Exploring the Diversity of Ovule Development in the Novel Rice Mutant ShuangLi Using Confocal Laser Scanning Microscopy
Abstract
1. Introduction
2. Results
2.1. Abnormal Ovaries in shuangli
2.2. Formation Process and Characteristics of Embryo Sac Development in CK
2.3. Abnormal Embryo Sac Development in shuangli
Ovary Number | Abnormal Dyads (%) | Abnormal Cell Array of Tetrads (%) | More Tetrad Cells (%) | Tetrad Degeneration (%) | Total Variation (%) | |
---|---|---|---|---|---|---|
CK | 156 | 2.56 ± 0.73 | 1.92 ± 0.64 | 0 | 3.85 ± 1.12 | 8.33 ± 1.67 |
shuangli | 386 | 5.18 ± 1.34 * | 3.89 ± 1.02 * | 2.07 ± 0.53 ** | 6.22 ± 2.27 * | 17.35 ± 3.24 * |
Ovary Number | Abnormal Polar Nuclei Number and Position (%) | Egg Apparatus Degradation (%) | Degradation of Female Reproductive Units (%) | Abnormal Antipodal Cells (%) | Loss or Degradation of the Embryo Sac (%) | Total Variation (%) | |
---|---|---|---|---|---|---|---|
CK | 225 | 3.80 ± 1.13 | 4.22 ± 1.53 | 3.38 ± 1.37 | 0 | 1.69 ± 1.54 | 13.08 ± 3.28 |
shuangli | 425 | 6.35 ± 1.64 ** | 5.88 ± 1.62 | 7.06 ± 2.35 * | 4.71 ± 1.82 ** | 3.53 ± 1.14 * | 27.53 ± 4.84 ** |
2.4. Specific Changes in Ovule Development in shuangli
2.4.1. Abnormal Development of Lateral Tissue in the Ovule
2.4.2. Abnormal Development of Nucellar Tissue
2.4.3. Abnormal Formation of Double Ovules
2.4.4. Abnormal Development of Double Embryo Sacs
3. Discussion
3.1. Abnormal Ovary Development in shuangli
3.2. Fertility and Abnormal Pistil Development in shuangli
4. Materials and Methods
4.1. Materials
4.2. Material Fixation
4.3. Eosin Y and Hoechst Staining
4.4. Scanning and Observation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Deng, X.; Liu, Y.; Wang, J.; Li, Z. Efficient Coordination Among Chinese Provinces in Managing Supply and Demand for Staple Crops. Food Energy Secur. 2024, 13, e70025. [Google Scholar] [CrossRef]
- Yin, F.; Sun, Z.; You, L.; Müller, D. Determinants of Changes in Harvested Area and Yields of Major Crops in China. Food Secur. 2024, 16, 339–351. [Google Scholar] [CrossRef]
- Porong, J.V.; Walingkas, S.A.F.; Tulungen, A.G.; Tumewu, P.; Doodoh, B.; Managanta, A.A.; Mamarimbing, R.; Liwu, S. Rice Cultivation Technology at the Farmers’ Level in North Bolaang Mongondow District, Indonesia. Int. J. Multicult. Multireligious Underst. 2023, 10, 216. [Google Scholar] [CrossRef]
- Tang, L.; Xu, Z.; Chen, W. Advances and Prospects of Super Rice Breeding in China. J. Integr. Agric. 2017, 16, 984–991. [Google Scholar] [CrossRef]
- Huang, J.; Chen, W.; Gao, L.; Qing, D.; Pan, Y.; Zhou, W.; Wu, H.; Li, J.; Ma, C.; Zhu, C.; et al. Rapid Improvement of Grain Appearance in Three-Line Hybrid Rice via CRISPR/Cas9 Editing of Grain Size Genes. Theor. Appl. Genet. 2024, 137, 173. [Google Scholar]
- Ahmad Khah, M. The Potential of Mutation Breeding for Ensuring Sustainable Food Security. Int. J. 2025, 14, 1533–1541. [Google Scholar] [CrossRef]
