Assessing Urban Resilience Through Physically Based Hydrodynamic Modeling Under Future Development and Climate Scenarios: A Case Study of Northern Rangsit Area, Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Hydrological and Hydraulic Model Setup
2.3. Data Sources and Processing
2.4. Model Calibration and Validation
2.5. Scenario Development
2.5.1. Scenario 1: Baseline Condition (2022)
2.5.2. Scenario 2: Future Land Use Change (2035)
2.5.3. Scenario 3: Climate Change (RCP4.5 and RCP8.5)
2.5.4. Scenario 4: Combined Land Use and Climate Change
3. Results
3.1. Calibration and Validation Results
3.2. Climate Change and Future Land Use Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCSWMM | Personal Computer Storm Water Management Model |
RCP | Representative Concentration Pathway |
SSPs | Shared Socio-economic Pathways |
References
- Irvine, K. Climate change and urban hydrology: Research needs in the developed and developing worlds. J. Water Manag. Model. 2013, 21, R246-11. [Google Scholar] [CrossRef]
- Berggren, K.; Packman, J.; Ashley, R.; Viklander, M. Climate changed rainfalls for urban drainage capacity assessment. Urban Water J. 2014, 11, 543–556. [Google Scholar] [CrossRef]
- Prasertsoong, N.; Puttanapong, N. An integrated framework for satellite-based flood mapping and socioeconomic risk analysis: A case of Thailand. Prog. Disaster Sci. 2025, 25, 100393. [Google Scholar] [CrossRef]
- Kamal, N.; Imran, M.; Tripati, N.K. Greening the urban environment using geospatial techniques, A case study of Bangkok, Thailand. Procedia Environ. Sci. 2017, 37, 141–152. [Google Scholar] [CrossRef]
- Khamchiangta, D.; Dhakal, S. Time series analysis of land use and land cover changes related to urban heat island intensity: Case of Bangkok Metropolitan Area in Thailand. J. Urban Manag. 2020, 9, 383–395. [Google Scholar] [CrossRef]
- Ziegler, A.D.; She, L.H.; Tantasarin, C.; Jachowski, N.R.; Wasson, R. Floods, false hope, and the future. Hydrol. Process. 2012, 26, 1748–1750. [Google Scholar] [CrossRef]
- Nabangchang, O.; Maura, A.; Leangcharoen, P. Economic costs incurred by households in the 2011 Greater Bangkok flood. Water Resour. Res. 2015, 51, 58–77. [Google Scholar] [CrossRef]
- Haraguchi, M.; Lall, U. Flood risks and impacts: A case study of Thailand’s floods in 2011 and research questions for supply chain decision making. Int. J. Disaster Risk Reduct. 2015, 14, 256–272. [Google Scholar] [CrossRef]
- van Herk, S.; Zevenbergen, C.; Ashley, R.; Rijke, J. Learning and action alliances for the integration of flood risk management into urban planning: A new framework from empirical evidence from The Netherlands. Environ. Sci. Policy 2011, 14, 543–554. [Google Scholar] [CrossRef]
- Department of Disaster Prevention and Mitigation. Flood Disaster Report 2011; Department of Disaster Prevention and Mitigation: Bangkok, Thailand, 2012. [Google Scholar]
- Royal Irrigation Department. Annual Operation Report: Rangsit Canal System and Floodgate Management; Royal Irrigation Department: Bangkok, Thailand, 2022. [Google Scholar]
- Soto-Montes-de-Oca, G.; Cruz-Bello, G.M.; Bark, R.H. Enhancing megacities’ resilience to flood hazard through peri-urban nature-based solutions: Evidence from Mexico City. Cities 2023, 143, 104571. [Google Scholar] [CrossRef]
- Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T. Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities. J. Environ. Manag. 2023, 344, 118260. [Google Scholar] [CrossRef]
- Aghaloo, K.; Sharifi, A.; Habibzadeh, N.; Ali, T.; Chiu, Y.R. How nature-based solutions can enhance urban resilience to flooding and climate change and provide other co-benefits: A systematic review and taxonomy. Urban For. Urban Green. 2024, 95, 128320. [Google Scholar] [CrossRef]
- Aloscious, A.A.; Artuso, M.; Torabi Moghadam, S. Nature-Based Solutions for Flood Mitigation: The Case Study of Kochi. Sustainability 2025, 17, 1983. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T. Projection of the precipitation extremes in Thailand under climate change scenario RCP8.5. Front. Environ. Sci. 2021, 9, 657810. [Google Scholar] [CrossRef]
- de Oliveira-Júnior, J.F.; Mendes, D.; Porto, H.D.; Cardoso, K.R.A.; Neto, J.A.F.; da Silva, E.B.C.; de Aquino Pereira, M.; Mendes, M.C.D.; Baracho, B.B.D.; Jamjareegulgarn, P. Analysis of drought and extreme precipitation events in Thailand: Trends, climate modeling, and implications for climate change adaptation. Sci. Rep. 2025, 15, 4501. [Google Scholar] [CrossRef]
- Chaowiwat, W.; Sarinnapakorn, K.; Weesakul, S. Future changes in extreme rainfall over Thailand using multi-bias corrected GCM rainfall data. J. Clim. Change Sci. 2019, 9, 30–53. [Google Scholar]
- Thanvisitthpon, N.; Shrestha, S.; Pal, I. Urban flooding and climate change: A case Sstudy of Bangkok, Thailand. Environ. Urban. ASIA 2018, 9, 86–100. [Google Scholar] [CrossRef]
- Worawiwat, A.; Chaleeraktrakoon, C. Is the rate of extremely climate-intensifying rainfall for Bangkok severely propagating into flooding? J. Water Clim. Change 2024, 15, 4405–4417. [Google Scholar] [CrossRef]
- Douxchamps, S.; Debevec, L.; Giordano, M.; Barron, J. Monitoring and evaluation of climate resilience for agricultural development—A review of currently available tools. World Dev. Perspect. 2017, 5, 10–23. [Google Scholar] [CrossRef]
- UNDP. UNDP Annual Report 2013. Available online: https://www.undp.org/publications/undp-annual-report-2013 (accessed on 9 July 2025).
- Humphries Choptiany, J.M.; Graeub, B.E.; Hatik, S.; Conversa, D.; Ledermann, S.T. Participatory assessment and adaptation for resilience to climate change. Consilience 2019, 21, 17–31. [Google Scholar]
- Worku, G.; Adugna, D. Two studied metropolitan cities in Ethiopia and their current integrated infrastructure plan to enhance resilience and sustainability. Environ. Sustain. Indic. 2025, 26, 100668. [Google Scholar] [CrossRef]
- Liu, K.; Kinouchi, T.; Tan, R.; Heng, S.; Chhuon, K.; Zhao, W. Unraveling urban hydro-environmental response to climate change and MCDA-based area prioritization in a data-scarce developing city. Sci. Total Environ. 2024, 948, 174389. [Google Scholar] [CrossRef]
- Sahavacharin, A.; Likitswat, F.; Irvine, K.N.; Teang, L. Community-based Resilience Analysis (CoBRA) to hazard disruption: Case study of a peri-urban agricultural community in Thailand. Land 2024, 13, 1363. [Google Scholar] [CrossRef]
- Burhanuddin, M.F.; Basri, H.; Sidek, L.M.; Zulkhurnain, S.A.; Chua, L.; Irvine, K.N.; Tahir, W.; Khambali, M.H.M.; Majid, W.H.A.W.A.; Ujum, E.A. Conceptual frameworks of real time flood modelling for improved community resilience. In Water Resources Development and Management, Proceedings of the 2nd International Conference on Dam Safety Management and Engineering, Kuala Lumpur, Malaysia, 16–17 March 2023; Mohd Sidek, L., Salih, G.H.A., Ahmed, A.N., Escuder-Bueno, I., Basri, H., Eds.; Springer Nature: Singapore, 2023; pp. 827–836. [Google Scholar]
