Promising Potential of Lonchocarpus utilis against South American Myasis
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Ethnobotanical Study
5.2. Bibliographic Review
5.3. In Silico Activity Test
- Rotenone;
- Rotenolone;
- Deguelin;
- Tephrosin;
- 3′metoxylupinifolin;
- 4 hydroxylonchocarpin;
- Lonchocarpene.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Use Category | Part | Preparation | Traditional Knowledge | Native Community | Province of Ecuador |
---|---|---|---|---|---|
Medicinal | |||||
Digestive system | R | Plaster | Stomach pain and diarrhea | Kichwa of Eastern | Napo |
Unidentified ethnicity | Pastaza | ||||
Skin and subcutaneous cellular tissue | R | Plaster | Chupos treatment: abscesses with pus | Kichwa of Eastern | Napo |
Unidentified ethnicity | Pastaza | ||||
Other infectious and parasitic diseases | R | Crushed | Mycosis treatment | Kichwa of Eastern | Orellana |
Symptoms of undefined origin | L | Milled | Chronic pain caused by witchcraft | Kichwa of Eastern | Pastaza |
Toxic uses | R, L, S | Crushed and spread in the river | Catch fish | Secoya | Sucumbíos |
Poison, Insecticide Pesticide | Siona | Sucumbíos | |||
Unidentified ethnicity | Orellana | ||||
Napo | |||||
Zamora Chinchipe | |||||
Tsa’chi | Pichincha | ||||
Cofán | Sucumbíos | ||||
Amazon | |||||
Kichwa of Eastern | Sucumbíos | ||||
Napo | |||||
Orellana | |||||
Pastaza | |||||
Zamora Chinchipe | |||||
Wao | Napo | ||||
Orellana | |||||
Shuar | Orellana | ||||
Pastaza | |||||
Morona Santiago | |||||
Social, symbolic, and ritual uses | L | Leaves, alone or with ají leaves burned | Drives away evil spirits when you sleep in the forest | Unidentified ethnicity | Napo |
Protection rituals | |||||
Other handling | Collection and sale (rotenone content) | Cofán | Amazon | ||
Commercialization | R |
Use Categories | Part | Preparation | Method of Usage/Purpose of Use |
---|---|---|---|
Human Medicine | |||
Used against myiasis: “to kill the tupe” (human bot fly) | R | Extraction of “milk” by pressure | The “milk” is deposited on a piece of paper and placed where tupe has stung |
Hits and body aches | R | Crush roots | Crushed root is placed directly on the skin |
Veterinary | |||
External antiparasitic | R | Extraction of “milk” by pressure | The “milk” is deposited on a piece of paper and placed where tupe has stung |
Toxic | |||
Catch fish | R | Crushed roots to be used as soon as possible (in 1–2 days) | The “milk” obtained is spread in the water of rivers and ravines |
References
- World Health Organization (WHO) Neglected Tropical Diseases. Available online: https://web.archive.org/web/20140227152033/; http://www.who.int/neglected_diseases/en/ (accessed on 13 December 2019).
- Katewa, S.S.; Chaudhary, B.L.; Jain, A. Folk herbal medicines from tribal area of Rajasthan, India. J. Ethnopharmacol. 2004, 92, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Carreño-Hidalgo, P.C. La etnobotánica y su importancia como herramienta para la articulación entre conocimientos ancestrales y científicos. In Trabajo de Grado para Optar a Título de Licenciado; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2016. [Google Scholar]
- Hotez, P.J.; Alvarado, M.; Basáñez, M.-G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M. The global burden of disease study 2010: Interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 2014, 8, e2865. [Google Scholar] [CrossRef] [PubMed]
- Nemoga Soto, R. Globalizacion y transformacion de las formas juridicas: Apropiacion de material genetico. Pensam. Jurídico 1:138-148. ISSN 2357-6170. 2013. Available online: https://revistas.unal.edu.co/index.php/peju/article/view/38893 (accessed on 17 December 2019).
