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Abstract: Mongolia’s Selenga sub-basin of the Lake Baikal basin is spatially extensive, with
pronounced environmental gradients driven primarily by precipitation and air temperature on broad
scales. Therefore, it is an ideal region to examine the dynamics of the climate and the hydrological
system. This study investigated the annual precipitation, air temperature, and river discharge
variability at five selected stations of the sub-basin by using Mann-Kendall (MK), Innovative trend
analysis method (ITAM), and Sen’s slope estimator test. The result showed that the trend of annual
precipitation was slightly increasing in Ulaanbaatar (Z = 0.71), Erdenet (Z = 0.13), and Tsetserleg
(Z = 0.26) stations. Whereas Murun (Z = 2.45) and Sukhbaatar (Z = 1.06) stations showed a significant
increasing trend. And also, the trend of annual air temperature in Ulaanbaatar (Z = 5.88), Erdenet
(Z = 3.87), Tsetserleg (Z = 4.38), Murun (Z = 4.77), and Sukhbaatar (Z = 2.85) was sharply increased.
The average air temperature has significantly increased by 1.4 ◦C in the past 38 years. This is very
high in the semi-arid zone of central Asia. The river discharge showed a significantly decreasing
trend during the study period years. It has been apparent since 1995. The findings of this paper could
help researchers to understand the annual variability of precipitation, air temperature, and river
discharge over the study region and, therefore, become a foundation for further studies.

Keywords: precipitation; air temperature; river discharge; Mann-Kendall test; Selenga river basin;
Lake Baikal basin; Mongolia

1. Introduction

The Lake Baikal basin (LBB) is a suitable area to study climate change impacts. The climate is a
long-term prevailing weather condition. Weather parameters include air temperature, precipitation,
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humidity, sunshine hours, cloudiness, atmospheric pressure, the number of rainy days, wind velocity,
etc. These parameters interact directly or indirectly, greatly affecting the environment and the living
organisms [1]. The semi-arid environment is highly vulnerable to climate change [2,3]. Land surface
temperature is an important ecological factor and its warming trend will influence the topsoil [4,5].
Evapotranspiration and precipitation rates may change due to changes in soil temperature and
air temperature.

Precipitation change may greatly affect the hydrological system of the basin. Due to climate
change and intensive human activities in recent decades, the runoff of many rivers in the world has
been changing. About 22% of the world’s rivers were shown to have a significant decrease in the
annual runoff because of increasing water consumptions and diversion [6,7].

The most sensitive areas for climate change are arid and semi-arid regions of central Asia [2,8,9].
LBB is the largest representative of these regions [3,10]. Lake Baikal, as the world’s largest natural
freshwater lake and its corresponding catchments, is already affected by climate change and the water
quantity becomes erratic [10]. In recent decades, changes in hydrological and water quantity are
primarily attributed to climate change, land use change, contaminant influx from mining areas and
urban settlements as well [11].

As the largest sub-basin of LBB, Selenga River basin is located in the Mongolian and Russian
Federation. The Mongolian plateau is spatially extensive, with pronounced environmental gradients
driven primarily by precipitation and air temperature on large scales. Therefore, it is an ideal region to
examine the dynamics of the landscape structures and hydrology parameters [9]. This area, hydro-climatic
changes can also lead to a shift in hydrology parameters, ecosystem and lake conditions in these areas.
In addition, human activity effects on water pollution, water resources, sedimentary, and river discharge.
In particular, in the Mongolian’s Selenga River basin high socio-economic activities are taking place. In the
study region, there is high population density particularly, around Tuul and Kharaa sub basin. The sub
basin is located in the biggest cities of Mongolia (Ulaanbaatar, Darkhan, and Erdenet), thus the river basin is
highly consumed by the city residence. They consumed the water for agriculture, recreation and domestic
use. In addition, the Selenga river basin water resource is used by the mining industry. Thus, it has a great
role in reducing the quantity of the basin water flow [3,11,12].

This paper aims to investigate spatial and temporal changes in climate and river discharge changes
in Mongolia’s Selenga sub-basin of the LBB understanding from 1979 to 2016. The overall objectives
of the present study are (i) to identify historical climate trends, (ii) to identify trends of spatial and
temporal changes in the river discharge, (iii) to assess the relationship and to which extent can climate
change trends affect the river discharge.

