analysis of Atmospheric Elements in Near Space Based on Meteorological-Rocket Soundings over the East China Sea. Remote Sens. 2024, 16, 402. [Google Scholar] [CrossRef]
- Jehad, D.G.; Hashim, G.A.; Zarzoor, A.K.; Azwadi, C.N. Numerical study of turbulent flow over backward-facing step with different turbulence models. J. Adv. Res. Des. 2015, 4, 20–27. [Google Scholar]
- Chen, J.; Fan, X.; Xiong, B.; Wang, Y. Design methodology of the hypersonic axisymmetric forebody. Acta Astronaut. 2020, 175, 179–184. [Google Scholar] [CrossRef]
- Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, AIAA 93-2906, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Musso, G.; Figueiras, I.; Goubel, H.; Gonçalves, A.; Costa, A.L.; Ferreira, B.; Azeitona, L.; Barata, S.; Souza, A.; Afonso, F.; et al. A Multidisciplinary Optimization Framework for Ecodesign of Reusable Microsatellite Launchers. Aerospace 2024, 11, 126. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- He, K.; Gao, G.-J.; Wang, J.-B.; Fu, M.; Miao, X.-J.; Zhang, J. Performance of a turbine driven by train-induced wind in a tunnel. Tunn. Undergr. Space Technol. 2018, 82, 416–427. [Google Scholar] [CrossRef]
- Zhou, L.; Bai, L.; Li, W.; Shi, W.; Wang, C. PIV validation of different turbulence models used for numerical simulation of a centrifugal pump diffuser. Eng. Comput. 2018, 35, 2–17. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system. Aerosp. Sci. Technol. 2021, 110, 106490. [Google Scholar] [CrossRef]
- Paul, A.R.; Jain, A.; Alam, F. Drag reduction of a passenger car using flow control techniques. Int. J. Automot. Technol. 2019, 20, 397–410. [Google Scholar] [CrossRef]
- Adanta, D.; Fattah, I.M.R.; Muhammad, N.M. Comparison of standard k-epsilon and sst k-omega turbulence model for breastshot waterwheel simulation. J. Mech. Sci. Eng. 2020, 7, 039–044. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Y-type quadrotor radar cross-section analysis. Aircr. Eng. Aerosp. Technol. 2023, 95, 535–545. [Google Scholar] [CrossRef]
- Kurtulmuş, N.; Zontul, H.; Sahin, B. Heat transfer and flow characteristics in a sinusoidally curved converging-diverging channel. Int. J. Therm. Sci. 2020, 148, 106163. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Xing, C. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. J. Power Sources 2019, 415, 25–32. [Google Scholar] [CrossRef]
- Zeriadtke, J.E.; Martin, J.; Wartemann, V. Hybrid Rocket Engine Burnback Simulations Using Implicit Geometry Descriptions. Aerospace 2024, 11, 103. [Google Scholar] [CrossRef]
- Renault, M.; Lappas, V. Design of a Mars Ascent Vehicle Using HyImpulse’s Hybrid Propulsion. Aerospace 2023, 10, 1030. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Numerical investigations on radar cross-section of helicopter rotor with varying blade pitch. Aerosp. Sci. Technol. 2022, 123, 107452. [Google Scholar] [CrossRef]
- Campos, L.M.B.C.; Silva, M.J.S. On the Size of the Safety Area around the Launch Trajectory of a Rocket. Aerospace 2023, 10, 760. [Google Scholar] [CrossRef]
- Granda, M.; Trojan, M.; Taler, D. CFD analysis of steam superheater operation in steady and transient state. Energy 2020, 199, 117423. [Google Scholar] [CrossRef]
- Shan, X.; Wang, Y.; Ji, Z. Energy efficiency optimization for discrete workshop based on parametric knowledge pigeon swarm algorithm. J. Syst. Simul. 2017, 29, 2140. [Google Scholar]
- Fathollahi-Fard, A.M.; Govindan, K.; Hajiaghaei-Keshteli, M.; Ahmadi, A. A green home health care supply chain: New modified simulated annealing algorithms. J. Clean. Prod. 2019, 240, 118200. [Google Scholar] [CrossRef]
