Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. The MCD12C1 Land-Cover Map
2.2. The CRU TS Climatic Dataset and Aridity Index
2.3. The GPCC Precipitation Analysis Products
2.4. The Forest and Grassland Hotspot Location Analysis
2.5. The Burned Areas
2.6. GIS System Tool and Water Bodies Recourse
3. MCD12C1 Land-Cover Changes
3.1. The Temporal Variability of MCD12C1 Vegetations Nearby Lake Baikal
3.2. The Variability of Spatial Distribution of MCD12C1 Forests Nearby Lake Baikal
4. The Analysis of Climatic Changes in the Baikal basin
4.1. The Spatial Distribution of Summer Rainfalls
4.2. Annual Variability of Rainfall in the Lake Baikal basin
4.3. Aridity Index and Potential Evaporation in the Basin of the Lake Baikal
4.4. Relative Contribution of the Mongolian and Russian parts of the Baikal Basin in Precipitation and Aridity Indexes
5. Analysis of Wildfire Situations
5.1. The Temporal and Spatial Distributions of Hotspots
5.2. The Spatial Distributions of Burned Areas
5.3. Dry Lightning and Pyrocumulus Lightning as the Reasons for Ignitions
6. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Sinyukovich, V.N.; Sizova, L.N.; Shimaraev, M.N.; Kurbatova, N.N. Characteristics of Current Changes in Water Inflow Into Lake Baikal. Geogr. Nat. Resour. 2013, 34, 350–355. [Google Scholar] [CrossRef]
- Törnqvist, R.; Jarsjö, J.; Pietron, J.; Bring, A.; Rogberg, P.; Asokan, S.M.; Destouni, G. Evolution of the hydro-climate system in the Lake Baikal basin. J. Hydrol. 2014, 519, 1953–1962. [Google Scholar] [CrossRef] [Green Version]
- Dabaeva, D.B.; Tsydypov, B.Z.; Ayurzhanaev, A.A.; Andreev, S.G.; Garmaev, Y.Z. Peculiarities of Lake Baikal water level regime. IOP Conf. Ser. Earth Environ. Sci. 2016, 48, 012014. [Google Scholar] [CrossRef] [Green Version]
- Frolova, N.L.; Belyakova, P.A.; Grigor’ev, V.Y.; Sazonov, A.A.; Zotov, L.V. Many-Year Variations of River Runoff in the Selenga Basin. Water Resour. 2017, 44, 359–371. [Google Scholar] [CrossRef]
- Frolova, N.L.; Belyakova, P.A.; Grigoriev, V.Y.; Sazonov, A.A.; Zotov, L.V.; Jarsjö, J. Runoff fluctuations in the Selenga River Basin. Reg. Environ. Chang. 2017, 17, 1965–1976. [Google Scholar] [CrossRef]
- Sinyukovich, V.N.; Chernyshov, M.S. Transformation of estimated characteristics of the annual and maximal runoff in the major tributaries of Lake Baikal. Water Resour. 2017, 44, 372–379. [Google Scholar] [CrossRef]
- Dobrovol’skii, S.G. Year-to-year and many-year river runoff variations in Baikal Drainage Basin. Water Resour. 2017, 44, 347–358. [Google Scholar] [CrossRef]
- Dorjsuren, B.; Yan, D.; Wang, H.; Chonokhuu, S.; Enkhbold, A.; Yiran, X.; Girma, A.; Gedefaw, M.; Abiyu, A. Observed Trends of Climate and River Discharge in Mongolia’s Selenga Sub-Basin of the Lake Baikal Basin. Water Resour. 2018, 10, 1436. [Google Scholar] [CrossRef] [Green Version]
- Sinyukovich, V.N.; Chernyshov, M.S. Water regime of lake Baikal under conditions of climate change and anthropogenic influence. Quat. Int. 2019, 524, 93–101. [Google Scholar] [CrossRef]
- Namzalov, B.B. For question’s about of relict in the flora and vegetation of steppe ecosystems of the Baikal Siberia (In Russian, Abstract in English only). Plant Life Asian Russ. 2012, No2, 94–100. [Google Scholar]
- Dulepova, N.A.; Korolyuk, A.Y. Psammophyte vegetation of the Selenga river basin (Republic of Buryatia). Veg. Russ. St. Petersburg 2015, 27, 78–95. [Google Scholar] [CrossRef]
- Namzalov, B.B.; Chimitov, D.G.; Imetkhenova, O.V.; M.B-Namzalov, T.; Banaeva, S.C. Rare and relict species in flora of the Selenga Mountains (Western Transbaikalia). Plant Life Asian Russ. 2016, No1, 75–79, (In Russian, Abstract in English Only). [Google Scholar]
