Enhancing Climate Modeling over the Upper Blue Nile Basin Using RegCM5-MOLOCH
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Initial and Lateral Boundary Conditions
2.3. Observed Data
3. Model Description and Development
3.1. Model Setup
3.2. Model Evaluation
4. Results
4.1. Precipitation
4.2. Surface Air Temperature
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UBNB | Upper Blue Nile Basin |
RegCM | Regional Climate Model System |
PBL | Planetary Boundary Layer |
UW | University of Washington |
Hol | Holtslag |
JJAS | June-September |
ITCZ | Inter-Tropical Convergence Zone |
FMAM | February-May |
ONDJ | October-January |
SST | Sea Surface Temperature |
RCMs | Regional Climate Models |
WRF | Weather Research and Forecasting |
NoTo | Nogherotto–Tompkins |
ECMWF | European Centre for Medium-Range Weather Forecasts |
PP7 | Pre-Processor 7 |
CRU | Climate Research Unit |
Bias% | Percent Bias |
RSR | Root Mean Squared Error to observation Standard Deviation Ratio |
CORDEX | COordinated Regional climate Downscaling Experiment |
STDF | Science, Technology and Innovation Funding Authority |
References
- Birhan, M.W.; Raju, U.J.P.; Kenea, S. Estimating the Role of Upper Blue Nile Basin Moisture Budget and Recycling Ratio in Spatiotemporal Precipitation Distributions. J. Atmos. Sol. Terr. Phys. 2019, 193, 105064. [Google Scholar] [CrossRef]
- Viste, E.; Sorteberg, A. Moisture Transport into the Ethiopian Highlands. Int. J. Climatol. 2011, 33, 249–263. [Google Scholar] [CrossRef]
- Keshta, E.; Gad, M.A.; Amin, D. A Long–Term Response-Based Rainfall-Runoff Hydrologic Model: Case Study of The Upper Blue Nile. Hydrology 2019, 6, 69. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J. Characterization and Variability of Kiremt Rainy Season over Ethiopia. Meteorol. Atmos. Phys. 2005, 89, 153–180. [Google Scholar] [CrossRef]
- Zeleke, T.; Yeshita, B.D.; Agidew, F.M. Evaluation of a Regional Climate Model for the Upper Blue Nile Region. In Topics in Climate Modeling; Hromadka, T., Rao, P., Eds.; IntechOpen: London, UK, 2016. [Google Scholar]
- Diro, G.T.; Grimes, D.I.F.; Black, E. Large Scale Features Affecting Ethiopian Rainfall. In African Climate and Climate Change: Physical, Social and Political Perspectives; Williams, C.J.R., Kniveton, D.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 13–50. ISBN 978-90-481-3842-5. [Google Scholar]
- Hamilton, H.L.; Núñez Ocasio, K.M.; Evans, J.L.; Young, G.S.; Fuentes, J.D. Topographic Influence on the African Easterly Jet and African Easterly Wave Energetics. J. Geophys. Res. Atmos. 2020, 125, e2019JD032138. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J.; Leslie, L.M. Large-Scale Atmospheric Circulation and Global Sea Surface Temperature Associations with Horn of Africa June–September Rainfall. Int. J. Climatol. 2009, 29, 1075–1100. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and Climatic Variability of Rainfall over Eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Seleshi, Y.; Zanke, U. Recent Changes in Rainfall and Rainy Days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Fekadu, K. Ethiopian Seasonal Rainfall Variability and Prediction Using Canonical Correlation Analysis (CCA). Earth Sci. 2015, 4, 112–119. [Google Scholar] [CrossRef]
- Korecha, D.; Barnston, A.G. Predictability of June–September Rainfall in Ethiopia. Mon. Weather Rev. 2007, 135, 628–650. [Google Scholar] [CrossRef]
