Genomic and Phytochemical Diversity Across a Collection of Snake Melon Landraces
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. DNA Extraction
2.3. Genomic Analyses
2.4. Minerals and Phytochemical Assessment of Fruits
2.5. Statistical Analysis
3. Results
3.1. Morphological Diversity
3.2. Genomic Diversity
3.3. Compositional Assessment
3.4. Hierarchical Clustering of Landraces, Nutrients, and Phytochemicals
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akash, M.; Awad, N.; Kasrawi, M. Genetic diversity among snake melon landraces (Cucumis Melo Var. Flexuosus) using molecular descriptors. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 154, 206–212. [Google Scholar] [CrossRef]
- McCreight, J.D.; Staub, J.E.; Wehner, T.C.; Dhillon, N.P.S. Gone Global: Familiar and Exotic Cucurbits Have Asian Origins. HortScience 2013, 48, 1078–1089. [Google Scholar] [CrossRef]
- El-Sayed, H.M.; Rasheed, D.M.; Mahrous, E.A.; Eltanany, B.M.; Goda, Z.M.; Pont, L.; Benavente, F.; Abdel-Sattar, E. Metabolomics analysis of Cucumis melo var. flexuosus organs in correlation to its anti-inflammatory activity aided by chemometrics. J. Pharm. Biomed. Anal. 2025, 252, 116512. [Google Scholar] [CrossRef] [PubMed]
- Abu Zaitoun, S.Y.; Jamous, R.M.; Shtaya, M.J.; Mallah, O.B.; Eid, I.S.; Ali-Shtayeh, M.S. Characterizing Palestinian snake melon (Cucumis melo var. flexuosus) germplasm diversity and structure using SNP and DArTseq markers. BMC Plant Biol. 2018, 18, 246. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, I.; Kacar, Y.A.; Simsek, O.; Sari, N. Genetic Characterization of Turkish Snake Melon (Cucumis melo L. subsp. melo flexuosus Group) Accessions Revealed by SSR Markers. Biochem. Genet. 2016, 54, 534–543. [Google Scholar] [CrossRef]
- Merheb, J.; Pawełkowicz, M.; Branca, F.; Bolibok-Brągoszewska, H.; Skarzyńska, A.; Pląder, W.; Chalak, L. Characterization of Lebanese Germplasm of Snake Melon (Cucumis melo subsp. melo var. flexuosus) Using Morphological Traits and SSR Markers. Agronomy 2020, 10, 1293. [Google Scholar] [CrossRef]
- Yildiz, M.; Akgul, N.; Sensoy, S. Morphological and molecular characterization of turkish landraces of Cucumis melo L. Not. Bot. Horti Agrobot. Cluj-Napoca. 2014, 42, 51–58. [Google Scholar] [CrossRef]
- Kesh, H.; Kaushik, P. Advances in melon (Cucumis melo L.) breeding: An update. Sci. Hortic. 2021, 282, 110045. [Google Scholar] [CrossRef]
- Flores-León, A.; García-Martínez, S.; González, V.; Garcés-Claver, A.; Martí, R.; Julián, C.; Sifres, A.; Pérez-de-Castro, A.; Díez, M.J.; López, C.; et al. Grafting Snake Melon [Cucumis melo L. subsp. melo Var. flexuosus (L.) Naudin] in Organic Farming: Effects on Agronomic Performance; Resistance to Pathogens; Sugar, Acid, and VOC Profiles; and Consumer Acceptance. Front. Plant Sci. 2021, 12, 613845. [Google Scholar] [CrossRef]
- Knez, M.; Ranic, M.; Gurinovic, M.; Glibetic, M.; Savic, J.; Mattas, K.; Yercan, M. Causes and Conditions for Reduced Cultivation and Consumption of Underutilized Crops: Is There a Solution? Sustainability 2023, 15, 3076. [Google Scholar] [CrossRef]
- Padulosi, S.; Heywood, V.; Hunter, D.; Jarvis, A. Underutilized Species and Climate Change: Current Status and Outlook. In Crop Adaptation to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 507–521. ISBN 9780470960929. [Google Scholar]