2. Materials and Methods

2.1. Study Area

Lake Baikal is the oldest (about 25 million years old), deepest (1637 m) and largest freshwater lake
(23,000 km3) and is located in the southern part of East Siberia [13]. The transboundary basin of Lake Baikal
is located on the boundary of North and Central Asia (96◦52′–113◦50′ N, 46◦28′–56◦42′W) [12]. The longest
stretch of the basin from southwest to north-east is 1470 km, and from west to east is 962 km. The minimal
length from west to east is 193 km (Figure 1). The total area of the basin is 573,478 km2, and 52% of
which belong to Mongolia and the remaining belongs to the Russian Federation [14]. In recognition of its
biodiversity and endemism, United Nations Educational, Scientific and Cultural Organization (UNESCO)
declared Lake Baikal as a World Heritage Site in 1996. The lake contains an outstanding variety of endemic
flora and fauna, which is an exceptional value to evolutionary science. It is also surrounded by a system of
protected areas with good scenery and natural values [10,15,16].

As the largest sub-basin of LBB, Selenga River basin is located in the Mongolian and Russian
Federation. The Selenga is a Trans-boundary river, the largest tributary of Lake Baikal. On the
average, it discharges into Lake Baikal ~30 km3 of water, i.e., half of the total inflow into the lake.
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Forty-six percent of Selenga annual runoff forms in Mongolian territory. The Mongolian plateau is
spatially extensive, with pronounced environmental gradients driven primarily by precipitation and
air temperature on large scales. The length of the river is 1024 km, its drainage area is 447.06 thousand
km2, of which 148.06 thousand km2 are in the territory of Russia.
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Figure 1. Location of Lake Baikal basin (LBB), Water gauge station and meteorological stations of the
Selenga River basin located in the Mongolian.

2.2. Data Sources

The data of air temperature, precipitation and hydrologic data of in Mongolia’s Selenga river basin
were taken from Information and Research Institute of Meteorology, Hydrology, and Environment
(IRIMHE) hosts (http://irimhe.namem.gov.mn/), and National Centers for Environmental Information
NOAA’s National Centers for Environmental Information (NCEI) hosts (https://ngdc.noaa.gov/).
The location of the 5 water gauge stations used in this study is shown in Figure 1. For the selection of
climate and water gauge stations in Mongolia’s Selenga sub-basin of the LBB, the following factors
were taken into consideration: (1) spatial distribution; (2) capacity of stations and (3) whether it is near
to the water system (Figure 1) [8,17].

2.3. Methods

Analyses of long-term trends in both the observed and adjusted data were done using
the Mann-Kendall test, with linear changes in the data represented by Kendall-Theil Robust
Lines. This non-parametric approach is well suited for evaluating changes in hydrologic regimes.

http://irimhe.namem.gov.mn/
https://ngdc.noaa.gov/
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The appendix of [18] provides a concise explanation of the statistics as applied to river discharge
data [19], to remove the influence of serial correlations on the trend analyses. Trend analysis is
used to investigate whether the trend is upward, downward, or no trend in data value points.
The non-parametric Mann-Kendall (MK) test has been applied in studies to detect the trends in
hydro-meteorological observations that do not need the normal distribution of data points. This paper
used the Mann-Kendall (MK) test method to detect the trends in climate and river discharge time
series data. To evaluate the reliability of Mann-Kendall (MK), the results were compared with
ITAM and Sen’s slope estimator test. In addition, annual and seasonal precipitation variability
time series data were investigated by statistical analysis. The study region has four distinct seasons:
summer (June–August), autumn (September–November), winter (December–February) and spring
(March–May). Significance levels at 10%, 5%, and 1% were taken to assess the climate and river
discharge time’s series data by MK, ITAM, and Sen’s slope estimator method (Figure 2).
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2.3.1. Mann-Kendall Trend Test

The Mann-Kendall (MK) test method also shows upward and downward trends with statistical
significance. The strength of the trend depends on the magnitude, sample size, and variations of data
series. The trends in the MK test is not significantly affected by the outliers occurred in the data series
since the MK test statistic depends on positive or negative signs [20–22].

Annual and seasonal data series are used for trend analysis in this study. The trends of annual
precipitation, air temperature, and river discharge have been also analyzed separately.