- Rengasamy, B.; Manna, M.; Thajuddin, N.B.; Sathiyabama, M.; Sinha, A.K. Breeding Rice for Yield Improvement through CRISPR/Cas9 Genome Editing Method: Current Technologies and Examples. Physiol. Mol. Biol. Plants 2024, 30, 185–198. [Google Scholar] [CrossRef]
- Mayakaduwa, R.; Silva, T. Haploid Induction in Indica Rice: Exploring New Opportunities. Plants 2023, 12, 3118. [Google Scholar] [CrossRef]
- Ren, W.; Wang, H.; Du, Y.; Li, Y.; Feng, Z.; Zhou, X.; Kang, G.; Shu, Q.; Guo, T.; Guo, H.; et al. Multi-Generation Study of Heavy Ion Beam-Induced Mutations and Agronomic Trait Variations to Accelerate Rice Breeding. Front. Plant Sci. 2023, 14, 1213807. [Google Scholar]
- Zhao, S.; Huang, Q.; Yang, P.; Zhang, J.; Jia, H.; Jiao, Z. Effects of Ion Beams Pretreatment on Damage of UV-B Radiation on Seedlings of Winter Wheat (Triticum aestivum L.). Appl. Biochem. Biotechnol. 2012, 168, 2123–2135. [Google Scholar] [CrossRef]
- Techarang, J.; Yu, L.D.; Tippawan, U.; Phanchaisri, B. Ion Beam Genetic-Technology for Modification of Rice Phenotypes. Surf. Coat. Technol. 2018, 355, 207–214. [Google Scholar]
- Zhao, S.; Huang, Q.; Liang, Q.; Zhang, S.; Jiao, Z.; Huang, W. Biological Effects of Low Energy N+ Beams Implantation on Calluses of Autotetraploid Rice. J. Integr. Agric. 2013, 12, 2045–2055. [Google Scholar] [CrossRef]
- Gu, Y.H.; Gao, F.; Qi, Y.L.; Jiao, Z. Study on Variation Effects Caused by Ion Beam-Mediated Transformation Whose Transformation Receptors Are Wheat’s Segregation Population Seeds. Life Sci. J. 2011, 8, 356–362. [Google Scholar]
- Boonsua, S.; Chaiharn, M.; Sutigoolabud, P.; Prakrajang, K. Effects of Low Dose Gamma Irradiation of Long Period Storage Tomato Seeds on Germination Percentage and Seedling Growth. J. Phys. Conf. Ser. 2021, 1719, 012076. [Google Scholar] [CrossRef]
- Liang, Q.; Huang, Q.; Cao, G.; Yang, F.; Li, Y.; Wen, H. Study of Biological Effects of Low Energy Ion Implantation on Tomato and Radish Breeding. Plasma Sci. Technol. 2008, 10, 254–259. [Google Scholar] [CrossRef]
- Ur, S.N.; Corbett, K.D. Architecture and Dynamics of Meiotic Chromosomes. Annu. Rev. Genet. 2021, 55, 497–526. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yu, Z. Radiobiological Effects of a Low-Energy Ion Beam on Wheat. Radiat. Environ. Biophys. 2001, 40, 53–57. [Google Scholar] [CrossRef]
- Rana, A.; Rana, V.; Bakshi, S.; Sood, V.K. Agro-Morphological Evaluation of Gamma Ray-Induced Mutant Populations and Isolation of Harder Grain Mutants in Wheat (Triticum aestivum L.). Plant Genet. Resour. 2024, 22, 396–407. [Google Scholar] [CrossRef]
- Guo, X.; Ren, J.; Zhou, X.; Zhang, M.; Lei, C.; Chai, R.; Zhang, L.; Lu, D. Strategies to Improve the Efficiency and Quality of Mutant Breeding Using Heavy-Ion Beam Irradiation. Crit. Rev. Biotechnol. 2024, 44, 735–752. [Google Scholar]