- Gunin, P.D.; Bazha, S.N.; Baldanov, B.T.; Baskhaeva, T.G.; Drobyshev, Y.I.; Dugarjav, C.; Kontsov, S.V.; Ubugunov, V.L.; Ubugunova, V.I.; Khadbaatar, S.; et al. Deforestation is one of the most major environmental problems of the lake Baikal basin. Ekosist. Ekol. Din. (Ecosyst. Ecol. Dyn.) 2017, 1, 38–39. (In Russian) [Google Scholar]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Yagunov, M.N. Decline of dark coniferous stands in Baikal Region. Contemp. Probl. Ecol. 2016, 9, 617–625. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Golyukov, A.S.; Ranson, K.J.; Yagunov, M.N. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 2017, 384, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Kharuk, V.; Ranson, K.; Oskorbin, P.; Im, S.; Dvinskaya, M. Climate induced birch mortality in Trans-Baikal lake region, Siberia. For. Ecol. Manag. 2013, 289, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Karthe, D.; Chalov, S.; Kasimov, N.; Kappas, M. Water and Environment in the SelengaBaikal Basin: International Research Cooperation for an Ecoregion of Global Relevance; ibidem-Verlag: Stuttgart, Germany, 2015. [Google Scholar]
- Berezhnykh, T.V.; Marchenko, O.Y.; Abasov, N.V.; Mordvinov, V.I. Changes in the Summertime Atmospheric Circulation Over East Asia and Formation of Long-Lasting Low-Water Periods Within the Selenga River Basin. Geogr. Nat. Resour. 2012, 33, 223–229. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, W.-K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Wang, G.; Wang, P.; Wang, T.-Y.; Zhang, Y.-C.; Yu, J.-J.; Ma, N.; Frolova, N.L.; Liu, C.-M. Contrasting Changes in Vegetation Growth due to Different Climate Forcings over the Last Three Decades in the Selenga-Baikal Basin. Remote Sens. Environ. 2019, 11, 426. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS collection 6 land cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. 2018. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf (accessed on 15 April 2020). [CrossRef]
- Safronov, A.N.; Fokeeva, E.V.; Rakitin, V.S.; Yurganov, L.N.; Grechko, E.I. Carbon monoxide emissions in summer 2010 in the central part of the Russian Plain and estimation of their uncertainties with the use of different land-cover maps. Izv. Atmos. Ocean. Phys. 2012, 48, 925–940. [Google Scholar] [CrossRef]
- Safronov, A.N.; Fokeeva, E.V.; Rakitin, V.S.; Grechko, E.I.; Shumsky, R.A. Severe Wildfires Near Moscow, Russia in 2010: Modeling of Carbon Monoxide Pollution and Comparisons with Observations. Remote Sens. Environ. 2015, 7, 395–429. [Google Scholar] [CrossRef] [Green Version]
- Bartalev, S.A.; Ershov, D.V.; Isaev, A.S.; Potapov, P.V.; Turubanova, S.A.; Yaroshenko, A.Y. Russia’s Forests—Dominating Forest Types and Their Canopy Density, Moscow, Greenpeace Russia and RAS Centre for Forest Ecology and Productivity, (Map, scale 1:14:000:000), 2004. Available online: http://forestforum.ru/info/pictures/engmap.pdf (accessed on 15 April 2020).
- Bartalev, S.A.; Belward, A.S.; Erchov, D.V.; Isaev, A.S. A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. Int. J. Remote Sens. 2003, 24, 1977–1982. [Google Scholar] [CrossRef]
- Hüttich, C.; Herold, M.; Schmullius, C.; Egorov, V.; Bartalev, S.A. Indicators of Northern Eurasia’s land cover change trends from SPOT-VEGETATION time series analysis 1998–2005. Int. J. Remote Sens. 2007, 28, 4199–4206. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Egorov, V.A.; Ershov, D.V.; Isaev, A.S.; Loupian, E.A.; Plotnikov, D.E.; Uvarov, I.A. Mapping of Russia’s vegetation cover using MODIS satellite spectroradiometer data. Curr. Probl. Remote Sens. Earth Space 2011, 8, 285–302. (In Russian) [Google Scholar]
- Bartalev, S.A.; Egorov, V.A.; Zharko, V.O.; Loupian, E.A.; Plotnikov, D.E.; Khvostikov, S.A. Current state and development prospects of satellite mapping methods of Russia’s vegetation cover. Curr. Probl. Remote Sens. Earth Space 2015, 12, 203–221. (In Russian) [Google Scholar]
- Bartalev, S.A.; Plotnikov, D.E.; Loupian, E.A. Mapping of arable land in Russia using multi-year time series of MODIS data and the LAGMA classification technique. Remote Sens. Lett. 2016, 7, 269–278. [Google Scholar] [CrossRef]
- Egorov, V.A.; Bartalev, S.A.; Kolbudaev, P.A.; Plotnikov, D.E.; Khvostikov, S.A. Land cover map of Russia derived from Proba-V satellite data. Curr. Probl. Remote Sens. Earth Space 2018, 15, 282–286. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- CRU-UEA: Dataset CRU TS4.03. Available online: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/cruts.1905011326.v4.03/ (accessed on 15 April 2020).