- Gissila, T.; Black, E.; Grimes, D.I.F.; Slingo, J.M. Seasonal Forecasting of the Ethiopian Summer Rains. Int. J. Climatol. 2004, 24, 1345–1358. [Google Scholar] [CrossRef]
- Abdelwares, M.; Haggag, M.; Wagdy, A.; Lelieveld, J. Customized Framework of the WRF Model for Regional Climate Simulation over the Eastern Nile Basin. Theor. Appl. Climatol. 2018, 134, 1135–1151. [Google Scholar] [CrossRef]
- Osman, M.; Zittis, G.; Haggag, M.; Abdeldayem, A.W.; Lelieveld, J. Optimizing Regional Climate Model Output for Hydro-Climate Applications in the Eastern Nile Basin. Earth Syst. Environ. 2021, 5, 185–200. [Google Scholar] [CrossRef]
- Segele, Z.T.; Leslie, L.M.; Lamb, P.J. Evaluation and Adaptation of a Regional Climate Model for the Horn of Africa: Rainfall Climatology and Interannual Variability. Int. J. Climatol. 2009, 29, 47–65. [Google Scholar] [CrossRef]
- Zeleke, T.; Giorgi, F.; Mengistu Tsidu, G.; Diro, G.T. Spatial and Temporal Variability of Summer Rainfall over Ethiopia from Observations and a Regional Climate Model Experiment. Theor. Appl. Climatol. 2013, 111, 665–681. [Google Scholar] [CrossRef]
- Silué, F.; Diawara, A.; Koné, B.; Diedhiou, A.; Kouassi, A.A.; Kouassi, B.K.; Yoroba, F.; Bamba, A.; Kouadio, K.; Tiémoko, D.T.; et al. Assessment of the Sensitivity of the Mean Climate Simulation over West Africa to Planetary Boundary Layer Parameterization Using RegCM5 Regional Climate Model. Atmosphere 2024, 15, 332. [Google Scholar] [CrossRef]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef]
- Coppola, E.; Giorgi, F.; Mariotti, L.; Bi, X. RegT-Band: A Tropical Band Version of RegCM4. Clim. Res. 2012, 52, 115–133. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Al-Khalaf, A.K.; Saeed, F. Best Convective Parameterization Scheme within RegCM4 to Downscale CMIP5 Multi-Model Data for the CORDEX-MENA/Arab Domain. Theor. Appl. Climatol. 2016, 124, 807–823. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, F. Performance of RegCM4.5 in Simulating the Regional Climate of Western Tianshan Mountains in Xinjiang, China. Atmosphere 2021, 12, 1544. [Google Scholar] [CrossRef]
- Raju, P.V.S.; Bhatla, R.; Almazroui, M.; Assiri, M. Performance of Convection Schemes on the Simulation of Summer Monsoon Features over the South Asia CORDEX Domain Using RegCM-4.3. Int. J. Climatol. 2015, 35, 4695–4706. [Google Scholar] [CrossRef]
- Santos e Silva, C.M.; Bezerra, B.G.; Mutti, P.R.; Lucio, P.S.; Mendes, K.R.; Rodrigues, D.; Oliveira, C.P.; Medeiros, F.; Silva, M.L.; dos Reis, L.C.; et al. Climatic Variability of Precipitation Simulated by a Regional Dynamic Model in Tropical South America. Environ. Sci. Proc. 2022, 19, 61. [Google Scholar] [CrossRef]
- Endris, H.S.; Omondi, P.; Jain, S.; Lennard, C.; Hewitson, B.; Chang’a, L.; Awange, J.L.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Ji, F.; Di Virgilio, G.; Nishant, N.; Tam, E.; Evans, J.P.; Kala, J.; Andrys, J.; Thomas, C.; Riley, M.L. Evaluation of Precipitation Extremes in ERA5 Reanalysis Driven Regional Climate Simulations over the CORDEX-Australasia Domain. Weather Clim. Extrem. 2024, 44, 100676. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Ji, F.; Tam, E.; Evans, J.P.; Kala, J.; Andrys, J.; Thomas, C.; Choudhury, D.; Rocha, C.; Li, Y.; et al. Evaluation of CORDEX ERA5-Forced NARCliM2.0 Regional Climate Models over Australia Using the Weather Research and Forecasting (WRF) Model Version 4.1.2. Geosci. Model Dev. 2025, 18, 703–724. [Google Scholar] [CrossRef]