- Torres Morocho, D.M.; Orea Igarza, U.; Brito Vallina, M.L.; Cordero Machado, E. Estudio de la extracción del follaje de Barbasco (Lonchocarpus nicou) como fuente biocida (en condiciones de la Amazonía en Ecuador). Rev. Cienc. Técnicas Agropecu. 2013, 22, 41–49. [Google Scholar]
- Luzuriaga-Quichimbo, C.X. Estudio Etnobotánico en Comunidades Kichwas Amazónicas de Pastaza, Ecuador. Ph.D. Thesis, Universidad de Extremadura, Badajoz, España, 2017. [Google Scholar]
- Borgtoft, H.; Skov, F.; Fjeldsa, J.; Øllgaard, B. People and Biodiversity. Two case studies from the Andean foothills of Ecuador. Centre for research on cultural and biological diversity of Andean rainforests. Diva Tech. Rep. 1998, 3, 1–190. [Google Scholar]
- Álvarez, C. Historias desde el Aula; Abya-Yala: Quito, Ecuador, 2006. [Google Scholar]
- GADP-Pastaza. Estudio del Impacto Ambiental del Proyecto de Construcción del Afirmado Camino Vecinal Latasas-Umupi, Parroquia Canelos, Provincia Pastaza; Gobierno Autónomo Descentralizado de Pastaza: Puyo, Ecuador, 2013.
- GADP-Pastaza. Plan de Desarrollo y Ordenamiento Territorial del Cantón Pastaza, 2015–2020; Gobierno autónomo Descentralizado de Pastaza: Puyo, Ecuador, 2015.
- Widdowson, M.-A.; Iuliano, A.D.; Dawood, F.S. Challenges to global pandemic mortality estimation. Lancet Infect. Dis. 2014. [Google Scholar] [CrossRef]
- Zúñiga Carrasco, I.R. Miasis: Un problema de salud poco estudiado en México. Rev. Enferm. Infecc. Pediatr. 2009, 22, 121–125. [Google Scholar]
- Tamir, J.; Haik, J.; Orenstein, A.; Schwartz, E. Dermatobia hominis myiasis among travelers returning from South America. J. Am. Acad. Derm. 2003, 48, 630–632. [Google Scholar] [CrossRef]
- Mathieu, M.E.; Wilson, B.B. Myiasis, 5th ed.; Co, C.L., Ed.; Churchill Livingstone Co: Philadelphia, PA, USA, 2000. [Google Scholar]
- Martinez-Estrada, V.; Aguilera, V.; Jurado, F. Miasis furunculoide. Comun. Caso. Dermatol. Rev. Mex 2002, 46, 280–284. [Google Scholar]
- Mengarelli, R.H.; Cevallos, M.V. Manejo de las miasis en heridas agudas y crónicas: Presentación de casos y revisión de la bibliografía. Rev. Argent. Dermatol. Ciudad Autónoma Buenos Aires 2012, 93, 1–8. [Google Scholar]
- Ginarte, M.; García Doval, I.; Peteiro, C.; Toribio, J. Miasis cutánea por Dermatobia hominis. Actas Dermosifiliogr. 1996, 87, 340–342. [Google Scholar]
- de Hollanda Ramírez, A.M.; Silva Rodríguez, A.R.; Zaracho, G. Invermectina in the treatment of Human Miasis. La Fac. Cienc. Médicas 2005, 38, 62–71. [Google Scholar]
- Manrique, A.; Manrique, D.; Catacora, J. Miasis cutánea: Reporte de un caso y revisión de la literatura. Folia Derm. Peru 2009, 20, 23–26. [Google Scholar]
- Rubio, C.; de Guevara, C.L.; Martín, M.A.; Campos, L.; Quesada, A.; Casado, M. Miasis cutáneas sobre lesiones tumorales: Presentación de tres casos. Actas Dermosifiliogr. 2006, 97, 39–42. [Google Scholar] [CrossRef]
- Izquierdo, M.J.; Pastor, M.A.; Carrasco, L.; Fariña, M.C.; Martín, L.; Requena, L.; Fernández, R.; Gadea, I. Miasis forunculoide: Descripción de dos casos con estudio histológico de las diferentes larvas. Actas Dermosifiliogr. 2001, 92, 456–460. [Google Scholar] [CrossRef]