Individual time series data of climate and discharge are compared with all corresponding time
series data of the year. When the data point of later year is larger than the data point of the previous
year, the MK statistics is increased by one otherwise the MK statistics decreased by one. Thus, the MK
statistics is the cumulative result of all the data values. The Mann-Kendall test statistics “S” is then
equated as:

S =
n−1

∑
i = 1

n

∑
j = i+1

sgn
(
xj − xi

)
(1)
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The trend test is applied to xi data values (i = 1, 2, . . . , n− 1) and xj (j = i + 1, 2, . . . , n).
The data value of each xi is used as a reference point to compare with the data value of xj which is
given as:

sgn
(

xj − xi
)
=


+1 if

(
xj − xi

)
> 0

0 if
(
xj − xi

)
= 0

−1 if
(

xj − xi
)
< 0

(2)

where xj and xi are the values in period j and i. When the number of data series greater than or equal
to ten (n ≥ 10), MK test is then characterized by a normal distribution with the mean E(S) = 0 and
variance Var(S) is equated as [23]:

E(S) = 0 (3)

Var(S) =
n(n− 1)(2n + 5)−∑m

k = 1 tk(tk − 1)(2tk + 5)
18

(4)

where m is the number of the tied groups in the time series, and tk is the number of ties in the kth
tied group.

The test statistics Z is as follows:

Z =


s−1

δ if S > 0
0, if S = 0
s+1

δ if S < 0
(5)

when Z is greater than zero, it indicates an increasing trend and when Z is less than zero, it is a
decreasing trend.

In time sequence, the statistics are defined independently:

UFk =
dk − E(dk)√

var(dk)
(k = 1, 2, . . . , n) (6)

Firstly, given the confidence level α, if the UFk > UFα/2, indicates that the sequence has the
significant trend. Then, the time sequence is arranged in reverse order. According to the equation
calculation, while making

UBk = −UFk (7)

K = n + 1− k (8)

Finally, UBk and UFk are drawn as UB and UF curve. If there is an intersection between the two
curves, the intersection is the beginning of the mutation [24].

2.3.2. Innovative Trend Analysis Method (ITAM)

Innovative trend analysis method (ITAM) has been used in many studies to detect the
hydrometeorological observations and its accuracy was compared with the results of MK
method [25,26]. The ITAM divides a time series into two equal parts, and it sorts both sub-series in
ascending order. Then after, the two halves placed on a coordinate system (xi : i = 1, 2, 3, . . . , n/2)
on X-axis and

(
xj : j = n/2 + 1, n/2 + 2, . . . , n

)
on Y-axis. If the time series data on a scattered plot

are collected on the 1:1 (45◦) straight line, it indicates no trend. However, the trend is increasing when
data points accumulate above the 1:1 straight line and decreasing trend when data points accumulate
below the 1:1 straight line.

The mean value difference between xi and xj could give the trend magnitude of data series.
The first observed data point was not considered in this study when classifying the time series
data into xi and xj data plots since the total number of observed data points are 38 from 1979–2016.
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The direction of the trend is also affected by xi data series. The trend indicator of ITAM is multiplied
by 10 to make the scale similar to the other two tests. The trend indicator is given as:
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where ф = trend indicator, n = number of observation on the subseries, xi = data series in the first half
subseries class, xj = data series in the second half subseries part and µ = mean of data series in the first
half subseries part.

A positive value of ф indicates an increasing trend. However, a negative value of ф indicates a
decreasing trend. However, when the scatter points closest around the 1:1 straight line, it implies the
non-existence of a significant trend.

2.3.3. Sen’s Slope Estimator Test

The trend magnitude is calculated by [27–30] slope estimator methods. The slope Qi between
two data points is given by the equation:

Qi =
xj − xk

j− k
, for i = 1, 2, . . . , N (10)

where xj and xk are data points at time j and (j > k), respectively. When there is only single datum in

each time, then N = n(n − 1)
2 ; n is number of time periods. However, if the number of data in each

year is many, then N < n(n − 1)
2 ; n total number of observations. The N values of slope estimator are

arranged from smallest to biggest. Then, the median of slope (β) is computed as:

β =

{
Q[(N + 1)/2] when N is odd
Q[(N/2) + Q(N + 2)/(2)/(2)] when N is even

(11)

The sign of β shown whether the trend is increasing or decreasing.