- Irvine, K.N.; Suwanarit, A.; Likitswat, F.; Srilertchaipanij, H.; Ingegno, M.; Kaewlai, P.; Boonkam, P.; Tontisirin, N.; Sahavacharin, A.; Wongwatcharapaiboon, J.; et al. Smart City Thailand: Visioning and design to enhance sustainability, resiliency, and community wellbeing. Urban Sci. 2022, 6, 7. [Google Scholar] [CrossRef]
- Irvine, K.N.; Suwanarit, A.; Likitswat, F.; Srilertchaipanij, H.; Sahavacharin, A.; Wongwatcharapaiboon, J.; Boonkam, P.; Ingegno, M.; Janpathompong, S. Nature-based solutions to enhance urban flood resiliency: Case study of a Thailand Smart District. Sustain. Water Resour. Manag. 2023, 9, 43. [Google Scholar] [CrossRef]
- Chanthamas, Y.; Anantasuksomsri, S.; Tontisirin, N. Review of urban flood impact reduction due to climate change adaption driven by urban planning management in Pathumthani Province, Thailand. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 42–53. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Royal Irrigation Department. Hydrological Yearbook 2018–2022; Royal Irrigation Department: Bangkok, Thailand, 2023. [Google Scholar]
- Karthikeya, N.V.B.S.S.; Tripathi, N.K.; Mozumder, C.; Pal, I.; Pramanik, M. Impact of land transition around Eastern Economic Corridor in Thailand in the context of SDG 11.3.1 using urban heat islands, nighttime light intensity and machine learning. Environ. Sustain. Indic. 2024, 24, 100499. [Google Scholar] [CrossRef]
- Ruangpan, L.; Mahgoub, M.; Abebe, Y.A.; Vojinovic, Z.; Boonya-aroonnet, S.; Torres, A.S.; Weesakul, S. Real time control of nature-based solutions: Towards smart solutions and digital twins in Rangsit Area, Thailand. J. Environ. Manag. 2023, 344, 118389. [Google Scholar] [CrossRef]
- Chitwatkulsiri, D.; Miyamoto, H.; Irvine, K.N.; Pilailar, S.; Loc, H.H. Development and application of a real-time flood forecasting Ssystem (RTFlood System) in a tropical urban area: A case study of Ramkhamhaeng Polder, Bangkok, Thailand. Water 2022, 14, 1641. [Google Scholar] [CrossRef]
- Bibi, T.S.; Kara, K.G.; Bedada, H.J.; Bededa, R.D. Application of PCSWMM for assessing the impacts of urbanization and climate changes on the efficiency of stormwater drainage systems in managing urban flooding in Robe town, Ethiopia. J. Hydrol. Reg. Stud. 2023, 45, 101291. [Google Scholar] [CrossRef]
- Teang, L.; Irvine, K.N.; Chua, L.H.C.; Usman, M. Dynamics of runoff quantity in an urbanizing catchment: Implications for runoff management using nature-based retention wetland. Hydrology 2025, 12, 141. [Google Scholar] [CrossRef]
- Irvine, K.; Sovann, C.; Suthipong, S.; Kok, S.; Chea, E. Application of PCSWMM to assess wastewater treatment and urban flooding scenarios in Phnom Penh, Cambodia: A tool to support Eco-City planning. J. Water Manag. Model. 2015, C389. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef]
- Talbot, M.; McGuire, O.; Olivier, C.; Fleming, R. Parameterization and application of agricultural Best Management Practices in a rural Ontario watershed using PCSWMM. J. Water Manag. Model. 2016, C400. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. Designing a pond and evaluating its impact upon storm-water quality and flow: A case study in rural Australia. Ecol. Chem. Eng. S 2019, 26, 475–491. [Google Scholar] [CrossRef]