- Chan, J.C.M.; Lee, J.S.W.; Dai, D.L.K.; Woo, J. Unusual cases of human myiasis due to Old World screwworm fly acquired indoors in Hong Kong. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 914–918. [Google Scholar] [CrossRef]
- Moya, J.; Spelta, G.; Gavazza, S.; Barbarulo, A.M.; Fontana, M.I.; Barerra, M.; Jurjo, L.L.; Azcune, R. Miasis cutánea Revisión sobre el tema y presentación de un caso de miasis forunculoide. Arch. Argent. Derm. 2007, 57, 217–222. [Google Scholar]
- Lima, T.C.; Santos, A.D.C.; Costa, D.T.M.; Souza, R.J.; Barison, A.; Steindel, M.; Biavatti, M.W. Chromenes from leaves of Calea pinnatifida and evaluation of their leishmanicidal activity. Rev. Bras. Farm. 2015, 25, 7–10. [Google Scholar] [CrossRef][Green Version]
- Mishra, T.; Shukla, S.; Meena, S.; Singh, R.; Pal, M.; Upreti, D.K.; Datta, D. Isolation and identification of cytotoxic compounds from a fruticose lichen Roccella montagnei, and it’s in silico docking study against CDK-10. Rev. Bras. Farm. 2017, 27, 724–728. [Google Scholar] [CrossRef]
- dos Santos Passos, C.; Klein-Júnior, L.C.; de Mello Andrade, J.M.; Matté, C.; Henriques, A.T. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches. Rev. Bras. Farm. 2015, 25, 382–386. [Google Scholar] [CrossRef]
- Moraga-Nicolás, F.; Jara, C.; Godoy, R.; Iturriaga-Vásquez, P.; Venthur, H.; Quiroz, A.; Becerra, J.; Mutis, A.; Hormazábal, E. Rhodolirium andicola: A new renewable source of alkaloids with acetylcholinesterase inhibitory activity, a study from nature to molecular docking. Rev. Bras. Farm. 2018, 28, 34–43. [Google Scholar] [CrossRef]
- Moradi-Afrapoli, F.; Shokrzadeh, M.; Barzegar, F.; Gorji-Bahri, G.; Zadali, R.; Nejad Ebrahimi, S. Cytotoxic activity of abietane diterpenoids from roots of Salvia sahendica by HPLC-based activity profiling. Rev. Bras. Farm. 2018, 28, 27–33. [Google Scholar] [CrossRef]
- Mangul, S.; Martin, L.S.; Langmead, B.; Sanchez-Galan, J.E.; Toma, I.; Hormozdiari, F.; Pevzner, P.; Eskin, E. How bioinformatics and open data can boost basic science in countries and universities with limited resources. Nat. Biotechnol. 2019, 37, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.B.; Casida, J.E. Cube resin insecticide: Identification and biological activity of 29 rotenoid constituents. J. Agric. Food Chem. 1999, 47, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.G.; de Almeida, C.M.C.; Silva, C.; Arruda, M.S.P.; Arruda, A.C.; Lopes, D.C.F.; Yamada, E.S.; da Costa, E.T.; da Silva, M.N. Flavonoids from the Leaves of Deguelia utilis (Leguminosae): Structural Elucidation and Neuroprotective Properties. J. Braz. Chem. Soc. 2012, 23, 1933–1939. [Google Scholar] [CrossRef]
- Lawson, M.A.; Kaouadji, M.; Allais, D.P.; Champavier, Y.; Chulia, A.J. Substituted tubaic acids, new oxidative rotenoid metabolites from Lonchocarpus nicou. Tetrahedron Lett. 2006, 47, 451–454. [Google Scholar] [CrossRef]
- Lawson, M.A.; Kaouadji, M.; Chulia, A.J. A single chalcone and additional rotenoids from Lonchocarpus nicou. Tetrahedron Lett. 2010, 51, 6116–6119. [Google Scholar] [CrossRef]
