Previous Issue
Volume 9, December

Table of Contents

J. Sens. Actuator Netw., Volume 9, Issue 1 (March 2020) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Human Movement Monitoring and Analysis for Prehabilitation Process Management
J. Sens. Actuator Netw. 2020, 9(1), 9; https://doi.org/10.3390/jsan9010009 - 21 Jan 2020
Viewed by 91
Abstract
Cancer patients assigned for abdominal surgery are often given exercise programmes (prehabilitation) prior to surgery, which aim to improve fitness in order to reduce pre-operative risk. However, only a small proportion of patients are able to partake in supervised hospital-based prehabilitation because of [...] Read more.
Cancer patients assigned for abdominal surgery are often given exercise programmes (prehabilitation) prior to surgery, which aim to improve fitness in order to reduce pre-operative risk. However, only a small proportion of patients are able to partake in supervised hospital-based prehabilitation because of inaccessibility and a lack of resources, which often makes it difficult for health professionals to accurately monitor and provide feedback on exercise and activity levels. The development of a simple tool to detect the type and intensity of physical activity undertaken outside the hospital setting would be beneficial to both patients and clinicians. This paper aims to describe the key exercises of a prehabilitation programme and to determine whether the types and intensity of various prehabilitation exercises could be accurately identified using Fourier analysis of 3D accelerometer sensor data. A wearable sensor with an inbuilt 3D accelerometer was placed on both the ankle and wrist of five volunteer participants during nine prehabilitation exercises which were performed at low to high intensity. Here, the 3D accelerometer data are analysed using fast Fourier analysis, where the dominant frequency and amplitude components are extracted for each activity performed at low, moderate, and high intensity. The findings indicate that the 3D accelerometer located at the ankle is suitable for detecting activities such as cycling and rowing at low, moderate, and high exercise intensities. However, there is some overlap in the frequency and acceleration amplitude components for overland and treadmill walking at a moderate intensity. Full article
Open AccessArticle
Diagnosing Automotive Damper Defects Using Convolutional Neural Networks and Electronic Stability Control Sensor Signals
J. Sens. Actuator Netw. 2020, 9(1), 8; https://doi.org/10.3390/jsan9010008 - 16 Jan 2020
Viewed by 188
Abstract
Chassis system components such as dampers have a significant impact on vehicle stability, driving safety, and driving comfort. Therefore, monitoring and diagnosing the defects of these components is necessary. Currently, this task is based on the driver’s perception of component defects in series [...] Read more.
Chassis system components such as dampers have a significant impact on vehicle stability, driving safety, and driving comfort. Therefore, monitoring and diagnosing the defects of these components is necessary. Currently, this task is based on the driver’s perception of component defects in series production vehicles, even though model-based approaches in the literature exist. As we observe an increased availability of data in modern vehicles and advances in the field of deep learning, this paper deals with the analysis of the performance of CNN for the diagnosis of automotive damper defects. To ensure a broad applicability of the generated diagnosis system, only signals of a classic Electronic Stability Control (ESC) system, such as wheel speeds, longitudinal and lateral vehicle acceleration, and yaw rate, were used. A structured analysis of data pre-processing and CNN configuration parameters were investigated in terms of the defect detection result. The results show that simple Fast Fourier Transformation (FFT) pre-processing and configuration parameters resulting in small networks are sufficient for a high defect detection rate. Full article
(This article belongs to the Special Issue Advances in Vehicular Networks)
Open AccessEditorial
Acknowledgement to Reviewers of Journal of Sensor and Actuator Networks in 2019
J. Sens. Actuator Netw. 2020, 9(1), 7; https://doi.org/10.3390/jsan9010007 - 16 Jan 2020
Viewed by 174
Open AccessArticle
A Cloud Based Disaster Management System
J. Sens. Actuator Netw. 2020, 9(1), 6; https://doi.org/10.3390/jsan9010006 - 13 Jan 2020
Viewed by 241
Abstract
The combination of wireless sensor networks (WSNs) and 3D virtual environments opens a new paradigm for their use in natural disaster management applications. It is important to have a realistic virtual environment based on datasets received from WSNs to prepare a backup rescue [...] Read more.
The combination of wireless sensor networks (WSNs) and 3D virtual environments opens a new paradigm for their use in natural disaster management applications. It is important to have a realistic virtual environment based on datasets received from WSNs to prepare a backup rescue scenario with an acceptable response time. This paper describes a complete cloud-based system that collects data from wireless sensor nodes deployed in real environments and then builds a 3D environment in near real-time to reflect the incident detected by sensors (fire, gas leaking, etc.). The system’s purpose is to be used as a training environment for a rescue team to develop various rescue plans before they are applied in real emergency situations. The proposed cloud architecture combines 3D data streaming and sensor data collection to build an efficient network infrastructure that meets the strict network latency requirements for 3D mobile disaster applications. As compared to other existing systems, the proposed system is truly complete. First, it collects data from sensor nodes and then transfers it using an enhanced Routing Protocol for Low-Power and Lossy Networks (RLP). A 3D modular visualizer with a dynamic game engine was also developed in the cloud for near-real time 3D rendering. This is an advantage for highly-complex rendering algorithms and less powerful devices. An Extensible Markup Language (XML) atomic action concept was used to inject 3D scene modifications into the game engine without stopping or restarting the engine. Finally, a multi-objective multiple traveling salesman problem (AHP-MTSP) algorithm is proposed to generate an efficient rescue plan by assigning robots and multiple unmanned aerial vehicles to disaster target locations, while minimizing a set of predefined objectives that depend on the situation. The results demonstrate that immediate feedback obtained from the reconstructed 3D environment can help to investigate what–if scenarios, allowing for the preparation of effective rescue plans with an appropriate management effort. Full article
Show Figures