- Hassanpour, M.; Azadani, L.N. Aerodynamic optimization of the configuration of a pair of vertical axis wind turbines. Energy Convers. Manag. 2021, 238, 114069. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Application of particle swarm optimization to water management: An introduction and overview. Environ. Monit. Assess. 2020, 192, 281. [Google Scholar] [CrossRef] [PubMed]
- Saheby, E.B.; Hays, A.P.; Xing, S. Aerodynamic design and evaluation of an open-nose supersonic drone. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 3387–3410. [Google Scholar] [CrossRef]
- Nicolosi, F.; Ciliberti, D.; Della Vecchia, P.; Corcione, S.; Cusati, V. A comprehensive review of vertical tail design. Aircr. Eng. Aerosp. Technol. 2017, 89, 547–557. [Google Scholar] [CrossRef]
- Moëns, F. A Fast Aerodynamic Model for Aircraft Multidisciplinary Design and Optimization Process. Aerospace 2023, 10, 7. [Google Scholar] [CrossRef]
- Lee, B. Vertical tail buffeting of fighter aircraft. Prog. Aerosp. Sci. 2000, 36, 193–279. [Google Scholar] [CrossRef]
- Martinez-Sanchis, D.; Sternin, A.; Haidn, O.; Tajmar, M. Combustion Regimes in Turbulent Non-Premixed Flames for Space Propulsion. Aerospace 2023, 10, 671. [Google Scholar] [CrossRef]
- Pane, C.; Manganiello, G.; Nicastro, N.; Carotenuto, F. Early Detection of Wild Rocket Tracheofusariosis Using Hyperspectral Image-Based Machine Learning. Remote Sens. 2022, 14, 84. [Google Scholar] [CrossRef]
- Savastano, G.; Komjathy, A.; Shume, E.; Vergados, P.; Ravanelli, M.; Verkhoglyadova, O.; Meng, X.; Crespi, M. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. 2019, 11, 1734. [Google Scholar] [CrossRef]
- Barokah, A.D.N.; Ubaidillah; Lenggana, B.W.; Wibawa, L.A.N.; Turnip, A.; Joelianto, E.; Le Hoa, N. A Comparative Analysis of Aerodynamic Performance: Straight Fin and Curved Fin Rockets using Computational Fluid Dynamics (CFD). J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 115, 1–18. [Google Scholar] [CrossRef]
- Sun, A.; Niu, Q.; Dong, S. Spectral feature extraction of rocket exhaust plume using spectral proper orthogonal decomposition. Phys. Fluids 2024, 36, 035172. [Google Scholar] [CrossRef]
- Akram, M.T.; Kim, M.H. CFD analysis and shape optimization of airfoils using class shape transformation and genetic algorithm—Part I. Appl. Sci. 2021, 11, 3791. [Google Scholar] [CrossRef]
- Akram, M.T.; Kim, M.H. Aerodynamic shape optimization of NREL S809 airfoil for wind turbine blades using reynolds-averaged navier stokes model—Part II. Appl. Sci. 2021, 11, 2211. [Google Scholar] [CrossRef]
- Ali, Q.S.; Kim, M.-H. Unsteady aerodynamic performance analysis of an airborne wind turbine under load varying conditions at high altitude. Energy Convers. Manag. 2020, 210, 112696. [Google Scholar] [CrossRef]
Coarse | Medium | Fine | |
---|---|---|---|
Number of grids (million) | 3.67 | 6.21 | 11.29 |
Static pressure at x = 1.1127 m | 2.5163 × 103 Pa | 2.4697 × 103 Pa | 2.4745 × 103 Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Huang, J. Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme. Aerospace 2024, 11, 617. https://doi.org/10.3390/aerospace11080617
Zhou Z, Huang J. Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme. Aerospace. 2024; 11(8):617. https://doi.org/10.3390/aerospace11080617
Chicago/Turabian StyleZhou, Zeyang, and Jun Huang. 2024. "Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme" Aerospace 11, no. 8: 617. https://doi.org/10.3390/aerospace11080617
APA StyleZhou, Z., & Huang, J. (2024). Position Calculation for Front Fin of Rocket Forebody Using Variable Step Scheme. Aerospace, 11(8), 617. https://doi.org/10.3390/aerospace11080617