- Lawson, A.M.N.V. O-Benzoquinone and Ester-Linked Hydroxyfatatty Acid as Additional compounds from Lonchocarpus nicou. Open J. Plant Sci. 2016, 1, 1–4. [Google Scholar] [CrossRef]
- Fang, N.B.; Casida, J.E. New bioactive flavonoids and stilbenes in cube resin insecticide. J. Nat. Prod. 2000, 63, 293. [Google Scholar] [CrossRef]
- Lawson, M.A.; Kaouadji, M.; Chulia, A.J. Nor-dehydrodeguelin and nor-dehydrorotenone, C(22) coumaronochromones from Lonchocarpus nicou. Tetrahedron Lett. 2008, 49, 2407–2409. [Google Scholar] [CrossRef]
- Kaouadji, M.; Agban, A.; Mariotte, A.M. Lonchocarpene, a stilbene, and lonchocarpusone, an isoflavone—2 new pyronopolyphenols from Lonchocarpus nicou roots. J. Nat. Prod. 1986, 49, 281–285. [Google Scholar] [CrossRef]
- Fang, N.B.; Casida, J.E. Anticancer action of cube insecticide: Correlation for rotenoid constituents between inhibition of NADH: Ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc. Natl. Acad. Sci. USA 1998, 95, 3380–3384. [Google Scholar] [CrossRef] [PubMed]
- Muhaisen, H.M.H. Introduction and Interpretation of Flavonoids. Adv. Sci. Eng. Med. 2014, 6, 1–16. [Google Scholar] [CrossRef]
- Caboni, P.; Sherer, T.B.; Zhang, N.J.; Taylor, G.; Na, H.M.; Greenamyre, J.T.; Casida, J.E. Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem. Res. Toxicol. 2004, 17, 1540–1548. [Google Scholar] [CrossRef]
- Fuchino, H.; Kiuchi, F.; Yamanaka, A.; Obu, A.; Wada, H.; Mori-Yasumoto, K.; Kawahara, N.; Flores, D.; Palacios, O.; Sekita, S.; et al. New Leishmanicidal Stilbenes from a Peruvian Folk Medicine, Lonchocarpus nicou. Chem. Pharm. Bull. (Tokyo) 2013, 61, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, B.; M’Batchi, B.; Mounzeo, H.; Bourobou, H.P.B.; Posso, P. Effect of Tephrosia vogelii and Justicia extensa on Tilapia nilotica in vivo. J. Ethnopharmacol. 2000, 69, 99–104. [Google Scholar] [CrossRef]
- Sarwar, M. The killer chemicals for control of agriculture insect pests: The botanical insecticides. Int. J. Chem. Biomol. Sci. 2015, 1, 123–128. [Google Scholar]
- Fuchino, H.; Sekita, S.; Mori, K.; Kawahara, N.; Satake, M.; Kiuchi, F. A New Leishmanicidal Saponin from Brunfelsia grandiflora. Chem. Pharm. Bull. (Tokyo) 2008, 56, 93–96. [Google Scholar] [CrossRef]
- Preston, S.; Korhonen, P.K.; Mouchiroud, L.; Cornaglia, M.; McGee, S.L.; Young, N.D.; Davis, R.A.; Crawford, S.; Nowell, C.; Ansell, B.R.E.; et al. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain. FASEB J. 2017, 31, 4515–4532. [Google Scholar] [CrossRef]
- Kim, W.Y.; Chang, D.J.; Hennessy, B.; Seo, S.Y. A Novel Derivative of the Natural Agent Deguelin for Cancer Chemoprevention and Therapy. Cancer Prev. Res. 2009, 2, 186. [Google Scholar] [CrossRef]
- Lee, S.-G.; Kim, M.-M. Anti-inflammatory Effect of Scopoletin in RAW264.7 Macrophages. J. Life Sci. 2015, 25, 1377–1383. [Google Scholar] [CrossRef]
- Murillo, G.; Salti, G.I.; Kosmeder, J.W.; Pezzuto, J.M.; Mehta, R.G. Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest. Eur. J. Cancer 2002, 38, 2446–2454. [Google Scholar] [CrossRef]