- Al Achkar, N.; Chalak, L.; Rizzo, F.G.; Ciccarello, L.; Garcia, G.; Treccarichi, S.; Branca, F. Diversity of traditional snake melon (Cucumis melo var. flexuosus L.) landraces cultivated in the Mediterranean basin and its exploitation. Acta Hortic. 2024, 1, 347–354. [Google Scholar] [CrossRef]
- Cheng, A.; Mayes, S.; Dalle, G.; Demissew, S.; Massawe, F. Diversifying crops for food and nutrition security—A case of teff. Biol. Rev. 2017, 92, 188–198. [Google Scholar] [CrossRef]
- Ramamurthy, R.K.; Waters, B.M. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 2015, 204, 163–177. [Google Scholar] [CrossRef]
- Ilahy, R.; Tlili, I.; Rouhou, H.C.; Siddiqui, M.W.; Mishra, P.M.; Kuchi, V.S.; Homa, F.; Hdider, C.; Jebari, H.; Lenucci, M.S. Determining the main agronomic traits of snake melon (Cucumis melo var. flexuosus L.) fruits as affected by genotypic differences. Adv. Hortic. Sci. 2020, 34, 113–119. [Google Scholar] [CrossRef]
- Pandey, S.; Dhillon, N.P.S.; Sureja, A.K.; Singh, D.; Malik, A.A. Hybridization for increased yield and nutritional content of snake melon (Cucumis melo L. var. flexuosus). Plant Genet. Resour. Characterisation Util. 2010, 8, 127–131. [Google Scholar] [CrossRef]
- Mohamed, N.R.; El-Hawary, S.S.; Saber, F.R.; Sallam, I.E.; El-Sayed, S.H. Metabolite profiling of Cucurbita pepo L. in relation to its potential to combat experimental trichinosis. S. Afr. J. Bot. 2025, 181, 380–390. [Google Scholar] [CrossRef]
- Mariod, A.; Matthäus, B. Fatty Acids, Tocopherols, Sterols, Phenolic Profiles and Oxidative Stability of Cucumis melo Var. Agrestis Oil. J. Food Lipids. 2008, 15, 56–67. [Google Scholar] [CrossRef]
- Moing, A.; Allwood, J.W.; Aharoni, A.; Baker, J.; Beale, M.H.; Ben-Dor, S.; Biais, B.; Brigante, F.; Burger, Y.; Deborde, C.; et al. Comparative Metabolomics and Molecular Phylogenetics of Melon (Cucumis melo, Cucurbitaceae) Biodiversity. Metabolites 2020, 10, 121. [Google Scholar] [CrossRef]
- Omari, S.; Kamenir, Y.; Benichou, J.I.C.; Pariente, S.; Sela, H.; Perl-Treves, R. Landraces of snake melon, an ancient Middle Eastern crop, reveal extensive morphological and DNA diversity for potential genetic improvement. BMC Genet. 2018, 19, 34. [Google Scholar] [CrossRef]
- Negri, V. Landraces in central Italy: Where and why they are conserved and perspectives for their on-farm conservation. Genet. Resour. Crop Evol. 2003, 50, 871–885. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Jamous, R.M.; Shtaya, M.J.; Mallah, O.B.; Eid, I.S.; Zaitoun, S.Y.A. Morphological characterization of snake melon (Cucumis melo var. flexuosus) populations from Palestine. Genet. Resour. Crop Evol. 2017, 64, 7–22. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Fanourakis, D.; Aliniaeifard, S.; Kotsiras, A.; Delis, C.; Tsaniklidis, G. Leaf Age-Dependent Effects of Boron Toxicity in Two Cucumis melo Varieties. Agronomy 2021, 11, 759. [Google Scholar] [CrossRef]
- Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P.; et al. BreakDancer: An algorithm for high resolution mapping of genomic structural variation. Nat. Methods 2009, 6, 677–681. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, M.; Arcieri, F.; Delvento, C.; Giudice, G.; Cannarella, M.S.; Mimiola, G.; Cavallo, G.; Ricciardi, L.; Lotti, C.; Pavan, S. Whole-genome sequencing and phenotyping of neglected and underutilized vegetable melons from the Salento diversity centre (Southern Italy). Front. Plant Sci. 2025, 16, 1644621. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Athinodorou, F.; Foukas, P.; Tsaniklidis, G.; Kotsiras, A.; Chrysargyris, A.; Delis, C.; Kyratzis, A.C.; Tzortzakis, N.; Nikoloudakis, N. Morphological diversity, genetic characterization, and phytochemical assessment of the cypriot tomato germplasm. Plants 2021, 10, 1698. [Google Scholar] [CrossRef]