- Neupane, B.; Vu, T.M.; Mishra, A.K. Evaluation of land-use, climate change, and low-impact development practices on urban flooding. Hydrol. Sci. J. 2021, 66, 1729–1742. [Google Scholar] [CrossRef]
- Pham, N.; Cabaltica, A.; Pham, H.T. Feasibility of low impact development measures to mitigate inundation in tidal—Impacted urban area: A case in Ho Chi Minh City, Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1153, 012005. [Google Scholar] [CrossRef]
- Sidek, L.M.; Chua, L.H.C.; Azizi, A.S.M.; Basri, H.; Jaafar, A.S.; Moon, W.C. Application of PCSWMM for the 1-D and 1-D–2-D modeling of urban flooding in Damansara Catchment, Malaysia. Appl. Sci. 2021, 11, 9300. [Google Scholar] [CrossRef]
- Manchikatla, S.K.; Umamahesh, N.V. Simulation of flood hazard, prioritization of critical sub-catchments, and resilience study in an urban setting using PCSWMM: A case study. Water Policy 2022, 24, 1247–1268. [Google Scholar] [CrossRef]
- Wu, Z.; Xue, W.; Xu, H.; Yan, D.; Wang, H.; Qi, W. Urban flood risk assessment in Zhengzhou, China, Based on a D-number-improved analytic hierarchy process and a self-organizing map algorithm. Remote Sens. 2022, 14, 4777. [Google Scholar] [CrossRef]
- Chaosakul, T.; Wijekoon, K.C.; Kijjanapanich, P.; Udom Siripong, C.; Dang, N.H.; Bakert, J. Modeling a peri-urban combined sewer system to assess drainage improvements: Acase study of Rattanakosin Village Thailand Southeast Asian. In Water Environment, 4th ed.; Fukushi, K., Kurisu, K., Oguma, K., Furumai, H., Fontanos, P., Eds.; IWA Publishing: London, UK, 2010; pp. 191–198. [Google Scholar]
- Irvine, K.; Likitswat, F.; Sahavacharin, A.; Suwanarit, A.; Lertwarapornpong, T.; Chitwatkulsiri, D. The Agrihood Design: Valuation of ecosystem services for NbS visions in peri-urban housing estate development, Bangkok, Thailand. J. Archit./Plan. Res. Stud. (JARS) 2024, 21, 115–140. [Google Scholar] [CrossRef]
- Teang, L.; Wongwatcharapaiboon, J.; Irvine, K.; Jamieson, I. Modelling the Impact of Water Sensitive Urban Design on Pluvial Flood Management in a Tropical Climate. In Proceedings of the 12th Built Environment Research Associates Conference, BERAC2021, Bangkok, Thailand, 28 June 2021; pp. 350–359. [Google Scholar]
- Yang, P.; Law AWing Keung Xu, S.; Sim, S.T.V.; Chan, H.; Chitwatkulsiri, D.; Loc, H.H.; Irvine, K.N. Assessment of compound flooding through seamless linkage of coastal hydrodynamic and inland catchment models. J. Hydro-Environ. Res. 2023, 46, 31–43. [Google Scholar] [CrossRef]
- Chae, S.T.; Park, I.; Irvine, K.N.; Chung, E.S. Influence of budget allocation and design rainfall intensity on cost-effective LID strategy for urban flood mitigation. J. Environ. Manag. 2025, 392, 126839. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, W.; Li, M.; Wu, S.; Pang, J.; Zhao, Z. A conceptual framework for implementing green-grey infrastructures to mitigate urban flood through source-to-hazard intervention pattern. Int. J. Disaster Risk Reduct. 2025, 121, 105432. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, J.; Tabik, S.; Benhammou, Y.; Khaldi, R.; Alcaraz-Segura, D. Land use and land cover fraction estimation for Sentinel-2 RGB images: A new LULC mapping task. Remote Sens. Appl. Soc. Environ. 2025, 39, 101626. [Google Scholar] [CrossRef]