- Yang, J.; Ding, Y.; Chen, R.; Liu, L. Fluctuations of the Semi-Arid Zone in China, and Consequences for Society. Clim. Chang. 2005, 72, 171–188. [Google Scholar] [CrossRef]
- Kulikov, A.I.; Tsydypov, B.Z.; Sodnomov, B.V.; Gyninova, A.B.; Wang, J. Land Aridization in the Context of Global Warming—A Case Study of Transbaikalia. J. Resour. Ecol. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Datasets: GPCC DWD. Available online: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html (accessed on 15 April 2020).
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-based and Historical Data; Deutscher Wetterdienst: Offenbach am Main, Hessen, Germany, 2018. [Google Scholar] [CrossRef]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Becker, A. Global Precipitation Analysis Products of the GPCC//Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach a. M., Germany. 2018. Available online: https://opendata.dwd.de/climate_environment/GPCC/PDF/GPCC_intro_products_v2018.pdf (accessed on 15 April 2020).
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. J. Geophys. Res. 2006, 111, G02016. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Hall, J.V.; Justice, C.O. MODIS Collection 6 Active Fire Product User’s Guide, Revision B. 2018. Available online: http://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_B.pdf (accessed on 25 October 2019).
- Roy, D.P.; Giglio, L.; Kendall, J.D.; Justice, C.O. A multitemporal active-fire based burn scar detection algorithm. Int. J. Remote Sens. 1999, 20, 1031–1038. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M.; Hall, J.V. Collection 6 MODIS Burned Area Product User’s Guide Version 1.2. 2018. Available online: http://modis-fire.umd.edu/files/MODIS_C6_BA_User_Guide_1.2.pdf (accessed on 15 April 2020).
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- ESRI ArcInfo Information. Available online: http://www.esri.com/software/arcgis/arcinfo/index.html (accessed on 15 April 2020).
- DeLorme Publishing Company and ESRI. World Water Bodies, 2013; ESRI: Redlands, CA, USA, 2014; Available online: http://sandbox.idre.ucla.edu/mapshare/data/world/data/hydropolys.zip (accessed on 15 April 2020).
- Ilyicheva, Y.A.; Korytny, L.M.; Pavlov, M.V. The river network of the Selenga Delta at present. Tomsk State Univ. J. 2014, 380, 190–194. [Google Scholar] [CrossRef]
- Korytny, L.M.; Il’icheva, E.A.; Pavlov, M.V.; Amosova, I.Y. Hydrologo-Morphological Approach to Regionalizationof the Selenga River Basin. Geogr. Nat. Resour. 2012, 33, 212–217. [Google Scholar] [CrossRef]
- Ilyicheva, E.I.; Gagarinova, O.V.; Pavlov, M.V. Hydrologo-Geomorphological Analysis of Landscape Formation within the Selenga River Delta. Geogr. Nat. Resour. 2015, 36, 263–270. [Google Scholar] [CrossRef]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Chang. 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Nauslar, N.J.; Kaplan, M.L.; Wallmann, J.; Brown, T.J. A forecast procedure for dry thunderstorms. J. Oper. Meteorol. 2013, 1, 200–214. [Google Scholar] [CrossRef]
- Rorig, M.L.; Ferguson, S.A. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteorol. 1999, 38, 1565–1575. [Google Scholar] [CrossRef]
- Rorig, M.L.; McKay, S.J.; Ferguson, S.A.; Werth, P. Model-Generated Predictions of Dry Thunderstorm Potential. J. Appl. Meteorol. Climatol. 2007, 46, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Wallmann, J.; Milne, R.; Smallcomb, C.; Mehle, M. Using the 21 June 2008 California Lightning Outbreak to Improve Dry Lightning Forecast Procedures. Weather Forecast. 2010, 25, 1447–1462. [Google Scholar] [CrossRef]
- Rakov, V.A. A review of positive and bipolar lightning discharges. Bull. Am. Meteorol. Soc. 2003, 84, 767–776. [Google Scholar] [CrossRef]
- Saba, M.M.F.; Pinto, O., Jr.; Ballarotti, M.G. Relation between lightning return stroke peak current and following continuing current. Geophys. Res. Lett. 2006, 33, L23807. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Fromm, M.; Trentmann, J.; Luderer, G.; Andreae, M.O.; Servranckx, R. The Chisholm firestorm: Observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys. 2007, 7, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Rudlosky, S.D.; Fuelberg, H.E. Seasonal, Regional, and Storm-Scale Variability of Cloud-to-Ground Lightning Characteristics in Florida. Mon. Weather Rev. 2011, 139, 1826–1843. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012. Mon. Weather Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef] [Green Version]
- McRae, R.H.D.; Sharples, J.J.; Fromm, M.D. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 2015, 15, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res. Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; Di Virgilio, G.; McCarthy, N. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 10073. [Google Scholar] [CrossRef]
- Mather, T.A.; Harrison, R.G. Electrification of volcanic plumes. Surv. Geophys. 2006, 27, 387–432. [Google Scholar] [CrossRef]
- James, M.R.; Wilson, L.; Lane, S.J.; Gilbert, J.S.; Mather, T.A.; Harrison, R.G.; Martin, R.S. Electrical Charging of Volcanic Plumes. Space Sci. Rev. 2008, 137, 399–418. [Google Scholar] [CrossRef]
- McNutt, S.R.; Williams, E.R. Volcanic lightning: Global observations and constraints on source mechanisms. Bull. Volcanol. 2010, 72, 1153–1167. [Google Scholar] [CrossRef]
- Mendez Harper, J.; Dufek, J. The effects of dynamics on the triboelectrification of volcanic ash. J. Geophys. Res. Atmos. 2016, 121, 8209–8228. [Google Scholar] [CrossRef] [Green Version]
IGBP Category | Relative Land Cover (RLC), % | Changes, 2018–2010 | ||
---|---|---|---|---|
2010 | 2018 | ΔRLC, % | ΔLC, % | |
Water bodies | 11.31 | 11.18 | −0.12 | −1.1 |
Evergreen needleleaf forests | 2.73 | 2.25 | −0.47 | −18.9 |
Evergreen broadleaf forests * | 1.88 | 1.56 | −0.33 | −19.2 |
Deciduous needleleaf forests | 5.88 | 5.31 | −0.57 | −10.2 |
Deciduous broadleaf forests | 4.42 | 4.22 | −0.20 | −4.6 |
Mixed forests | 4.71 | 4.43 | −0.29 | −6.3 |
Closed shrublands | 3.99 | 3.85 | −0.14 | −3.6 |
Open shrublands | 5.97 | 5.60 | −0.37 | −6.4 |
Woody savannas (forest–steppe) | 31.13 | 32.10 | 0.97 | 3.1 |
Savannas (steppe) | 13.33 | 15.72 | 2.39 | 16.5 |
Grasslands | 14.42 | 13.55 | −0.87 | −6.2 |
Permanent wetlands | 0.16 | 0.13 | −0.02 | −13.8 |
Year | Quantity of Hotspots, MCD14ML (Active Fires, AF) | |||
---|---|---|---|---|
June | July | August | July–August Rainy Season | |
2010 | 264 | 160 | 13 | 173 |
2011 | 1169 | 159 | 19 | 178 |
2012 | 7 | 0 | 4 | 4 |
2013 | 118 | 7 | 10 | 17 |
2014 | 157 | 236 | 209 | 445 |
2015 | 673 | 2297 | 13164 | 15461 |
2016 | 572 | 469 | 18 | 487 |
2017 | 849 | 298 | 132 | 430 |
2018 | 27 | 5 | 7 | 12 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safronov, A.N. Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate 2020, 8, 57. https://doi.org/10.3390/cli8040057
Safronov AN. Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate. 2020; 8(4):57. https://doi.org/10.3390/cli8040057
Chicago/Turabian StyleSafronov, Alexander N. 2020. "Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin" Climate 8, no. 4: 57. https://doi.org/10.3390/cli8040057
APA StyleSafronov, A. N. (2020). Effects of Climatic Warming and Wildfires on Recent Vegetation Changes in the Lake Baikal Basin. Climate, 8(4), 57. https://doi.org/10.3390/cli8040057