- López-Hidalgo, C.; Meijón, M.; Lamelas, L.; Valledor, L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant. Cell Environ. 2021, 44, 1977–1986. [Google Scholar] [CrossRef]
- Blanca, J.; Esteras, C.; Ziarsolo, P.; Pérez, D.; Fernández-Pedrosa, V.; Collado, C.; de Pablos, R.R.G.; Ballester, A.; Roig, C.; Cañizares, J.; et al. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genom. 2012, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Henan, I.; Tlili, I.; Him, T.R.; Ali, A.B.E.N.; Jebari, H. Carotenoid content and antioxidant activity of local varieties of muskmelon (Cucumis melo L.) grown in Tunisia. J. New Sci. 2016, 29, 1672–1675. [Google Scholar]
- Soualiou, S.; Duan, F.; Li, X.; Zhou, W. Nitrogen supply alleviates cold stress by increasing photosynthesis and nitrogen assimilation in maize seedlings. J. Exp. Bot. 2023, 74, 3142–3162. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, R.; Mi, T.; Song, Y.; Shi, F.; Liu, X.; Wang, Y.; Sun, F.; Xi, Y.; Zhang, C. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging. Int. J. Mol. Sci. 2023, 24, 5825. [Google Scholar] [CrossRef]
- He, X.; You, P.; Sun, Y. Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass. PLoS ONE 2020, 15, e0232750. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Pandey, J.; Gautam, S.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Variation and genetic basis of mineral content in potato tubers and prospects for genomic selection. Front. Plant Sci. 2023, 14, 1301297. [Google Scholar] [CrossRef]
- Broccanello, C.; Bellin, D.; DalCorso, G.; Furini, A.; Taranto, F. Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change. Front. Plant Sci. 2023, 14, 1101271. [Google Scholar] [CrossRef]
- Catarcione, G.; Paolacci, A.R.; Alicandri, E.; Gramiccia, E.; Taviani, P.; Rea, R.; Costanza, M.T.; De Lorenzis, G.; Puccio, G.; Mercati, F.; et al. Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy. Plants 2023, 12, 744. [Google Scholar] [CrossRef]
- Banerjee, S.; Roy, P.; Nandi, S.; Roy, S. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content. Plant Growth Regul. 2023, 100, 355–371. [Google Scholar] [CrossRef]
Genotype | ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi |
---|---|---|---|---|---|
Origin | Cypriot | Cypriot | Cypriot | Greek | Greek |
Fruit shape | Slender/Curved | Slender/Straight | Cylindrical/Curved | Oblong | Oval |
Fruit color | Green/White Stripes | Dark Green | White/Green Stripes | White/Green Stripes | Pale Green |
Fruit size | Very large | Large | Very large | Large | Large |
Plant growth (during flowering) | High | High | Medium | High | High |
Plant growth (after flowering) | High | High | Medium | High | High |
Leaf size | Large | Large | Intermediate | Intermediate | Intermediate |
Leaf senescence | Moderate | Moderate | Moderate | Moderate | Moderate |
Ratio of flowers | Mostly female | Mostly female | Equal | Equal | Equal |
Earliness male | Late | Late | Intermediate | Intermediate | Intermediate |