- Pande, S.D.; Jadhav, P.P.; Joshi, R.; Sawant, A.D.; Muddebihalkar, V.; Rathod, S.; Gurav, M.N.; Das, S. Digitization of handwritten Devanagari text using CNN transfer learning—A better customer service support. Neurosci. Inform. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Arima, Y.; Ooka, R.; Kikumoto, H.; Yamanaka, T. Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data. Energy Build. 2016, 114, 123–129. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Ziarh, G.F.; Chung, E.S.; Wang, X. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 2021, 254, 105525. [Google Scholar] [CrossRef]
- Ramadan, M.S.; Almurshidi, A.H.; Razali, S.F.M.; Ramadan, E.; Tariq, A.; Bridi, R.M.; Rahman, A.; Albedwawi, S.; Alshamsi, M.; Alnaqbi, S.; et al. Spatial decision-making for urban flood vulnerability: A geomatics approach applied to Al-Ain City, UAE. Urban Climate 2025, 59, 102297. [Google Scholar] [CrossRef]
- Badapalli, P.K.; Gugulothu, S.; Nakkala, A.B. Geospatial and NDBI approaches for the Musi River basin morphometric studies in the metropolitan urban Cities of India. Adv. Space Res. 2025, 75, 3375–3396. [Google Scholar] [CrossRef]
- Zhu, S.; Maier, H.R.; Zecchin, A.C.; Thyer, M.A.; Guillaume, J.H.A. Improved understanding of calibration efficiency, difficulty and parameter uniqueness of conceptual rainfall runoff models using fitness landscape metrics. J. Hydrol. 2024, 639, 131586. [Google Scholar] [CrossRef]
- Bangkok Post. Bangkok Post—Record Rain Overwhelming City Canals. 2022. Available online: https://www.bangkokpost.com/thailand/general/2386548/record-rain-overwhelming-city-canals (accessed on 9 July 2025).
- Abouelsaad, O.; Hassan, A.; Omar, M.; Hinkelmann, R. Identifying manning roughness coefficient using automatic calibration method and simulation of pollution incidents in the Nile River, Egypt. J. Hydrol. Reg. Stud. 2024, 55, 101908. [Google Scholar] [CrossRef]
- Irvine, K.; Chua, L.; Ashrafi, M.; Loc, H.H.; Le, S.H. Drivers of model uncertainty for urban runoff in a tropical climate: The effect of rainfall variability and subcatchment parameterization. J. Water Manag. Model 2023, 31, C496. [Google Scholar] [CrossRef]
- NESDCNE. SDC Thailand’s Twelfth National Economic and Social Development Plan 2017–2021; Office of the Prime Minister: Bangkok, Thailand, 2017. [Google Scholar]
- IPCC. Summary for Policymakers in Climate Change 2021: The Physical Science Basis; Cambridge University: Cambridge, UK, 2021. [Google Scholar]
- Likitswat, F.; Sahavacharin, A. Landscape change analysis: Ecosystem services in the peri-urban agriculture of Bangkok. J. Archit./Plan. Res. Stud. (JARS) 2023, 20, 25–38. [Google Scholar] [CrossRef]
- National Statistical Office. Pathum Thani Provincial Statistical Report; National Statistical Office: Bangkok, Thailand, 2022. [Google Scholar]
- Kim, M.; Kim, D.; Jin, D.; Kim, G. Application of explainable artificial intelligence (XAI) in urban growth nodeling: A case study of Seoul Metropolitan area, Korea. Land 2023, 12, 420. [Google Scholar] [CrossRef]
- Chaturvedi, V.; de Vries, W.T. Machine learning algorithms for urban land use planning: A review. Urban Sci. 2021, 5, 68. [Google Scholar] [CrossRef]