Figure 1

Open AccessArticle
Novel Reliable and Energy-Efficient Routing Protocols for Wireless Sensor Networks
J. Sens. Actuator Netw. 2020, 9(1), 5; https://doi.org/10.3390/jsan9010005 - 08 Jan 2020
Viewed by 363
Abstract
In this paper, novel energy-aware and reliable routing protocols are proposed. The aim is to maximize the lifespan of wireless sensor networks (WSNs) subject to predefined reliability constraints by using multi-hop routing schemes, in which the source node forwards the packet to the [...] Read more.
In this paper, novel energy-aware and reliable routing protocols are proposed. The aim is to maximize the lifespan of wireless sensor networks (WSNs) subject to predefined reliability constraints by using multi-hop routing schemes, in which the source node forwards the packet to the base station (BS) via other nodes as relays. In the first proposed protocol, energy efficiency is achieved by maximizing the minimum residual energy of the path subject to fulfilling a predefined reliability constraints. The second protocol is an optimized version of the first one with respect to lifespan and complexity. The optimal path is the one in which the residual energy distribution of the nodes along the path is as close to uniform as possible and the packet arrives at the base station with a given success probability. To measure the uniformity of the residual energy distribution, we use an entropy like measure. The information about the current energy state of the network is maintained by using a look-up-table from which the optimal routes are computed on the BS. The BS broadcasts the updated optimal paths to each node after each round of packet transmission. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and Telecommunications)
Open AccessArticle
Comparison of Management and Orchestration Solutions for the 5G Era
J. Sens. Actuator Netw. 2020, 9(1), 4; https://doi.org/10.3390/jsan9010004 - 04 Jan 2020
Viewed by 412
Abstract
5G is considered to be the technology that will accommodate the development and management of innovative services with stringent and diverse requirements from end users, calling for new business models from the industry. In this context, the development and efficient management of Network [...] Read more.
5G is considered to be the technology that will accommodate the development and management of innovative services with stringent and diverse requirements from end users, calling for new business models from the industry. In this context, the development and efficient management of Network Services (NS) serving specific vertical industries and spanning across multiple administrative domains and heterogeneous infrastructures is challenging. The main challenges regard the efficient provision of NSs considering the Quality of Service (QoS) requirements per vertical industry along with the optimal usage of the allocated resources. Towards addressing these challenges, this paper details an innovative approach that we have developed for managing and orchestrating such NSs, called SONATA, and compare it with OSM and Cloudify, which are two of the most known open-source Management and Orchestration (MANO) frameworks. In addition to examining the supported orchestration mechanisms per MANO framework, an evaluation of main operational and functional KPIs is provided based on experimentation using a real testbed. The final aim is the identification of their strong and weak points, and the assessment of their suitability for serving diverse vertical industry needs, including of course the Internet of Things (IoT) service ecosystem. Full article
(This article belongs to the Special Issue 5G and Beyond towards Enhancing Our Future)
Open AccessArticle
V2X Communications Applied to Safety of Pedestrians and Vehicles
J. Sens. Actuator Netw. 2020, 9(1), 3; https://doi.org/10.3390/jsan9010003 - 27 Dec 2019
Viewed by 467
Abstract
Connected cars and vehicle-to-everything (V2X) communication scenarios are attracting more researchers. There will be numerous possibilities offered by V2X in the future. For instance, in the case of vehicles that move in a column, they could react to the braking of those in [...] Read more.
Connected cars and vehicle-to-everything (V2X) communication scenarios are attracting more researchers. There will be numerous possibilities offered by V2X in the future. For instance, in the case of vehicles that move in a column, they could react to the braking of those in front of it through the rapid information exchanges, and most chain collisions could be avoided. V2X will be desiderated for routes optimizations, travel time reductions, and accident rate decrease in cases such as communication with infrastructures, traffic information exchanges, functioning of traffic lights, possible situations of danger, and the presence of construction sites or traffic jams. Furthermore, there could be massive conversations between smartphones and vehicles performing real-time dialogues. It is relatively reasonable to expect a connection system in which a pedestrian can report its position to all surrounding vehicles. Regarding this, it is compelling to perceive the positive effects of the driver being aware of the presence of pedestrians when vehicles are moving on the roads. This paper introduces the concepts for the development of a solution based on V2X communications aimed at vehicle and pedestrian safety. A potential system architecture for the development of a real system, concerning the safety of vehicles and pedestrians, is suggested to draft some guidelines that could be followed in new applications. Full article
(This article belongs to the Special Issue Advances in Vehicular Networks)
Show Figures