Earliness female | Early | Early | Early | Early | Early |
Genotype | ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi |
---|---|---|---|---|---|
Upstream | 104,511 | 108,671 | 102,686 | 128,602 | 106,396 |
Stop gain | 731 | 745 | 751 | 862 | 723 |
Stop loss | 172 | 191 | 184 | 216 | 173 |
Synonymous | 25,805 | 27,351 | 25,391 | 32,553 | 25,644 |
Non-synonymous | 28,023 | 29,165 | 27,698 | 34,108 | 27,573 |
Intronic | 183,210 | 191,351 | 181,718 | 227,978 | 183,454 |
Splicing | 452 | 456 | 391 | 502 | 406 |
Downstream | 88,111 | 92,989 | 87,513 | 109,993 | 90,285 |
Upstream/Downstream | 14,989 | 15,799 | 14,552 | 18,611 | 15,531 |
Intergenic | 1,101,107 | 1,156,106 | 1,110,848 | 1,353,996 | 1,120,223 |
3′UTR | 18,813 | 19,999 | 18,602 | 23,892 | 19,037 |
5′UTR | 11,778 | 12,361 | 11,757 | 14,931 | 11,935 |
5′UTR/3′UTR | 120 | 108 | 129 | 157 | 127 |
Others | 9 | 12 | 6 | 12 | 11 |
ts | 1,080,127 | 1,133,939 | 1,085,573 | 1,333,458 | 1,097,036 |
tv | 497,695 | 521,353 | 496,647 | 612,943 | 504,471 |
ts/tv | 2.17 | 2.175 | 2.186 | 2.176 | 2.175 |
Het rate(‰) | 0.222 | 0.978 | 0.23 | 2.897 | 0.419 |
Total | 1,577,822 | 1,655,292 | 1,582,220 | 1,946,401 | 1,601,507 |
Genotype | ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi |
---|---|---|---|---|---|
Upstream | 35,342 | 35,224 | 32,000 | 37,824 | 35,756 |
Stop gain | 55 | 59 | 60 | 67 | 56 |
Stop loss | 10 | 11 | 15 | 11 | 13 |
Frameshift deletion | 922 | 970 | 899 | 1092 | 940 |
Frameshift insertion | 892 | 897 | 899 | 985 | 900 |
Non-frameshift deletion | 765 | 810 | 756 | 939 | 761 |
Non-frameshift insertion | 777 | 810 | 764 | 949 | 779 |
Intronic | 47,478 | 48,133 | 44,870 | 52,859 | 48,001 |
Splicing | 173 | 169 | 156 | 197 | 164 |
Downstream | 27,941 | 28,136 | 25,498 | 30,133 | 28,226 |
Upstream/Downstream | 5068 | 5105 | 4638 | 5533 | 5241 |
Intergenic | 229,914 | 229,939 | 208,755 | 244,391 | 230,669 |
3′UTR | 6626 | 6835 | 6317 | 7560 | 6698 |
5′UTR | 4574 | 4662 | 4368 | 5162 | 4603 |
5′UTR/3′UTR | 50 | 40 | 43 | 54 | 51 |
Others | 0 | 0 | 0 | 0 | 0 |
Insertion | 183,594 | 183,926 | 167,990 | 197,417 | 185,568 |
Deletion | 176,902 | 177,659 | 161,956 | 189,828 | 177,121 |
Het rate(‰) | 0.096 | 0.201 | 0.073 | 0.503 | 0.134 |
Total | 360,546 | 361,758 | 329,999 | 387,689 | 362,810 |
Genotype | ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi |
---|---|---|---|---|---|
Upstream | 458 | 566 | 484 | 515 | 431 |
Exonic | 2685 | 2341 | 2120 | 2045 | 2702 |
Downstream | 344 | 400 | 318 | 381 | 353 |
Intronic | 340 | 401 | 353 | 397 | 361 |
Upstream/Downstream | 64 | 90 | 69 | 77 | 78 |
Intergenic | 3839 | 4546 | 4020 | 4344 | 4023 |
Splicing | 4 | 5 | 2 | 7 | 5 |
Others | 75 | 88 | 85 | 82 | 84 |
INS | 51 | 1 | 0 | 35 | 98 |
DEL | 6170 | 7177 | 6348 | 6784 | 6329 |
INV | 1588 | 1259 | 1103 | 1029 | 1610 |
ITX | 2010 | 1479 | 1623 | 1414 | 2090 |
CTX | 4475 | 5360 | 4581 | 5028 | 6376 |
Total | 14,294 | 15,276 | 13,655 | 14,290 | 16,503 |
Genotype | ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi |
---|---|---|---|---|---|
Upstream | 399 | 337 | 257 | 199 | 425 |
Exonic | 1576 | 1272 | 1077 | 1184 | 1466 |
Intronic | 289 | 206 | 133 | 108 | 301 |
Downstream | 350 | 272 | 196 | 174 | 366 |
Upstream/Downstream | 42 | 40 | 34 | 24 | 48 |
Intergenic | 6278 | 4749 | 3546 | 3161 | 6283 |
Others | 90 | 70 | 53 | 48 | 96 |