- Lee, H.Y.; Oh, S.H.; Woo, J.K.; Kim, W.Y.; Van Pelt, C.S.; Price, R.E.; Cody, D.; Tran, H.; Pezzuto, J.M.; Moriarty, R.M.; et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J. Natl. Cancer Inst. 2005, 97, 1695–1699. [Google Scholar] [CrossRef] [PubMed]
- Boreddy, S.R.; Srivastava, S.K. Deguelin suppresses pancreatic tumor growth and metastasis by inhibiting epithelial-to-mesenchymal transition in an orthotopic model. Oncogene 2013, 32, 3980–3991. [Google Scholar] [CrossRef] [PubMed]
- Thamilselvan, V.; Menon, M.; Thamilselvan, S. Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int. J. Cancer 2011, 129, 2916–2927. [Google Scholar] [CrossRef]
- Wang, A.M.; Wang, W.N.; Chen, Y.Q.; Ma, F.Q.; Wei, X.M.; Bi, Y.Y. Deguelin induces PUMA-mediated apoptosis and promotes sensitivity of lung cancer cells (LCCs) to doxorubicin (Dox). Mol. Cell. Biochem. 2018, 442, 177–186. [Google Scholar] [CrossRef]
- Bortul, R.; Tazzari, P.L.; Billi, A.M.; Tabellini, G.; Mantovani, I.; Cappellini, A.; Grafone, T.; Martinelli, G.; Conte, R.; Martelli, A.M.; et al. PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br. J. Haematol. 2005, 129, 677–686. [Google Scholar] [CrossRef]
- Ackerman, J.L.; Bellwood, D.R. Reef fish assemblages: A re-evaluation using enclosed rotenone stations. Mar. Ecol. Prog. Ser. 2000, 206, 227–237. [Google Scholar] [CrossRef]
- Aladdin, N.-A.; Jamal, J.A.; Talip, N.; Hamsani, N.A.M.; Rahman, M.R.A.; Sabandar, C.W.; Muhammad, K.; Husain, K.; Jalil, J.; Lima, N.M.; et al. Antifungal activity of extracts and phenolic compounds from Deguelia duckeana. Rev. Bras. Farm. 2018, 28, 697–702. [Google Scholar] [CrossRef]
- Lobo, L.T.; da Silva, G.A.; de Freitas, M.C.C.; Souza, A.P.S.; da Silva, M.N.; Arruda, A.C.; Guilhon, G.; Santos, L.S.; Santos, A.S.; Arruda, M.S.P. Stilbenes from Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo Leaves: Effects on Seed Germination and Plant Growth. J. Braz. Chem. Soc. 2010, 21, 1838–1844. [Google Scholar] [CrossRef]
- Omura, S. Ivermectin: 25 years and still going strong. Int. J. Antimicrob. Agents 2008, 31, 91–98. [Google Scholar] [CrossRef]
- Õmura, S.; Crump, A. The life and times of ivermectin—a success story. Nat. Rev. Microbiol. 2004, 2, 984. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Lagunes, A.; Rodriguez, J.C.; Rodriguez, D. Insecticidas vegetales; una vieja y nueva alternativa en el manejo de insectos. Rev. Manejo Integr. Plagas Agroecol. 2002, 66, 4–12. [Google Scholar]
- Gupta, R.C. Biomarkers in Toxicology; Academic Press: Cambridge, MT, USA, 2014; ISBN 9780124046306. [Google Scholar]
- McGarry, J.W. Tropical myiases: Neglected and well travelled. Lancet Infect. Dis. 2014, 14, 672–674. [Google Scholar] [CrossRef]
- World Health Organization (WHO), International Programme on Chemical Safety. The WHO Recommended Classification of Pesticides by Hazard. Guidelines to Classification; World Health Organization: Geneve, Switzerland, 2009; ISBN 9789241547963. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, 32–38. [Google Scholar] [CrossRef]