3. Results

3.1. Analysis of Precipitation

Annual mean precipitation of the study region from 1979 to 2016 was found to be 295.2 mm.
The minimum and maximum recorded annual average precipitations were 175.0 and 380.0 mm
respectively. The seasons of the study region are divided into four categories: Spring, summer, autumn,
and winter seasons. The summer season has the largest proportion of precipitation. The seasonal
precipitation varied from spring 39.27 mm (13.3%) to Summer 204.11 mm (69.15%), autumn 43.51mm
(14.74%) to Winter 8.29 mm (2.81%) (Table 1).

The MK curve annual precipitation (changing parameters) shows a sharp decreasing trend in
Ulaanbaatar 1994 to 2010 (Z = 0.71), a sharp decreasing trend in Erdenet from 1994 to 2005 (Z = 0.13),
also, a sharp decreasing trend in Tsetserleg from 1994 to 2005 (Z = 0.26), a statistically significant
increasing trend in Murun from 1984 to 1995 (Z = 2.45), in Sukhbaatar a significant increasing trend
was observed with (Z = 1.06) from 1981 to 2016 and finally a statistically significant increasing trend
was observed in Average (five stations) from 1984 to 1987 (Z = 0.68) (Figure 3).

The annual trend analysis of precipitation in all station using the Mann Kendall test, ITAM, Sen’s
slope estimator test result are presented in (Table 2). The trend in ITAM test shows an increasing trend
in Murun and decreasing trend in other stations. Hence, the increase and decrease in innovative trend
analysis ф test value predict that the magnitude becomes strong and weak, respectively.
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Table 1. The monthly and seasonal precipitation of stations.

Months, Season Ulaanbaatar
(mm)

Erdenet
(mm)

Tsetserleg
(mm)

Murun
(mm)

Sukhbaatar
(mm)

Average
Precipitation (mm) Z-Score

January 2.38 2.54 2.52 1.47 3.09 2.40 (−0.83)
February 2.45 2.56 2.90 1.10 2.18 2.24 (−0.84)

March 4.60 6.93 7.37 1.40 2.66 4.59 (−0.75)
April 8.39 14.03 13.47 7.71 9.74 10.67 (−0.52)
May 20.53 24.13 32.52 17.89 24.98 24.01 (−0.02)
June 48.23 69.73 58.95 48.19 48.78 54.78 1.13
July 69.37 99.39 86.13 69.86 64.01 77.75 1.99

August 66.80 86.26 75.71 57.60 71.55 71.58 1.76
September 25.52 34.71 25.98 19.78 32.45 27.69 0.12

October 8.94 12.34 13.07 5.62 10.02 10.00 (−0.55)
November 5.48 7.61 6.27 3.06 6.73 5.83 (−0.70)
December 3.52 4.28 3.02 2.98 4.44 3.65 (−0.79)

Spring 33.52 45.09 53.36 26.99 37.38 39.27 (13.3%) 0.55
Summer 184.41 255.38 220.79 175.65 184.34 204.11 (69.15%) 6.73
Autumn 39.94 54.66 45.31 28.46 49.20 43.51 (14.74%) 0.71
Winter 8.35 9.39 8.43 5.56 9.71 8.29 (2.81%) (−0.61)

Annual precipitation 266.22 364.52 327.89 236.66 280.62 295.18 (100%) 10.14

Note: The number in the brackets indicates low precipitation rates.
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Table 2. The result of Z-statistic of Mann-Kendall (MK), Innovative Trend Analysis Method (ITAM)
(ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)

1 
 

ф β

1 Ulaanbaatar 0.71 −0.53 0.63
2 Erdenet 0.13 −0.41 0.28
3 Tsetserleg 0.26 −0.49 0.13
4 Murun 2.45 ** 0.25 1.21 *
5 Sukhbaatar 1.06 * −0.03 0.62
6 Average 0.68 −0.28 0.31

* Trends at 0.1 significance level; ** Trends at 0.05 significance level.