- Wang, T.G.; Li, X.B.; Yang, T.Y.; Wang, W.D. Ion Beam Bio-Engineering and Crop Breeding. Adv. Mater. Res. 2010, 108, 536–542. [Google Scholar] [CrossRef]
- Okasa, A.M.; Riadi, M.; Toriyama, K.; Ishii, K.; Hasyashi, Y.; Sato, T.; Abe, T.; Trisnawaty; Panga, N.J.; Sjahril, R. Mutation breeding for improvement of aromatic rice mutant by using ion beam irradiation. IOP Conf. Ser. Earth Environ. Sci. 2020, 486, 012091. [Google Scholar] [CrossRef]
- Phanchaisri, B.; Chandet, R.; Yu, L.D.; Vilaithong, T.; Jamjod, S.; Anuntalabhochai, S. Low-energy ion beam-induced mutation in Thai jasmine rice (Oryza sativa L. cv. KDML 105). Surf. Coat. Technol. 2007, 201, 8024–8028. [Google Scholar] [CrossRef]
- Lohani, N.; Singh, M.B.; Bhalla, P.L. High Temperature Susceptibility of Sexual Reproduction in Crop Plants. J. Exp. Bot. 2020, 71, 555–568. [Google Scholar] [CrossRef]
- Ashapkin, V.V.; Kutueva, L.I.; Aleksandrushkina, N.I.; Vanyushin, B.F. Epigenetic Regulation of Plant Gametophyte Development. Int. J. Mol. Sci. 2019, 20, 3051. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.T.; Usman, B.; Kim, E.; Shim, S.; Jeon, J.; Jung, K. An ATP-binding Cassette Transporter, OsABCB24, Is Involved in Female Gametophyte Development and Early Seed Growth in Rice. Physiol. Plant. 2024, 176, e14354. [Google Scholar] [CrossRef]
- Hu, C.; Zeng, Y.; Guo, H.; Lu, Y.; Chen, Z.; Shahid, M.Q.; Liu, X. Megasporogenesis and Megagametogenesis in Autotetraploid Indica/Japonica Rice Hybrid. Rice Sci. 2010, 17, 296–302. [Google Scholar] [CrossRef]
- Fimanekeni, N.S.; Nabieu, K.; Xiang-Dong, L. Sequencing of S5 Gene in Autotetraploid Rice Japonica and Indica to Overcome F1 Hybrids Embryo Sac Sterility. Int. J. Genet. Mol. Biol. 2023, 15, 21–30. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Song, S.; Qiu, M.; Zhang, L.; Li, C.; Dong, H.; Li, L.; Wang, J.; Li, L. EMBRYO SAC DEVELOPMENT 1 Affects Seed Setting Rate in Rice by Controlling Embryo Sac Development. Plant Physiol. 2021, 186, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, F.; Zhu, J.; Yu, H.; Wu, J.; Baloch, F.S.; Liu, X.; Shahid, M.Q. Deciphering Global DNA Variations and Embryo Sac Fertility in Autotetraploid Rice Line. Turk. J. Agric. For. 2019, 43, 554–568. [Google Scholar] [CrossRef]
- Hu, X.; Yu, P.; Zhang, Y.; Gao, Z.; Sun, B.; Wu, W.; Deng, C.; Abbas, A.; Hong, Y.; Sun, L.; et al. Mutation of DEFECTIVE EMBRYO SAC1 Results in a Low Seed-Setting Rate in Rice by Regulating Embryo Sac Development. J. Exp. Bot. 2023, 74, 1501–1516. [Google Scholar] [CrossRef]
- Li, X.; Huang, X.; Wen, M.; Yin, W.; Chen, Y.; Liu, Y.; Liu, X. Cytological Observation and RNA-Seq Analysis Reveal Novel miRNAs High Expression Associated with the Pollen Fertility of Neo-Tetraploid Rice. BMC Plant Biol. 2023, 23, 434. [Google Scholar] [CrossRef]
- Dai, X.; Yang, X.; Huang, Q.; Qin, G. Observation on Double Fertilization and Early Embryonic Development in Autotetraploid Polyembryonic Rice. Rice Sci. 2009, 16, 124–130. [Google Scholar] [CrossRef]