- Keshta, E.; Amin, D.; ElMoustafa, A.M.; Gad, M.A. Optimizing Precipitation Parameterizations in Regional Climate Model (RegCM5): A Case Study of the Upper Blue Nile Basin (UBNB). EGUsphere, 2025; preprint. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Giuliani, G.; Ciarlo‘, J.M.; Pichelli, E.; Nogherotto, R.; Raffaele, F.; Malguzzi, P.; Davolio, S.; Stocchi, P.; et al. The Fifth Generation Regional Climate Modeling System, RegCM5: Description and Illustrative Examples at Parameterized Convection and Convection-Permitting Resolutions. J. Geophys. Res. Atmos. 2023, 128, e2022JD038199. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; De Bruijn, E.I.F.; Pan, H.-L. A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Bretherton, C.S.; McCaa, J.R.; Grenier, H. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results. Mon. Weather Rev. 2004, 132, 864–882. [Google Scholar] [CrossRef]
- Onyutha, C.; Willems, P. Spatial and Temporal Variability of Rainfall in the Nile Basin. Hydrol. Earth Syst. Sci. 2015, 19, 2227–2246. [Google Scholar] [CrossRef]
- Diro, G.T.; Black, E.; Grimes, D.I.F. Seasonal Forecasting of Ethiopian Spring Rains. Meteorol. Appl. 2008, 15, 73–83. [Google Scholar] [CrossRef]
- Conway, D. The Climate and Hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef]
- Viste, E.; Korecha, D.; Sorteberg, A. Recent Drought and Precipitation Tendencies in Ethiopia. Theor. Appl. Climatol. 2013, 112, 535–551. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- NFC. Nile Forecasting System (NFS), Version 6.0. Manual; Nile Forecast Center (NFC), Ministry of Water Rsources and Irrigation (MWRI): Giza, Egypt, 2009. [Google Scholar]
- Amin, D.; Keshta, E.; Ragab, R.; Chakrabortty, R.; Elaksher, A.F. Impact of Climate Change on Hydrological Extremes (Floods and Droughts) in the Upper Blue Nile Basin. Earth Syst. Environ. 2025, 1–20. [Google Scholar] [CrossRef]
- Elshamy, M.E. Improvement of the Hydrological Performance of Land Surface Parameterization: An Application to The Nile Basin Land Surface Parameterization. Ph.D. Thesis, Imperial College of Science, Technology, and Medicine, University of London, London, UK, 2016. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Jia, S.; Mahmood, T.; Mehmood, A. Predicted and Projected Water Resources Changes in the Chari Catchment, the Lake Chad Basin, Africa. J. Hydrometeorol. 2020, 21, 73–91. [Google Scholar] [CrossRef]
- Peng, J.; Dadson, S.; Hirpa, F.; Dyer, E.; Lees, T.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C. A Pan-African High-Resolution Drought Index Dataset. Earth Syst. Sci. Data 2020, 12, 753–769. [Google Scholar] [CrossRef]
- Gebremeskel Haile, G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-Term Spatiotemporal Variation of Drought Patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Elshamy, M.E.; Seierstad, I.A.; Sorteberg, A. Impacts of Climate Change on Blue Nile Flows Using Bias-Corrected GCM Scenarios. Hydrol. Earth Syst. Sci. 2009, 13, 551–565. [Google Scholar] [CrossRef]
- Allam, M.M.; Jain Figueroa, A.; McLaughlin, D.B.; Eltahir, E.A.B. Estimation of Evaporation over the Upper Blue Nile Basin by Combining Observations from Satellites and River Flow Gauges. Water Resour. Res. 2016, 52, 644–659. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Coppola, E.; Stocchi, P.; Pichelli, E.; Torres Alavez, J.A.; Glazer, R.; Giuliani, G.; Di Sante, F.; Nogherotto, R.; Giorgi, F. Non-Hydrostatic RegCM4 (RegCM4-NH): Model Description and Case Studies over Multiple Domains. Geosci. Model Dev. 2021, 14, 7705–7723. [Google Scholar] [CrossRef]