3.2. Analysis of Air Temperature

The MK curve annual air temperature (changing parameters) shows a statistically sharply increasing
trend in Ulaanbaatar from 1994 to 2016 (Z = 5.88), a statistically sharp increasing trend in Erdenet from
1988 to 2016 (Z = 3.87), a statistically sharply increasing trend in Tsetserleg from 1993 to 2016 (Z = 4.38),
a statistically sharp increasing trend in Murun from 1992 to 2016 (Z = 4.77), in Sukhbaatar a statistically
significant increasing trend was observed with (Z = 2.85) from 1986 to 2013 and finally a statistically
significant increasing trend was observed in Average (five stations) (Z = 4.71) (Figure 4).
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The annual trend analysis of air temperature in all station using the Mann Kendall test, ITAM,
Sen’s slope estimator test result is presented in (Table 3). The trend in ITAM test shows an increasing
trend in all stations. Hence, the increase and decrease in innovative trend analysis ф test value predict
that the magnitude becomes strong.
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Table 3. The result of Z-statistic of MK, ITAM (ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)

1 
 

ф β

1 Ulaanbaatar 5.88 *** −54.55 *** 0.05
2 Erdenet 3.87 *** 8.39 ** 0.03
3 Tsetserleg 4.38 *** 7.26 0.04
4 Murun 4.77 *** −47.56 0.06
5 Sukhbaatar 2.85 ** 7.13 *** 0.02
6 Average 4.71 *** 18.66 *** 0.04

** Trends at 0.05 significance level; *** Trends at 0.01 significance level.

3.3. Analysis of River Discharge

The MK curve annual river discharge (changing parameters) shows a sharply decreasing trend in
Ulaanbaatar 1994 to 2016 (Z = −3.32), a statistically sharp decreasing trend in Tsetserleg from 1982 to
2016 (Z = −3.84), a significant decreasing trend in Murun from 1986 to 2016 (Z = −1.28), in Sukhbaatar
a significant decreasing trend was observed with (Z = −2.05) from 1993 to 2016 and finally a significant
decreasing trend was observed in Average (five stations) (Z = −2.05) (Figure 5). The annual trend
analysis of river discharge in all station using the Mann Kendall test, ITAM, Sen’s slope estimator
test result are presented in (Table 4). The trend in ITAM test shows a decreasing trend in all stations.
Hence, the increase and decrease in innovative trend analysis ф test value predict that the magnitude
becomes strong.
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Table 4. The result of Z-statistic of MK, ITAM (ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)

1 
 

ф β

1 Ulaanbaatar −3.32 *** −5.63 −144.12
2 Erdenet 0.00 −0.96 4.46
3 Tsetserleg −3.84 *** −4.65 −56.31
4 Murun −1.28 * −1.01 −64.15
5 Sukhbaatar −2.05 ** −2.00 −550.33
6 Average −2.05 ** −2.00 −169.80

* Trends at 0.1 significance level; ** Trends at 0.05 significance level; *** Trends at 0.01 significance level.

River discharge trend is generally exhibited a downward trend from 1979 to 2016. Especially, river
discharges show a sharp decreasing trend in all stations since 1995.

3.4. Relationship of Climate and River Discharge

The annual average air temperature of the study region from 1979 to 2016 was found to be
0.83 ◦C. The minimum and the maximum recorded air temperature were −0.9 ◦C and 2.9 ◦C per
year, respectively. A dramatic increase in air temperature was observed from 1984 to 2007. In the
study region, the observed air temperature was increased from 1979 to 2016 (R2 = 0.2632) (Figure 6f).
The warmest year was in 2007 (2.9 ◦C). The air temperature most increasing area is Ulaanbaatar city,
it was increasing 1.9 ◦C (R2 = 0.4226) (Figure 6a). The annual average air temperature increased
significantly by 1.4 ◦C. The mean annual air temperature is 16 ◦C to 18 ◦C in July and −16 ◦C to
−22 ◦C in January. In the Mongolian’s Selenga river basin, precipitation varies both in time and space
scale. The average precipitation is 295.2 mm/year. About 85% of the total precipitation falls from April
to September, of which about 69.15% falls during June, July and August. The air temperature and
precipitation changes within the five stations show a different value (Figure 6). Overall precipitation
showed a slightly increasing trend during the period from 1979 to 2016 (Figure 6f).
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Figure 6. Cont.
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Figure 6. The air temperature and precipitation trend for the period 1979–2016. The vertical column is
air temperature and precipitation change, and fluctuations line indicates annual values and solid lines
indicate period running averages.

The ratio of precipitation and river discharge to this basin is calculated by the location of the five
meteorological stations and water gauge stations (Figure 7). However, precipitation has been relatively
stable ranging from 1979 to 2016 (Figure 7f).