Graphical abstract

Open AccessArticle
Performance Comparison of Closed-Form Least Squares Algorithms for Hyperbolic 3-D Positioning
J. Sens. Actuator Netw. 2020, 9(1), 2; https://doi.org/10.3390/jsan9010002 - 20 Dec 2019
Viewed by 439
Abstract
An accurate 3-D wireless local positioning system (LPS) is a highly demanded tool for increasing safety in, e.g., emergency response and security operations. An LPS is an attractive approach that can meet stringent requirements and can achieve acceptable accuracies for a long time [...] Read more.
An accurate 3-D wireless local positioning system (LPS) is a highly demanded tool for increasing safety in, e.g., emergency response and security operations. An LPS is an attractive approach that can meet stringent requirements and can achieve acceptable accuracies for a long time during extended operations in global navigation satellite system (GNSS)-denied environments. In this work, three closed-form (CF) least squares (LS) algorithms were considered, where two of them were adapted to exploit the knowledge about nuisance parameters for accurate 3-D positioning based on time difference of arrival (TDoA) measurements. The algorithms utilize the single set (SS) of the TDoA measurements, an extended SS (ExSS) of the TDoA measurements, or the full set (FS) of the TDoA measurements, and were denoted, respectively, as the CFSSLS, CFExSSLS, and CFFSLS solutions. The performance of the algorithms was investigated with simulations and real-world measurements, where the wireless system transmitters were placed in a quasi-coplanar arrangement. At moderate to high signal-to-noise ratio (SNR) levels, the CFSSLS solution has the best performance, followed by the CFExSSLS solution and then by the CFFSLS solution. At low SNR levels, the CFFSLS algorithm outperformed the other two algorithms. Both the CFSSLS and CFFSLS solutions estimate nuisance parameters that are utilized in refining the vertical position estimate of the receiver. The CFFSLS solution delivers more accurate refined vertical position estimates since it utilizes more nuisance parameters, i.e., more information. The experimental results confirmed the simulation study in which the CFFSLS algorithm outperformed the other two algorithms, where the experimental environment was dominated by total non-line-of-sight (NLoS) conditions and low SNR levels at the receiver to be located. Therefore, it is recommended to use the FS TDoA measurements for 3-D positioning in bad signal conditions, such as high noise levels and NLoS propagation. Full article
(This article belongs to the Special Issue Localization in Wireless Sensor Networks)
Show Figures

Figure 1

Open AccessArticle
D-FAP: Dual-Factor Authentication Protocol for Mobile Cloud Connected Devices
J. Sens. Actuator Netw. 2020, 9(1), 1; https://doi.org/10.3390/jsan9010001 - 20 Dec 2019
Viewed by 456
Abstract
Emerging Mobile Cloud Computing (MCC) technologies offer a new world of promise by leveraging the quality of mobile services. With MCC, resource-constrained mobile devices could capitalize on the computation/storage resources of cloud servers via communication networks. While MCC adoption is growing significantly, several [...] Read more.
Emerging Mobile Cloud Computing (MCC) technologies offer a new world of promise by leveraging the quality of mobile services. With MCC, resource-constrained mobile devices could capitalize on the computation/storage resources of cloud servers via communication networks. While MCC adoption is growing significantly, several challenges need to be addressed to make MCC-based solutions scale and meet the ever-growing demand for more resource intensive applications. Security is a critical problem hindering the adoption of MCC. One of the most important aspects of MCC security is to establish authenticated communication sessions between mobile devices and cloud servers. The huge amount of data stored on mobile devices poses information security risks and privacy concerns for individuals, enterprises, and governments. The ability to establish authenticated communication sessions between mobile devices and cloud servers can resolve many security concerns. Limited computing and energy resources on mobile devices makes authentication and encryption a challenging task. In this paper, an overview of MCC authentication protocols is presented. Then, a Dual-Factor Authentication Protocol for MCC devices (D-FAP) is proposed. D-FAP aims at increasing authentication security by using multi-factors while offloading computation to the cloud to reduce battery consumption. The security of the protocol is formally verified and informal analysis is performed for various attacks. The results prove that the D-FAP is successful in mitigating various outsider and insider attacks. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop