Bacterial Cyclic Lipopeptides as Triggers of Plant Immunity and Systemic Resistance Against Pathogens
Abstract
1. Introduction
2. CLP Biosynthesis
3. Diversity of CLP Structures and Functions
3.1. Bacillus CLPs
3.2. Pseudomonas CLPs
3.3. CLPs from Other Bacterial Genera
4. CLPs as Inducers of Plant-Species-Dependent ISR
5. Differential Activation of ISR by CLPs Across Concentration Gradients
6. Synergistic Relationship of CLP Application Triggering ISR in Plants
7. Molecular Mechanisms of CLP Recognition in Plants
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aci, M.M.; Sidari, R.; Araniti, F.; Lupini, A. Emerging trends in allelopathy: A genetic perspective for sustainable agriculture. Agronomy 2022, 12, 2043. [Google Scholar] [CrossRef]
- Emannuel Oliveira Vieira, M.; Vieira Nunes, V.; Costa Calazans, C.; Silva-Mann, R. Unlocking plant defenses: Harnessing the power of beneficial microorganisms for induced systemic resistance in vegetables—A systematic review. Biol. Control. 2024, 188, 105428. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms—A review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Pršić, J.; Ongena, M. Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant Sci. 2020, 11, 594530. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Ajuna, H.B.; Lim, H.-I.; Moon, J.-H.; Won, S.-J.; Choub, V.; Choi, S.-I.; Yun, J.-Y.; Ahn, Y.S. The prospect of antimicrobial peptides from Bacillus species with biological control potential against insect pests and diseases of economic importance in agriculture, forestry and fruit tree production. Biotechnol. Biotechno. Equip. 2024, 38, 2312115. [Google Scholar] [CrossRef]
- Maksimov, I.V.; Singh, B.P.; Cherepanova, E.A.; Burkhanova, G.F.; Khairullin, R.M. Prospects and applications of lipopeptide-producing bacteria for plant protection (Review). Appl. Biochem. Microbiol. 2020, 56, 15–28. [Google Scholar] [CrossRef]
- Balleux, G.; Höfte, M.; Arguelles-Arias, A.; Deleu, M.; Ongena, M. Bacillus lipopeptides as key players in rhizosphere chemical ecology. Trends Microbiol. 2024, 33, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Farace, G.; Fernandez, O.; Jacquens, L.; Coutte, F.; Krier, F.; Jacques, P.; Clément, C.; Barka, E.A.; Jacquard, C.; Dorey, S. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol. Plant Pathol. 2015, 16, 177–187. [Google Scholar] [CrossRef]
- Mejri, S.; Siah, A.; Coutte, F.; Magnin-Robert, M.; Randoux, B.; Tisserant, B.; Krier, F.; Jacques, P.; Reignault, P.; Halama, P. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ. Sci. Pollut. Res. 2018, 25, 29822–29833. [Google Scholar] [CrossRef]
- De Roo, V.; Verleysen, Y.; Kovács, B.; De Vleeschouwer, M.; Muangkaew, P.; Girard, L.; Höfte, M.; De Mot, R.; Madder, A.; Geudens, N.; et al. An nuclear magnetic resonance fingerprint matching approach for the identification and structural re-evaluation of Pseudomonas Lipopeptides. Microbiol. Spectr. 2022, 10, e0126122. [Google Scholar] [CrossRef]
- Götze, S.; Stallforth, P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat. Prod. Rep. 2020, 37, 29–54. [Google Scholar] [CrossRef]
- Roongsawang, N.; Washio, K.; Morikawa, M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int. J. Mol. Sci. 2011, 12, 141–172. [Google Scholar] [CrossRef] [PubMed]
- Strieker, M.; Tanović, A.; Marahiel, M.A. Nonribosomal peptide synthetases: Structures and dynamics. Curr. Opin. Struct. Biol. 2010, 20, 234–240. [Google Scholar] [CrossRef]
- Pilz, M.; Cavelius, P.; Qoura, F.; Awad, D.; Brück, T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol. Adv. 2023, 67, 108210. [Google Scholar] [CrossRef] [PubMed]
- Kopp, F.; Marahiel, M.A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat. Prod. Rep. 2007, 24, 735. [Google Scholar] [CrossRef] [PubMed]
- Dini, S.; Oz, F.; Bekhit, A.E.D.A.; Carne, A.; Agyei, D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13394. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; de Bruijn, I.; Nybroe, O.; Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev. 2010, 34, 1037–1062. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Lei, S.; Xu, X.; Jin, H.; Sun, H.; Zhao, X.; Pang, B.; Shi, J. Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl. Microbiol. Biotechnol. 2020, 104, 8077–8087. [Google Scholar] [CrossRef]
- Duban, M.; Cociancich, S.; Leclère, V. Nonribosomal peptide synthesis definitely working out of the rules. Microorganisms 2022, 10, 577. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef]
- Dobrzyński, J.; Jakubowska, Z.; Kulkova, I.; Kowalczyk, P.; Kramkowski, K. Biocontrol of fungal phytopathogens by Bacillus pumilus. Front. Microbiol. 2023, 14, 1194606. [Google Scholar] [CrossRef] [PubMed]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The significance of bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Théatre, A.; Hoste, A.C.R.; Rigolet, A.; Benneceur, I.; Bechet, M.; Ongena, M.; Deleu, M.; Jacques, P. Bacillus sp.: A remarkable source of bioactive lipopeptides. In Biochemical Engineering/Biotechnology; Springer Science and Business Media Deutschland GmbH.: Berlin/Heidelberg, Germany, 2022; pp. 123–179. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Hwang, B.S.; Baek, K.H. Bacillus velezensis: A beneficial biocontrol agent or facultative phytopathogen for sustainable agriculture. Agronomy 2023, 13, 840. [Google Scholar] [CrossRef]
- Oni, F.E.; Esmaeel, Q.; Onyeka, J.T.; Adeleke, R.; Jacquard, C.; Clement, C.; Gross, H.; Barka, E.A.; Höfte, M. Pseudomonas lipopeptide-mediated biocontrol: Chemotaxonomy and biological activity. Molecules 2022, 27, 372. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; De Bruijn, I.; De Kock, M.J.D. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 2006, 19, 699–710. [Google Scholar] [CrossRef]
- Cesa-Luna, C.; Geudens, N.; Girard, L.; De Roo, V.; Maklad, H.R.; Martins, J.C.; Höfte, M.; De Mot, R.; Deveau, A. Charting the lipopeptidome of nonpathogenic Pseudomonas. mSystems 2023, 8, e0098822. [Google Scholar] [CrossRef]
- Olishevska, S.; Nickzad, A.; Déziel, E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl. Microbiol. Biotechnol. 2019, 103, 1189–1215. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Factories 2016, 15, 203. [Google Scholar] [CrossRef]
- Huang, E.; Yousef, A.E. The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl. Environ. Microbiol. 2014, 80, 2700–2704. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Clements, T.; Ndlovu, T.; Khan, S.; Khan, W. Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application. Appl. Microbiol. Biotechnol. 2019, 103, 589–602. [Google Scholar] [CrossRef]
- Thies, S.; Santiago-Schübel, B.; Kovačić, F.; Rosenau, F.; Hausmann, R.; Jaeger, K.E. Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J. Biotechnol. 2014, 181, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.C.; Hurwitz, J.; Horecker, B.L.; Ginsburg, A.; Olsen, C.W. Serratamolide, a metabolic product of Serratia. J. Am. Chem. Soc. 1961, 83, 4107–4108. [Google Scholar] [CrossRef]
- Ganley, J.G.; Carr, G.; Ioerger, T.R.; Sacchettini, J.C.; Clardy, J.; Derbyshire, E.R. Discovery of antimicrobial lipodepsipeptides produced by a Serratia sp. within mosquito microbiomes. ChemBioChem 2018, 19, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Kitani, S.; Yoshida, M.; Boonlucksanawong, O.; Panbangred, W.; Anuegoonpipat, A.; Kurosu, T.; Ikuta, K.; Igarashi, Y.; Nihira, T. Cystargamide B, a cyclic lipodepsipeptide with protease inhibitory activity from Streptomyces sp. J. Antibiot. 2018, 71, 662–666. [Google Scholar] [CrossRef]
- Kügler, J.H.; Le Roes-Hill, M.; Syldatk, C.; Hausmann, R. Surfactants tailored by the class Actinobacteria. Front. Microbiol. 2015, 6, 212. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Y.; Zhu, J.; Lu, Q.; Cryle, M.J.; Zhang, Y.; Yan, F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat. Prod. Rep. 2023, 40, 557–594. [Google Scholar] [CrossRef]
- Aftab, U.; Sajid, I. Antitumor peptides from Streptomyces sp. SSA 13, isolated from Arabian Sea. Int. J. Pept. Res. Ther. 2017, 23, 199–211. [Google Scholar] [CrossRef]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.; Thonart, P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef]
- García-Gutiérrez, L.; Zeriouh, H.; Romero, D.; Cubero, J.; de Vicente, A.; Pérez-García, A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb. Biotechnol. 2013, 6, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Cawoy, H.; Mariutto, M.; Henry, G.; Fisher, C.; Vasilyeva, N.; Thonart, P.; Dommes, J.; Ongena, M. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant Microbe Interact. 2014, 27, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Shiraishi, S.; Suzuki, S. Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett. Appl. Microbiol. 2015, 60, 379–386. [Google Scholar] [CrossRef]
- Debois, D.; Fernandez, O.; Franzil, L.; Jourdan, E.; de Brogniez, A.; Willems, L.; Clément, C.; Dorey, S.; De Pauw, E.; Ongena, M. Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ. Microbiol. Rep. 2015, 7, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shen, Q.; Zhang, R. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol. Plant Microbe Interact. 2018, 31, 560–567. [Google Scholar] [CrossRef]
- Rodríguez, J.; Tonelli, M.L.; Figueredo, M.S.; Ibáñez, F.; Fabra, A. The lipopeptide surfactin triggers induced systemic resistance and priming state responses in Arachis hypogaea L. Eur. J. Plant Pathol. 2018, 152, 845–851. [Google Scholar] [CrossRef]
- Hoff, G.; Arias, A.A.; Boubsi, F.; Pršić, J.; Meyer, T.; Ibrahim, H.M.M.; Steels, S.; Luzuriaga, P.; Legras, A.; Franzil, L.; et al. Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. mBio 2021, 12, e01774-21. [Google Scholar] [CrossRef]
- Stoll, A.; Salvatierra-Martínez, R.; González, M.; Araya, M. The role of surfactin production by Bacillus velezensis on colonization, biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea. Microorganisms 2021, 9, 2251. [Google Scholar] [CrossRef]
- Altrão, C.S.; Kaneko, M.; Shiina, S.; Kajikawa, A.; Shinohara, H.; Yokota, K. Insights on suppression of bacterial leaf spot by Bacillus cyclic lipopeptides via induced resistance in Arabidopsis thaliana. J. Gen. Plant Pathol. 2022, 88, 259–263. [Google Scholar] [CrossRef]
- Alleluya, V.K.; Arias, A.A.; Ribeiro, B.; De Coninck, B.; Helmus, C.; Delaplace, P.; Ongena, M. Bacillus lipopeptide-mediated biocontrol of peanut stem rot caused by Athelia rolfsii. Front. Plant Sci. 2023, 14, 1069971. [Google Scholar] [CrossRef]
- Zhou, L.; Song, C.; Muñoz, C.Y.; Kuipers, O.P. Bacillus cabrialesii BH5 protects tomato plants against Botrytis cinerea by production of specific antifungal compounds. Front. Microbiol. 2021, 12, 707609. [Google Scholar] [CrossRef]
- He, P.; Cui, W.; Munir, S.; He, P.; Huang, R.; Li, X.; Wu, Y.; Wang, Y.; Yang, J.; Tang, P.; et al. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation. J. Cell. Physiol. 2023, 239, e30991. [Google Scholar] [CrossRef]
- Park, K.; Park, Y.-S.; Ahamed, J.; Dutta, S.; Ryu, H.; Lee, S.-H.; Balaraju, K.; Manir, M.; Moon, S.-S.; Charles, M. Elicitation of induced systemic resistance of chili pepper by iturin A analogs derived from Bacillus vallismortis EXTN-1. Can. J. of Plant Sci. 2016, 96, 564–570. [Google Scholar] [CrossRef]
- Lam, V.B.; Meyer, T.; Arias, A.A.; Ongena, M.; Oni, F.E.; Höfte, M. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 2021, 9, 1441. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Ficke, A.; Asiimwe, T.; Höfte, M.; Raaijmakers, J.M. Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 2007, 175, 731–742. [Google Scholar] [CrossRef]
- Ma, Z.; Hoang Hua, G.K.H.; Ongena, M.; Höfte, M. Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ. Microbiol. Rep. 2016, 8, 896–904. [Google Scholar] [CrossRef]
- Ma, Z.; Ongena, M.; Höfte, M. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep. 2017, 36, 1731–1746. [Google Scholar] [CrossRef]
- Omoboye, O.O.; Oni, F.E.; Batool, H.; Yimer, H.Z.; De Mot, R.; Höfte, M. Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism. Front. Plant Sci. 2019, 10, 901. [Google Scholar] [CrossRef]
- Luo, C.; Zhou, H.; Zou, J.; Wang, X.; Zhang, R.; Xiang, Y.; Chen, Z. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol. 2015, 99, 1897–1910. [Google Scholar] [CrossRef]
- Khan, Q.; Huang, X.; He, Z.; Wang, H.; Chen, Y.; Xia, G.; Wang, Y.; Lang, F.; Zhang, Y. An insight into conflict and collaboration between plants and microorganisms. Chem. Biol. Technol. Agric. 2024, 11, 161. [Google Scholar] [CrossRef]
- Balleza, D.; Alessandrini, A.; Beltrán García, M.J. Role of lipid composition, physicochemical interactions, and membrane mechanics in the molecular actions of microbial cyclic lipopeptides. J. Membr. Biol. 2019, 252, 131–157. [Google Scholar] [CrossRef] [PubMed]
- Aranda, F.J.; Teruel, J.A.; Ortiz, A. Recent advances on the interaction of glycolipid and lipopeptide biosurfactants with model and biological membranes. Curr. Opin. Colloid Interface Sci. 2023, 68, 101748. [Google Scholar] [CrossRef]
- Nasir, M.N.; Besson, F. Interactions of the antifungal mycosubtilin with ergosterol-containing interfacial monolayers. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Deleu, M.; Paquot, M.; Nylander, T. Fengycin interaction with lipid monolayers at the air-aqueous interface—Implications for the effect of fengycin on biological membranes. J. Colloid Interface Sci. 2005, 283, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Gilliard, G.; Furlan, A.L.; Smeralda, W.; Pršić, J.; Deleu, M. Added value of biophysics to study lipid-driven biological processes: The case of surfactins, a class of natural amphiphile molecules. Int. J. Mol. Sci. 2022, 23, 13831. [Google Scholar] [CrossRef]
- Kawagoe, Y.; Shiraishi, S.; Kondo, H.; Yamamoto, S.; Aoki, Y.; Suzuki, S. Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem. Biophys. Res. Commun. 2015, 460, 1015–1020. [Google Scholar] [CrossRef]
- Henry, G.; Deleu, M.; Jourdan, E.; Thonart, P.; Ongena, M. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell. Microbiol. 2011, 13, 1824–1837. [Google Scholar] [CrossRef]
- Hamley, I.W. Lipopeptides: From self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. [Google Scholar] [CrossRef]
- Phelan, A.; Cobb, S.; Gimenez-Ibanez, D.; Murphy, C.D. Production of fluorinated fengycins in Bacillus spp. Access Microbiol. 2019, 1. [Google Scholar] [CrossRef]
- Gimenez, D.; Phelan, A.; Murphy, C.D.; Cobb, S.L. Fengycin A analogues with enhanced chemical stability and antifungal properties. Org. Lett. 2021, 23, 4672–4676. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, H.; Ding, T.; Xu, Q.; Chai, W.; Cheng, B. Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway. Mol. Plant Pathol. 2018, 19, 1612–1623. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, P.; Liu, Y.; Tabl, K.M.; Guo, M.; Zhang, J.; Wu, A.; Liao, Y.; Huang, T.; He, W. Iturin and fengycin lipopeptides inhibit pathogenic Fusarium by targeting multiple components of the cell membrane and their regulative effects in wheat. J. Integr. Plant Biol. 2025, 67, 2187–2197. [Google Scholar] [CrossRef]
- Farzand, A.; Moosa, A.; Zubair, M.; Khan, A.R.; Massawe, V.C.; Tahir, H.A.S.; Sheikh, T.M.M.; Ayaz, M.; Gao, X. Suppression of Sclerotinia sclerotiorum by the induction of systemic resistance and regulation of antioxidant pathways in tomato using fengycin produced by Bacillus amyloliquefaciens FZB42. Biomolecules 2019, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Pauwelyn, E.; Ongena, M.; Bleyaert, P.; Höfte, M. Both GacS-regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory. Res. Microbiol. 2024, 176, 104249. [Google Scholar] [CrossRef] [PubMed]
- Getzke, F.; Wang, L.; Chesneau, G.; Böhringer, N.; Mesny, F.; Denissen, N.; Wesseler, H.; Adisa, P.T.; Marner, M.; Schulze-Lefert, P.; et al. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat. Commun. 2024, 15, 4438. [Google Scholar] [CrossRef] [PubMed]
- Saiyam, D.; Dubey, A.; Malla, M.A.; Kumar, A. Lipopeptides from Bacillus: Unveiling biotechnological prospects—Sources, properties, and diverse applications. Braz. J. Microbiol. 2024, 55, 281–295. [Google Scholar] [CrossRef]
- Penha, R.O.; Vandenberghe, L.P.S.; Faulds, C.; Soccol, V.T.; Soccol, C.R. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: Recent studies and innovations. Planta 2020, 251, 70. [Google Scholar] [CrossRef]
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H.; et al. The surfactin-like lipopeptides from Bacillus spp.: Natural biodiversity and synthetic biology for a broader application range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef]
- Coutte, F.; Niehren, J.; Dhali, D.; John, M.; Versari, C.; Jacques, P. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol. J. 2015, 10, 1216–1234. [Google Scholar] [CrossRef]
- Dhali, D.; Coutte, F.; Arias, A.A.; Auger, S.; Bidnenko, V.; Chataigné, G.; Lalk, M.; Niehren, J.; de Sousa, J.; Versari, C.; et al. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol. J. 2017, 12, 1600574. [Google Scholar] [CrossRef]
- Guez, J.S.; Vassaux, A.; Larroche, C.; Jacques, P.; Coutte, F. New continuous process for the production of lipopeptide biosurfactants in foam overflowing bioreactor. Front. Bioeng. Biotechnol. 2021, 9, 678469. [Google Scholar] [CrossRef]
- Vassaux, A.; Rannou, M.; Peers, S.; Daboudet, T.; Jacques, P.; Coutte, F. Impact of the purification process on the spray-drying performances of the three families of lipopeptide biosurfactant produced by Bacillus subtilis. Front. Bioeng. Biotechnol. 2021, 9, 815337. [Google Scholar] [CrossRef]
CLPs | FA | AA | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
Surfactins | C12-C17 | Glu | Leu | Leu | Val | Asp | Leu | Leu | / | / | / | / | / | / | / | / | / | / | / |
Fengycins | C14-C18 | Glu | Orn | Tyr | aThr | Glu | Ala | Pro | Gln | Tyr | Ile | / | / | / | / | / | / | / | / |
Iturins | C14-C17 | Asn | Tyr | Asn | Gln | Pro | Asn | Ser | / | / | / | ||||||||
Bacillomycins | C14-C17 | Asn | Tyr | Asn | Pro | Glu | Ser | Thr | / | / | / | ||||||||
Massetolide A | C10 | Leu | Glu | aThr | aIle | Leu | Ser | Leu | Ser | Ile | / | / | / | / | / | / | / | / | / |
WLIP | C10 | Leu | Glu | aThr | Val | Leu | Ser | Leu | Ser | Ile | / | / | / | / | / | / | / | / | / |
Sessilin A | C8 | Dhb | Pro | Ser | Leu | Val | Gln | Leu | Val | Val | Gln | Leu | Val | Dhb | Thr | Ile | Hse | Dab | Lys |
Orfamide A | C14 | Leu | Glu | aThr | Ile | Leu | Ser | Leu | Leu | Ser | Val | / | / | / | / | / | / | / | / |
CLP Name | Strain Species | Plant | Pathogen | Method | Reference |
---|---|---|---|---|---|
Surfactin | Bacillus subtilis | Bean | Botrytis cinerea | Pure compound; mutants | [41] |
Surfactin | Bacillus subtilis | Tomato | Botrytis cinerea | Mutants | [41] |
Surfactin | Bacillus subtilis | Melon | Podosphaera fusca | Mutant; mutant and commercial C15 surfactin; commercial C15 surfactin | [42] |
Surfactin | Bacillus velezensis; Bacillus subtilis; Paenibacillus polymyxa | Tomato | Botrytis cinerea | Strains producing different amounts of surfactin | [43] |
Surfactin | / | Strawberry | Colletotrichum gloeosporioides | Pure compound | [44] |
Surfactin | Bacillus subtilis | Grapevine | Botrytis cinerea | Pure compound | [9] |
Surfactin | Bacillus velezensis | Arabidopsis | Botrytis cinerea | Pure compound | [45] |
Surfactin | Bacillus amyloliquefaciens SQR9 | Arabidopsis | Botrytis cinerea | Mutant | [46] |
Surfactin | Bacillus amyloliquefaciens SQR9 | Arabidopsis | Pseudomonas syringae | Mutant | [46] |
Surfactin | Bacillus subtilis | Peanut | Sclerotium rolfsii | Pure compound | [47] |
Surfactin | Bacillus velezensis | Tobacco | Botrytis cinerea | Pure compound | [48] |
Surfactin | / | Tomato | Botrytis cinerea | Commercial compound | [49] |
Surfactin | / | Arabidopsis | Pseudomonas syringae | Commercial compound | [50] |
Surfactin | / | Arabidopsis jar1-1 | Pseudomonas syringae | Commercial compound | [50] |
Surfactin | Bacillus subtilis | Peanut | Athelia rolfsii | Pure compound | [51] |
Fengycin | Bacillus subtilis | Tomato | Botrytis cinerea | Mutant | [41] |
Fengycin | Bacillus velezensis | Arabidopsis | Pseudomonas syringae | Mutant | [46] |
Fengycin H | Bacillus cabrialesii | Tomato | Botrytis cinerea | Pure compound | [52] |
Fengycin | Bacillus subtilis | Chinese cabbage | Plasmodiophora brassicae | Mutant | [53] |
Iturin A | / | Strawberry | Colletotrichum gloeosporioides | Commercial compound | [44] |
Iturin A | Bacillus vallismortis | Chili pepper | Phytophthora capsici | Pure compound | [54] |
Bacillomycin D | Bacillus velezensis | Arabidopsis | Pseudomonas syringae | Mutant | [46] |
Bacillomycin D | Bacillus velezensis | Arabidopsis | Botrytis cinerea | Mutant | [46] |
Iturin A | Bacillus subtilis | Arabidopsis | Pseudomonas syringae | Pure compound | [50] |
Iturin A | Bacillus subtilis | Arabidopsis jar1-1 | Pseudomonas syringae | Pure compound | [50] |
Surfactin and fengycin | Bacillus subtilis | Bean | Botrytis cinerea | Mutant | [41] |
Fengycin and iturin | Bacillus velezensis | Rice | Pyricularia oryzae | Mutants | [55] |
Surfactin, fengycin, and iturin | Bacillus velezensis | Rice | Pyricularia oryzae | Mutants | [55] |
Massetolide A | Pseudomonas fluorescens | Tomato | Phytophthora infestans | Mutant; pure compound | [56] |
Sessilin | Pseudomonas sessilinigenes | Bean | Rhizoctonia solani | Mutants; pure compound | [57] |
Orfamide | Pseudomonas sessilinigenes | Bean | Rhizoctonia solani | Mutants; pure compound | [57] |
Orfamide | Pseudomonas protegens | Rice | Cochliobolus miyabeanus | Pure compound; mutant | [58] |
WLIP | Pseudomonas putida | Rice | Magnaporthe oryzae | Mutants | [59] |
Sessilin and orfamide | Pseudomonas sessilinigenes | Bean | Rhizoctonia solani | Mutants | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, N.; Dong, H.; Ongena, M. Bacterial Cyclic Lipopeptides as Triggers of Plant Immunity and Systemic Resistance Against Pathogens. Plants 2025, 14, 2644. https://doi.org/10.3390/plants14172644
Ding N, Dong H, Ongena M. Bacterial Cyclic Lipopeptides as Triggers of Plant Immunity and Systemic Resistance Against Pathogens. Plants. 2025; 14(17):2644. https://doi.org/10.3390/plants14172644
Chicago/Turabian StyleDing, Ning, Hansong Dong, and Marc Ongena. 2025. "Bacterial Cyclic Lipopeptides as Triggers of Plant Immunity and Systemic Resistance Against Pathogens" Plants 14, no. 17: 2644. https://doi.org/10.3390/plants14172644
APA StyleDing, N., Dong, H., & Ongena, M. (2025). Bacterial Cyclic Lipopeptides as Triggers of Plant Immunity and Systemic Resistance Against Pathogens. Plants, 14(17), 2644. https://doi.org/10.3390/plants14172644