- Li, P.; Niu, X.; Mao, Y.; Wu, R.; Ling, X. Assessment of climate simulation over the Tibetan Plateau based on high-resolution multi-RCM within CORDEX-EA-II. Atmos. Res. 2023, 292, 106848. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.C.; Patel, P.L.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100. Clim. Change 2011, 109, 77. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33. [Google Scholar] [CrossRef]
- Limsakul, A.; Singhruck, P. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos. Res. 2016, 169, 301–317. [Google Scholar] [CrossRef]
- Maichandee, S.; Namwong, P.; Methakeson, O. Impacts of Climate Change and Regional Variations on Future Rainfall Patterns in Thailand by Downscaling Method. ASEAN J. Sci. Technol. Rep. 2024, 27, 80–91. [Google Scholar] [CrossRef]
- Tangang, F.; Santisirisomboon, J.; Juneng, L.; Salimun, E.; Chung, J.; Supari, S.; Cruz, F.; Ngai, S.T.; Ngo-Duc, T.; Singhruck, P.; et al. Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia. Int. J. Climatol. 2019, 39, 5413–5436. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.; Nakburee, A.; Saguansap, P.; Mruksirisuk, P. Climate change-induced urban flooding trend analysis and land use change: A case study of flood-prone Pathumthani Province, Thailand. Environ. Dev. Sustain. 2025, 27, 14731–14754. [Google Scholar] [CrossRef]
- Shamsi, U.M.; Koran, J. Continuous calibration. J. Water Manag. Model. 2017, 25, C414. [Google Scholar] [CrossRef]
- Chaosakul, T.A.; Koottatep, T.; Irvine, K. Low impact development modeling to assess localized flood reduction in Thailand. J. Water Manag. Model. 2013, R246-18. [Google Scholar] [CrossRef]
- Irvine, K.; Likitswat, F.; Suwanarit, A.; Koottatep, T. A multidisciplinary approach to authentic learning experiences for nature-based solutions design: Broadening the monkey cheeks. Australas. J. Eng. Educ. 2022, 27, 47–63. [Google Scholar] [CrossRef]
- Li, J.; Burian, S.J. Evaluating real-time control of stormwater drainage network and green stormwater infrastructure for enhancing flooding resilience under future rainfall projections. Resour. Conserv. Recycl. 2023, 198, 107123. [Google Scholar] [CrossRef]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P. Uncertainty assessment for climate change impact on intense precipitation: How many model runs do we need? Int. J. Climatol. 2017, 37, 1105–1117. [Google Scholar] [CrossRef]
- Mandal, S.; Breach, P.A.; Simonovic, S.P. Uncertainty in precipitation projection under changing climate conditions: A regional case study. Am. J. Clim. Change 2016, 5, 116–132. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H.; Jung, I.W. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Process. 2011, 25, 2814–2826. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.Y.; Xiong, L. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Lei, X.; Xu, C.; Liu, F.; Song, L.; Cao, L.; Suo, N. Evaluation of CMIP6 Models and Multi-Model Ensemble for Extreme Precipitation over Arid Central Asia. Remote Sensing 2023, 15, 2376. [Google Scholar] [CrossRef]
- Clark, M.P.; Wilby, R.L.; Gutmann, E.D.; Vano, J.A.; Gangopadhyay, S.; Wood, A.W.; Fowler, H.J.; Prudhomme, C.; Arnold, J.R.; Brekke, L.D. Characterizing uncertainty of the hydrologic impacts of climate change. Curr. Clim. Change Rep. 2016, 2, 55–64. [Google Scholar] [CrossRef]
- Burby, R.J. Land-use planning for flood hazard reduction: The United States experience. In Floods; Routledge: Oxfordshire, UK, 2000. [Google Scholar]