- Gu, H.; Wang, X. Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau. Atmosphere 2020, 11, 1104. [Google Scholar] [CrossRef]
- Tolika, K.; Anagnostopoulou, C.; Velikou, K.; Vagenas, C. A Comparison of the Updated Very High Resolution Model RegCM3_10km with the Previous Version RegCM3_25km over the Complex Terrain of Greece: Present and Future Projections. Theor. Appl. Climatol. 2016, 126, 715–726. [Google Scholar] [CrossRef]
- Torma, C.; Giorgi, F.; Coppola, E. Added Value of Regional Climate Modeling over Areas Characterized by Complex Terrain-Precipitation over the Alps. J. Geophys. Res. 2015, 120, 3957–3972. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Fox Maule, C.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° Simulations: High Resolution, High Benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef]
- Ma, S.; Trancoso, R.; Syktus, J.; Chapman, S.; Eccles, R. Evaluating ERA5 Downscaled Simulations Using CCAM: Large-Scale Circulation Processes and Teleconnections. J. Geophys. Res. Atmos. 2025, 130, e2025JD043566. [Google Scholar] [CrossRef]
- Li, B.; Huang, Y.; Du, L.; Wang, D. Sensitivity Experiments of RegCM4 Using Different Cumulus and Land Surface Schemes over the Upper Reaches of the Yangtze River. Front. Earth Sci. 2023, 10, 1092368. [Google Scholar] [CrossRef]
- Emanuel, K.A. A Scheme for Representing Cumulus Convection in Large-Scale Models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Nogherotto, R.; Tompkins, A.M.; Giuliani, G.; Coppola, E.; Giorgi, F. Numerical Framework and Performance of the New Multiple-Phase Cloud Microphysics Scheme in RegCM4.5: Precipitation, Cloud Microphysics, and Cloud Radiative Effects. Geosci. Model Dev. 2016, 9, 2533–2547. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Oleson, K.; Lawrence, D.; Bonan, G.; Drewniak, B.; Huang, M.; Koven, C.; Levis, S.; Li, F.; Riley, W.; Subin, Z.; et al. Technical Description of Version 4.5 of the Community Land Model (CLM); University Corporation for Atmospheric Research: Boulder, CO, USA, 2013; ISBN NCAR/TN-503+STR. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidlines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zargar, M.; Bronstert, A.; Francke, T.; Zimale, F.A.; Worku, K.B.; Wiegels, R.; Lorenz, C.; Hageltom, Y.; Sawadogo, W.; Kunstmann, H. Comparison and Hydrological Evaluation of Different Precipitation Data for a Large Tropical Region: The Blue Nile Basin in Ethiopia. Front. Water 2025, 7, 1536881. [Google Scholar] [CrossRef]
- Shanko, D.; Camberlin, P. The Effects of the Southwest Indian Ocean Tropical Cyclones on Ethiopian Drought. Int. J. Climatol. 1998, 18, 1373–1388. [Google Scholar] [CrossRef]
- Schoetter, R.; Hoffmann, P.; Rechid, D.; Schlünzen, K.H. Evaluation and Bias Correction of Regional Climate Model Results Using Model Evaluation Measures. J. Appl. Meteorol. Climatol. 2012, 51, 1670–1684. [Google Scholar] [CrossRef]
- Gleixner, S.; Demissie, T.; Diro, G.T. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere 2020, 11, 996. [Google Scholar] [CrossRef]
- Huai, B.; Wang, J.; Sun, W.; Wang, Y.; Zhang, W. Evaluation of the Near-Surface Climate of the Recent Global Atmospheric Reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos. Res. 2021, 250, 105401. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. Evaluation of ERA5 Reanalysis Temperature Data over the Qilian Mountains of China. J. Mt. Sci. 2024, 22, 198–209. [Google Scholar] [CrossRef]