Duplication | 1132 | 1063 | 957 | 1014 | 1113 |
Deletion | 7892 | 5883 | 4339 | 3884 | 7872 |
Duplication length (bp) | 6,369,400 | 6,510,000 | 6,646,200 | 7,693,300 | 6,226,800 |
Deletion length (bp) | 27,531,800 | 27,136,000 | 25,390,900 | 29,460,900 | 27,889,000 |
Total | 9024 | 6946 | 5296 | 4898 | 8985 |
ARI00894 | ARI001024 | ARI00747 | Atzouri | Peponi | |
---|---|---|---|---|---|
chl a (μg/g) | 51.3 ± 1.09 b | 81.5 ± 3.14 a | 14.2 ± 0.601 cd | 20.4 ± 2.37 c | 11.8 ± 0.227 d |
chl b (μg/g) | 30.9 ± 0.718 b | 43.6 ± 1.63 a | 11.5 ± 2.3 c | 12.8 ± 2.69 c | 9 ± 0.833 c |
Carotenoids (μg/g) | 16.1 ± 0.621 b | 24.5 ± 1.08 a | 6.43 ± 0.845 c | 4.85 ± 0.591 c | 4.28 ± 0.298 c |
MDA (nmol/g) | 8.15 ± 1.15 b | 10.1 ± 0.228 ab | 12.2 ± 1.25 a | 10.1 ± 0.694 ab | 8.1 ± 0.589 b |
FAA (mg/gr) | 88.5 ± 1.48 a | 73.9 ± 3.75 b | 57.8 ± 2.33 c | 68 ± 1.81 b | 46.9 ± 1.91 d |
Glucose (mg/g) | 43.1 ± 2.44 bc | 33.1 ± 1.27 c | 71.2 ± 8.17 a | 43.9 ± 3.07 bc | 52.8 ± 0.762 b |
Glucose in perchloric acid (mg/g DW) | 65.7 ± 3.05 | 73.2 ± 1.84 | 66.8 ± 6.82 | 74.3 ± 5.39 | 68.9 ± 1.49 |
N (%) | 2.85 ± 0.0613 a | 2.62 ± 0.134 a | 1.97 ± 0.117 b | 2.69 ± 0.107 a | 1.95 ± 0.0636 b |
P (%) | 0.493 ± 0.0117 a | 0.494 ± 0.00413 a | 0.37 ± 0.0157 b | 0.472 ± 0.00649 a | 0.406 ± 0.00592 b |
K (%) | 3.75 ± 0.353 a | 2.98 ± 0.0205 bc | 2.41 ± 0.114 c | 3.1 ± 0.121 ac | 3.54 ± 0.125 ab |
Ca (%) | 0.351 ± 0.0135 a | 0.374 ± 0.0106 a | 0.307 ± 0.00611 b | 0.381 ± 0.00481 a | 0.291 ± 0.00567 b |
Mg (%) | 0.241 ± 0.00886 b | 0.279 ± 0.0079 a | 0.193 ± 0.00201 c | 0.206 ± 0.00641 c | 0.204 ± 0.00517 c |
Na (%) | 0.094 ± 0.00204 bc | 0.138 ± 0.0126 a | 0.1 ± 0.0043 bc | 0.112 ± 0.00521 ab | 0.077 ± 0.00227 c |
Fe (mg kg−1) | 73.4 ± 1.67 a | 67.2 ± 3.29 ab | 53.7 ± 1.76 c | 58.1 ± 3.82 bc | 61.9 ± 2.36 bc |
Μn (mg kg−1) | 9.01 ± 0.273 ab | 10 ± 1.1 a | 3.9 ± 0.216 b | 9.5 ± 1.29 a | 7.65 ± 2.46 ab |
Ζn (mg kg−1) | 24.4 ± 0.878 a | 22.1 ± 1.21 a | 11.3 ± 0.992 b | 20.2 ± 1.27 a | 12.5 ± 0.929 b |
Cu (mg kg−1) | 7.03 ± 0.812 bc | 11.3 ± 1.39 a | 6.52 ± 0.633 bc | 9.93 ± 1.13 ab | 5.95 ± 0.358 c |
Β (mg kg−1) | 18.4 ± 2.96 | 22.2 ± 1.92 | 17.8 ± 0.403 | 16.6 ± 0.836 | 19.8 ± 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolakidou, M.-D.; Markou, A.; Kyratzis, A.C.; Kotsiras, A.; Delis, C.; Mattas, K.; Katsiotis, A.; Nikoloudakis, N. Genomic and Phytochemical Diversity Across a Collection of Snake Melon Landraces. Plants 2025, 14, 2989. https://doi.org/10.3390/plants14192989
Tsolakidou M-D, Markou A, Kyratzis AC, Kotsiras A, Delis C, Mattas K, Katsiotis A, Nikoloudakis N. Genomic and Phytochemical Diversity Across a Collection of Snake Melon Landraces. Plants. 2025; 14(19):2989. https://doi.org/10.3390/plants14192989
Chicago/Turabian StyleTsolakidou, Maria-Dimitra, Anastasia Markou, Angelos C. Kyratzis, Anastasios Kotsiras, Costas Delis, Konstadinos Mattas, Andreas Katsiotis, and Nikolaos Nikoloudakis. 2025. "Genomic and Phytochemical Diversity Across a Collection of Snake Melon Landraces" Plants 14, no. 19: 2989. https://doi.org/10.3390/plants14192989
APA StyleTsolakidou, M.-D., Markou, A., Kyratzis, A. C., Kotsiras, A., Delis, C., Mattas, K., Katsiotis, A., & Nikoloudakis, N. (2025). Genomic and Phytochemical Diversity Across a Collection of Snake Melon Landraces. Plants, 14(19), 2989. https://doi.org/10.3390/plants14192989