- Watt, W.E. The national flood damage reduction program: 1976–1995. Can. Water Resour. J. 1995, 20, 237–247. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Yang, L.E.; Mitchell, G.; Wright, N.; Guan, M.; Lu, X.; Wang, Z.; Montz, B.; Adekola, O. Comparison of sustainable flood risk management by four countries—The United Kingdom, the Netherlands, the United States, and Japan—And the implications for Asian coastal megacities. Nat. Hazards Earth Syst. Sci. 2022, 22, 2567–2588. [Google Scholar] [CrossRef]
- England, P. Trends in the evolution of floodplain management in Australia: Risk assessment, precautionary and robust decision-making. J. Environ. Law 2019, 31, 315–341. [Google Scholar] [CrossRef]
- Handayani, W.; Chigbu, U.E.; Rudiarto, I.; Putri, I.H.S. Urbanization and increasing flood risk in the northern coast of Central Java—Indonesia: An assessment towards better land use policy and flood management. Land 2020, 9, 343. [Google Scholar] [CrossRef]
- Marome, W.A. River basin and land use lessons from Bangkok, Thailand. In Land Use Management in Disaster Risk Reduction: Practice and Cases from a Global Perspective; Springer: Tokyo, Japan, 2016; pp. 463–473. [Google Scholar]
- Norizan, N.Z.A.; Hassan, N.; Yusoff, M.M. Strengthening flood resilient development in malaysia through integration of flood risk reduction measures in local plans. Land Use Policy 2021, 102, 105178. [Google Scholar] [CrossRef]
- Dang, N.A.; Benavidez, R.; Tomscha, S.A.; Nguyen, H.; Tran, D.D.; Nguyen, D.T.H.; Loc, H.H.; Jackson, B.M. Ecosystem service modelling to support nature-based flood water management in the Vietnamese Mekong River Delta. Sustainability 2021, 13, 13549. [Google Scholar] [CrossRef]
- Rosmadi, H.S.B.; Ahmed, M.F.; Mokhtar, M.B.; Halder, B.; Scholz, M. Nature-based solutions (NbS) for flood management in Malaysia. Water 2024, 16, 3606. [Google Scholar]
- Hamel, P.; Tan, L. Blue–green infrastructure for flood and water quality management in Southeast Asia: Evidence and knowledge gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Vojinovic, Z.; Alves, A.; Gómez, J.P.; Weesakul, S.; Keerakamolchai, W.; Meesuk, V.; Sanchez, A. Effectiveness of small- and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Sci. Total Environ. 2021, 789, 147725. [Google Scholar] [CrossRef]
- Phinyoyang, A.; Ongsomwang, S. Optimizing land use and land cover allocation for flood mitigation using land use change and hydrological models with goal programming, Chaiyaphum, Thailand. Land 2021, 10, 1317. [Google Scholar] [CrossRef]
- Marks, D. Assembling the 2011 Thailand floods: Protecting farmers and inundating high-value industrial estates in a fragmented hydro-social territory. Polit. Geogr. 2019, 68, 66–76. [Google Scholar] [CrossRef]
K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | |
---|---|---|---|---|---|---|---|---|
ISE rating | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent | Excellent |
ISE | 1.03 | 1.29 | 0.867 | 0.776 | 0.937 | 0.783 | 0.93 | 0.986 |
NSE | 0.538 | 0.292 | 0.695 | 0.77 | 0.682 | 0.792 | 0.726 | 0.706 |
r | 0.795 | 0.836 | 0.878 | 0.944 | 0.926 | 0.896 | 0.86 | 0.871 |
Subcatchment Variables | Urban | Non-Urban |
---|---|---|
Impervious Surface (%) | >=40 | <40 |
Number of Subcatchments (n) | 470 | 624 |
Slope (%) | 0.5–5.2 | 0.5–4.57 |
N Imperv | 0.06–0.08 | 0.024–0.08 |
N Perv | 0.15 | 0.15 |
Dstore Imperv (mm) | 1.27 | 1.27 |