- Elguindi, N.; Bi, X.; Giorgi, F.; Nagarajan, B.; Pal, J.; Solmon, F.; Rauscher, S.; Zakey, A.; O’Brien, T.; Nogherotto, R.; et al. Regional Climate Model RegCM Reference Manual; ICTP: Trieste, Italy, 2017. [Google Scholar]
- Güttler, I.; Branković, Č.; O’Brien, T.A.; Coppola, E.; Grisogono, B.; Giorgi, F. Sensitivity of the Regional Climate Model RegCM4.2 to Planetary Boundary Layer Parameterisation. Clim. Dyn. 2014, 43, 1753–1772. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S. The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model. J. Clim. 2009, 22, 3449–3469. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; MB, S.; Bi, X.; Elguindi, N.; GT, D.; Nair, V.; Giuliani, G.; et al. RegCM4: Model Description and Preliminary Tests over Multiple CORDEX Domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef]
- Kalmár, T.; Pieczka, I.; Pongrácz, R. A Sensitivity Analysis of the Different Setups of the RegCM4.5 Model for the Carpathian Region. Int. J. Climatol. 2021, 41, E1180–E1201. [Google Scholar] [CrossRef]
- Wood, R.; Bretherton, C.S. On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability. J. Clim. 2006, 19, 6425–6432. [Google Scholar] [CrossRef]
- Kalmár, T.; Pongrácz, R.; Pieczka, I.; Hollós, R. Evaluation of RegCM Simulation Ensemble Using Different Parameterization Scheme Combinations: A Case Study for an Extremely Wet Year in the Carpathian Region. Clim. Dyn. 2024, 62, 8201–8225. [Google Scholar] [CrossRef]
- Brinkop, S.; Roeckner, E. Sensitivity of a General Circulation Model to Parameterizations of Cloud-Turbulence Interactions in the Atmospheric Boundary Layer. Tellus A 1995, 47, 197–220. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Giuliani, G.; Ciarlo, J.; Pichelli, E.; Nogherotto, R.; Raffaele, F.; Malguzzi, P.; Davolio, S.; Stocchi, P.; et al. ICTP RegCM5 Model Code, version 5.0.0; Zenodo: Geneva, Switzerland, 2023. [CrossRef]
Model Aspects | Simulation Setup and Schemes |
---|---|
Dynamics | 1-Hydrostatic, 2-MOLOCH non-hydrostatic |
Domain | Longitude: 27–53° E, Latitude: 5° S–21° N |
Nesting | Ratio: 1:3, Resolution: 10 km, No. of Grids: 280 × 280 × 18 |
Top pressure | 50 hpa |
Simulation Period | 2000–2009 |
Initial and Boundary Conditions | ERA5 hourly reanalysis with 0.25° × 0.25° resolution |
Radiative transfer | Rapid Radiation Transfer scheme (RRTM) [56] |
PBL | 1-Hol, 2-UW |
Cumulus convection | Emanuel (land and ocean) |
Microphysics | NoTo |
Land Surface | Community Land Model version 4.5 (CLM4.5) [57] |
Ocean fluxes | Zeng [58] |
Dynamical Core | PBL | Scenario Name |
---|---|---|
Hydrostatic | Holtslag | Hydrostat-Hol |
MOLOCH | MOLOCH-Hol | |
UW | MOLOCH-UW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshta, E.; Amin, D.; ElMoustafa, A.M.; Gad, M.A. Enhancing Climate Modeling over the Upper Blue Nile Basin Using RegCM5-MOLOCH. Climate 2025, 13, 206. https://doi.org/10.3390/cli13100206
Keshta E, Amin D, ElMoustafa AM, Gad MA. Enhancing Climate Modeling over the Upper Blue Nile Basin Using RegCM5-MOLOCH. Climate. 2025; 13(10):206. https://doi.org/10.3390/cli13100206
Chicago/Turabian StyleKeshta, Eatemad, Doaa Amin, Ashraf M. ElMoustafa, and Mohamed A. Gad. 2025. "Enhancing Climate Modeling over the Upper Blue Nile Basin Using RegCM5-MOLOCH" Climate 13, no. 10: 206. https://doi.org/10.3390/cli13100206
APA StyleKeshta, E., Amin, D., ElMoustafa, A. M., & Gad, M. A. (2025). Enhancing Climate Modeling over the Upper Blue Nile Basin Using RegCM5-MOLOCH. Climate, 13(10), 206. https://doi.org/10.3390/cli13100206