The trend of air temperature change and the trend of river discharge were estimated. A statistically
significant increase in average air temperature (five stations average) was from 1994 to 2016 (Z = 4.71).
Also, the air temperature increased on all meteorological stations. River discharge exhibited a
decreasing pattern (Figure 8).
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Figure 7. Long-term in precipitation and discharge change, in during 1979–2016.
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Figure 8. Long-term in air temperature and discharge change, in during 1979–2016.

Potential linkages between climate variables and the observed changes in river discharge are the
subject of ongoing debate. To determine this, it was the estimation of the relationship between climate
parameters and river discharge (Figure 9).
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Figure 9. Correlation coefficient: climate and river discharge.

The correlation coefficient between precipitation and river discharge has a strong positive
correlation (r = 0.64) from 1979 to 2016. In this case, the volume of the river discharge will increase when
the number of precipitation increases. During this period, precipitation has increased. The correlation
coefficient between air temperature and river discharge has a weak negative relationship (r = −0.22)
from 1979 to 2016. In this case, the volume of the river discharge will decrease when the air temperature
increases. However, Figures 7 and 8 shows that the river discharge has a sharp decreasing trend
significantly since 1995, it may be related to the impact of other factors. During this period, quantities
of the river discharge passing through bigger cities are dramatically decreasing. Climate change and
river discharges are interdependent [31]. Especially in the rivers fed by precipitation, precipitation can
directly affect the hydrological changes in the basin. Changes in river discharge are different at the five
stations. In particular, River discharge decreased at the Tuul river water gauge station in Ulaanbaatar
city. It has been decreased apparently since 1995. The water shortage was (y = −224.26x + 13,143).
Also, The River discharge has been decreased in Zuunburen station near Sukhbaatar city. The water
shortage was (y = −570.18x + 101,208). This may be due to the high consumption of the river water
(Figure 7).

The average change in climate and river discharge was categorized by 10 years period.
These include: from 1979 to 1988 (I), from 1989 to 1998 (II), from 1999 to 2008 (III), from 2009 to
2016 (IV) (Figure 10). During the III period, precipitation decreases, the temperature increases and also
the river discharge decrease this is in illustrated in Figure 9.
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However, during in period IV, the amount of precipitation increased, the air temperature
decreased, and the river discharge also decreased. This could be related to other factors rather
than climatic factors.

4. Discussion

An increase in air temperature is among the manifestations of global climate change. The global
average air temperature has increased by 0.85 ◦C from 1880 to 2012, and this may even accelerate
in the near future. The air temperature of worldwide large inland water bodies has been rapidly
warming since 1985 with an average rate of 0.045 ± 0.011 ◦C/year and with the highest rate of
0.10 ± 0.01 ◦C/year [32]. There has been an observed increasing trend mean annual air temperature in
the Selenga River basin by 1.4 ◦C or 0.036 ◦C/year during the considered historical period from 1979 to
2016 (p < 0.05). This is almost twice as much as the global average warming rate of 0.012 ◦C/year
(0.72 ◦C increase during the period from 1951 to 2012). The climate of the Mongolian’s Selenga
river basin is characterized by long and cold winters, dry and hot summers, less precipitation,
and high-temperature fluctuations [10,33]. The annual mean precipitation is 300–400 mm/year in
the Khangai, Khentein, and Huvsgul mountainous regions 150–250 mm/year in the steppe and river
valleys. The results of this study are generally consistent with other research results which reported
increased air temperature and changes precipitation [33,34].

The Selenga River basin lies in the zone of extremely continental climate and a considerable
portion of the basin is occupied by permafrost [10]. Runoff formation conditions in the Selenga River
basin are very diverse. The southern part of the Selenga River basin shows low soil moisture content
and steppe vegetation, while its northern part is covered by dense taiga vegetation and permafrost—an
important source of soil water in summer. The high elevation difference (from 418 to 3514 m) also has
its effect on runoff formation conditions. Rains are the main source of Selenga River basin nourishment.
Snow cover in its drainage basin is not rich, hence the low share of snow in river nourishment.
About half of Selenga annual runoff is the runoff occurred in summer season (June–August), the role of
groundwater in river nourishment is also small [35]. Selenga river basin runoff varies mostly because
of variations of summer precipitation. The rivers of the Selenga River basin show pronounced winter
low-water period from November to March (3–10% of the annual runoff volume), a relatively low
spring snow-melt flood and a series of rain floods in summer and autumn. Many rivers freeze in the
winter season [36]. Especially hydrological processes are very sensitive. The MK, ITAM, and Sen’s
slope estimator test analysis showed that decreasing trend of river discharge was observed across the
stations. The river discharge has a sharp decreasing trend significantly since 1995. It is maybe related
to the impact of other factors. Especially, this may be due to the socioeconomic activities including
mining, industry, agriculture, and urbanization in the basin [8,37–40].