- Li, X.; Shahid, M.Q.; Xia, J.; Lu, Z.; Fang, N.; Wang, L.; Wu, J.; Chen, Z.; Liu, X. Analysis of Small RNAs Revealed Differential Expressions during Pollen and Embryo Sac Development in Autotetraploid Rice. BMC Genom. 2017, 18, 129. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, W.; Zhu, L.; Liang, G.; Huang, Y.; Wu, J.; Chen, R.; Li, X.; Liu, X. Cytological Observation and RNA-Seq Analyses Reveal miR9564 and Its Target Associated with Pollen Sterility in Autotetraploid Rice. Plants 2024, 13, 1461. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.; Gu, H.; Li, Z.; Tian, B.; Xie, Z.; Shi, G.; Chen, W.; Wei, F.; Cao, G. Developmental Differences between Anthers of Diploid and Autotetraploid Rice at Meiosis. Plants 2022, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yuan, Y.; Wu, J.; Chen, Z.; Wang, L.; Shahid, M.Q.; Liu, X. Carbohydrate Metabolism and Fertility Related Genes High Expression Levels Promote Heterosis in Autotetraploid Rice Harboring Double Neutral Genes. Rice 2019, 12, 34. [Google Scholar] [CrossRef]
- Tu, S.; Luan, L.; Liu, Y.; Long, W.; Kong, F.; He, T.; Xu, Q.; Yan, W.; Yu, M. Production and Heterosis Analysis of Rice Autotetraploid Hybrids. Crop Sci. 2007, 47, 2356–2363. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, Q.; Zhang, S.; Zhang, S. Photosynthesis Characters of a Rice mutant, shuangli. Hubei Agric. Sci. 2013, 52, 2250–2259. [Google Scholar]
Ovary Number | Normal Ovule (%) | Abnormal Development of Ovule Structure | |||||
---|---|---|---|---|---|---|---|
Lateral Tissue (%) | Abnormal Nucellar (%) | Double Ovules (%) | Double Embryo Sacs (%) | Total Variation (%) | |||
CK | 124 | 95.16 ± 5.68 | 0 | 0 | 1.62 ± 0.61 | 3.23 ± 1.25 | 4.84 ± 1.37 |
shuangli | 240 | 71.94 ± 3.81 * | 8.27 ± 2.26 ** | 5.40 ± 1.76 ** | 10.79 ± 3.44 ** | 3.60 ± 1.64 | 28.06 ± 4.52 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Wu, C.; Hao, Y.; Xu, J.; Li, J.; Huang, Q. Exploring the Diversity of Ovule Development in the Novel Rice Mutant ShuangLi Using Confocal Laser Scanning Microscopy. Plants 2025, 14, 2982. https://doi.org/10.3390/plants14192982
Zhao S, Wu C, Hao Y, Xu J, Li J, Huang Q. Exploring the Diversity of Ovule Development in the Novel Rice Mutant ShuangLi Using Confocal Laser Scanning Microscopy. Plants. 2025; 14(19):2982. https://doi.org/10.3390/plants14192982
Chicago/Turabian StyleZhao, Shuaipeng, Chunhong Wu, Yuanyuan Hao, Jikun Xu, Jian Li, and Qunce Huang. 2025. "Exploring the Diversity of Ovule Development in the Novel Rice Mutant ShuangLi Using Confocal Laser Scanning Microscopy" Plants 14, no. 19: 2982. https://doi.org/10.3390/plants14192982
APA StyleZhao, S., Wu, C., Hao, Y., Xu, J., Li, J., & Huang, Q. (2025). Exploring the Diversity of Ovule Development in the Novel Rice Mutant ShuangLi Using Confocal Laser Scanning Microscopy. Plants, 14(19), 2982. https://doi.org/10.3390/plants14192982