- De la Torre, L.; Navarrete, H.; Muriel, P.; Maciá, J.; Balslev, H. Enciclopedia de las plantas Útiles en Ecuador; Escuela de Ciencias Biológicas de la Pontífica Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador; Aahrus, Dinamarca, 2008; ISBN 978-9978-77-135-8. [Google Scholar]
Molecule | Tested in | Activity | References |
---|---|---|---|
Rotenone | Rat | Inhibition of mitochondrial activity (diminished NADH: ubiquinone oxidoreductase activity) | [41] |
Cell | Inhibition of growth | [31] | |
Lehismania | Antilehismaniasic | [42] | |
Cell | Antiproliferative | [39] | |
Fish | Toxic for fish | [41,43] | |
Insect | Insecticide and pesticide | [44] | |
Rotenolone | Rat | Inhibition of mitochondrial activity (diminished NADH: ubiquinone oxidoreductase activity) (25% less active than rotenone). | [41] |
Cell | Inhibition of growth | [31] | |
Deguelin | Inhibition of mitochondrial activity (diminished NADH: ubiquinone oxidoreductase activity) (50% less active than rotenone). | [41] | |
Cell | Inhibition of growth | [31,45] | |
Cell | Antiproliferative | [39] | |
Nematode | Nematocide | [46] | |
Anti-inflammatory in transplants | [46,47] | ||
Cell | Potent apoptotic and antiangiogenic | [48,49] | |
Cell | Inhibition of progression of tumors such as lung, stomach, prostate, colon, ovary, and pancreas. | [49,50,51,52,53] | |
Cell | Inhibition of tumor cell growth and metastasis. | [51,52] | |
Cell | Chemical adjuvant against leukemia | [54] | |
Tephrosin | Rat | Inhibition of mitochondrial activity (diminished NADH: ubiquinone oxidoreductase activity) | [41] |
Cell | Inhibition of growth | [43] | |
Prenyl-urucuol A | Cell | Cytoprotective activity of neurons in rats (Complete fraction) | [55] |
Prenyl-isotirumalin | |||
Prenylutilinol | |||
3′-methoxylupinifolin | |||
Prenylutiline | |||
(2S)-6-(γ,γ-dimethylallyl)-5,4′-dihydroxy-3′-methoxy-6″,6″-dimethylpyran [2 ″,3″:7,8] flavanone | Cell | Inhibition of growth | [36] |
4-hydroxylonchocarpin | Antifungal | [56] | |
Lonchocarpene | Seedling | Inhibition of growth/development | [57] |
4-methoxylonchocarpene | Seedling | ||
3,5-dimethoxy-4-hydroxy-3-prenyl-trans-stilbene | Seedling |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luzuriaga-Quichimbo, C.X.; Blanco-Salas, J.; Cerón-Martínez, C.E.; Alías-Gallego, J.C.; Ruiz-Téllez, T. Promising Potential of Lonchocarpus utilis against South American Myasis. Plants 2020, 9, 33. https://doi.org/10.3390/plants9010033
Luzuriaga-Quichimbo CX, Blanco-Salas J, Cerón-Martínez CE, Alías-Gallego JC, Ruiz-Téllez T. Promising Potential of Lonchocarpus utilis against South American Myasis. Plants. 2020; 9(1):33. https://doi.org/10.3390/plants9010033
Chicago/Turabian StyleLuzuriaga-Quichimbo, Carmen X., José Blanco-Salas, Carlos E. Cerón-Martínez, Juan Carlos Alías-Gallego, and Trinidad Ruiz-Téllez. 2020. "Promising Potential of Lonchocarpus utilis against South American Myasis" Plants 9, no. 1: 33. https://doi.org/10.3390/plants9010033
APA StyleLuzuriaga-Quichimbo, C. X., Blanco-Salas, J., Cerón-Martínez, C. E., Alías-Gallego, J. C., & Ruiz-Téllez, T. (2020). Promising Potential of Lonchocarpus utilis against South American Myasis. Plants, 9(1), 33. https://doi.org/10.3390/plants9010033