5. Conclusions

In this study, the Mann–Kendall trend test, ITAM, and Sen’s slope estimator test methods were
used to analyze the variability of precipitation, air temperature, and river discharge on an annual basis
in the study basin.

Seasonal variability of precipitation was investigated in all stations. The small significant
increasing trend was observed in Ulaanbaatar, Erdenet, and Tsetserleg stations, whereas other
Murun and Sukhbaatar stations demonstrated a significant increasing trend. The average annual
air temperature for Mongolian’s Selenga river basin is 0.83 ◦C. The average air temperature has
significantly increased by 1.4 ◦C in the past 38 years. This is very high in the semi-arid zone of central
Asia during the past 40 years. This is almost twice the global average warming rate. The river discharge
trend has significantly decreased in the determined study periods. It has been particularly apparent
since 1995. There was conformity in the results obtained from the Mann-Kendall, ITAM test, Sen’s
slope estimator test and the trend line for all stations during the specified study period.
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In the near future, it’s vital to conduct scientific studies on the causes of river discharge change
and its potential influences on the Ecohydrological systems in the basin area.

Author Contributions: B.D. made substantial contributions to the design, idea generating, analysis, interpretation,
and drafting of the manuscript. Y.D. assisted and commented on the draft manuscript and supervised the whole
work. W.H. advising and operated the MK test for data analysis and is a resource person. S.C. and A.E. interpreted
the results. X.Y., M.G., A.A. and A.G. are participated in the design of the study and supervised all methodologies
utilized. The final manuscript before submission was checked and approved by all the authors.

Funding: This research was funded by The China, National Key Research and Development Project (grant No.
2016YFA0601503).

Acknowledgments: The authors would like to thank the Information and Research Institute of Meteorology,
Hydrology, and Environment of Mongolian for providing the raw meteorological data. We also thank the China
Institute of Water Resources and Hydropower Research for financing this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Palmate, S.S.; Pandey, A.; Kumar, D.; Pandey, R.P.; Mishra, S.K. Climate change impact on forest cover and
vegetation in Betwa Basin, India. Appl. Water Sci. 2017, 7, 103–114. [CrossRef]

2. Malsy, M.; Aus der Beek, T.; Eisner, S.; Flörke, M. Climate change impacts on Central Asian water resources.
Adv. Geosci. 2012, 32, 77–83. [CrossRef]

3. Malsy, M.; Flörke, M.; Borchardt, D. What drives the water quality changes in the Selenga Basin: Climate
change or socio-economic development? Reg. Environ. Chang. 2017, 17, 1977–1989. [CrossRef]

4. Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Spatial impact of land use/land cover change on surface
temperature distribution in Saranda Forest, Jharkhand. Model. Earth Syst. Environ. 2016, 2, 127. [CrossRef]

5. Zhuo, L.; Han, D.; Dai, Q. Exploration of empirical relationship between surface soil temperature and surface
soil moisture over two catchments of contrasting climates and land covers. Arabian J. Geosci. 2017, 10, 410.
[CrossRef]

6. Wang, G.; Zhang, J.; Li, X.; Bao, Z.; Liu, Y.; Liu, C.; He, R.; Luo, J. Investigating causes of changes in runoff
using hydrological simulation approach. Appl. Water Sci. 2017, 7, 2245–2253. [CrossRef]

7. Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers.
Glob. Planet. Chang. 2003, 39, 111–126. [CrossRef]

8. Ma, X.; Yasunari, T.; Ohata, T.; Natsagdorj, L.; Davaa, G.; Oyunbaatar, D. Hydrological regime analysis of the
Selenge River basin, Mongolia. Hydrol. Process. 2003, 17, 2929–2945. [CrossRef]

9. Fang, J.; Bai, Y.; Wu, J. Towards a better understanding of landscape patterns and ecosystem processes of the
Mongolian Plateau. Landsc. Ecol. 2015, 30, 1573–1578. [CrossRef]
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