Dstore Perv (mm) | 3.81, 450 | 3.81, 450 |
Infiltration Method | Horton | Horton |
Max. Infil. Rate (mm/h) | 50.8 | 50.8 |
Min. Infil. Rate (mm/h) | 1.27 | 1.27 |
Decay Constant (1/h) | 4.14 | 4.14 |
Average Width of Overland Flow (m) and Range (in brackets) | 497 (1.8–3701) | 1728 (24–10,576) |
Total Area (ha) | Total Impervious Area (ha) | Runoff Volume (m3) | Mean Runoff Coefficient | Min. Runoff Coefficient | Max. Runoff Coefficient | ||
---|---|---|---|---|---|---|---|
Current Land Use | Non-Urban | 63,910 | 4324 | 53,575 × 103 | 0.08 | 0 | 0.48 |
Urban Area | 13,971 | 9799 | 147,370 × 103 | 0.67 | 0.26 | 0.81 | |
Build-out Scenario | Non-Urban | 18,593 | 5679 | 59,316 × 103 | 0.19 | 0 | 0.46 |
Urban Area | 59,289 | 43,676 | 488,148 × 103 | 0.55 | 0.17 | 0.81 |
Scenario | Total Rainfall mm | Runoff (m3) | |
---|---|---|---|
Current Land Use | Future | ||
Calibrated Year (2022) | 1724 | 159,305 × 103 | 463,808 × 103 |
SSP2-4.5 (2062) | 1129 | 41,899 × 103 | 145,479 × 103 |
SSP5-8.5 (2062) | 1607 | 63,993 × 103 | 224,748 × 103 |
SSP2-4.5 (2092) | 1496 | 56,400 × 103 | 198,163 × 103 |
SSP5-8.5 (2092) | 1718 | 79,810 × 103 | 276,475 × 103 |
Scenario | Rainfall (mm) | Nava Nakorn Flood Volume (m3) | Ratanakosin, Flood Volume (m3) | Moo Baan, Flood Volume (m3) | |||
---|---|---|---|---|---|---|---|
Current Land Use | Future Build-Out | Current Land Use | Future Build-Out | Current Land Use | Future Build-Out | ||
Calibrated Year (2022) | 1724 | 8611 × 103 | 11,475 × 103 | 632 × 103 | 3394 × 103 | 0 | 9 × 103 |
SSP2-4.5 (2062) | 1129 | 2919 × 103 | 3363 × 103 | 160 × 103 | 182 × 103 | 0 | 0 |
SSP5-8.5 (2062) | 1607 | 4145 × 103 | 4895 × 103 | 247 × 103 | 262 × 103 | 0 | 0 |
SSP2-4.5 (2092) | 1496 | 3787 × 103 | 4399 × 103 | 220 × 103 | 233 × 103 | 0 | 0 |
SSP5-8.5 (2092) | 1718 | 5029 × 103 | 6056 × 103 | 307 × 103 | 348 × 103 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitwatkulsiri, D.; Irvine, K.N.; Chua, L.H.C.; Teang, L.; Charoenpanuchart, R.; Likitswat, F.; Sahavacharin, A. Assessing Urban Resilience Through Physically Based Hydrodynamic Modeling Under Future Development and Climate Scenarios: A Case Study of Northern Rangsit Area, Thailand. Climate 2025, 13, 200. https://doi.org/10.3390/cli13100200
Chitwatkulsiri D, Irvine KN, Chua LHC, Teang L, Charoenpanuchart R, Likitswat F, Sahavacharin A. Assessing Urban Resilience Through Physically Based Hydrodynamic Modeling Under Future Development and Climate Scenarios: A Case Study of Northern Rangsit Area, Thailand. Climate. 2025; 13(10):200. https://doi.org/10.3390/cli13100200
Chicago/Turabian StyleChitwatkulsiri, Detchphol, Kim Neil Irvine, Lloyd Hock Chye Chua, Lihoun Teang, Ratchaphon Charoenpanuchart, Fa Likitswat, and Alisa Sahavacharin. 2025. "Assessing Urban Resilience Through Physically Based Hydrodynamic Modeling Under Future Development and Climate Scenarios: A Case Study of Northern Rangsit Area, Thailand" Climate 13, no. 10: 200. https://doi.org/10.3390/cli13100200
APA StyleChitwatkulsiri, D., Irvine, K. N., Chua, L. H. C., Teang, L., Charoenpanuchart, R., Likitswat, F., & Sahavacharin, A. (2025). Assessing Urban Resilience Through Physically Based Hydrodynamic Modeling Under Future Development and Climate Scenarios: A Case Study of Northern Rangsit Area, Thailand. Climate, 13(10), 200. https://doi.org/10.3390/cli13100200