Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower
Abstract
1. Introduction
2. Results
2.1. Transmission Electron Microscopy (TEM) Analyses
2.2. Evaluation of the Germination Capacity of Sunflower Seeds
2.3. Evaluation of Stem Length and Root Length of Sunflower Seedlings
2.4. Seedling Color
2.5. Antioxidative Potential
3. Discussion
3.1. Effect of PEF and NPs on Germination and Morphological Growth
3.2. Color Properties and Contents of Pigments
3.3. Antioxidative Potential and Possible Molecular Mechanisms
4. Materials and Methods
4.1. Material
4.2. Silver and Copper Nanoparticles
4.3. Sample Imaging via Transmission Electron Microscopy
4.4. Preparation of Seeds for Analyses
4.5. Drying Method
4.6. Color Measurement
4.7. Antiradical Activity
4.8. The Content of Total Carotenoids and Chlorophylls
4.9. FRAP Analysis
4.10. Polyphenols
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da Rocha-Filho, P.A.; Maruno, M.; Ferrari, M.T.; Jose, F. Liquid crystal formation from sunflower oil: Long term stability studies. Molecules 2016, 1, 680. [Google Scholar] [CrossRef]
- Yegorov, B.; Turpurova, T.; Sharabaeva, E.; Bondar, Y. Prospects of Using By-products of Sunflower Oil Production in Compound Feed Industry. Food Sci. Technol. 2019, 13, 106–113. [Google Scholar] [CrossRef]
- Bashir, T.; Mashwani, Z.-u.-R.; Zahara, K.; Haider, S.; Mudrikah, S.T. Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): A review. Pure Appl. Biol. 2015, 4, 226–235. [Google Scholar] [CrossRef]
- Jiraungkoorskul, W. Review of nutraceutical uses of an antioxidant sunflower sprout, Helianthus annuus. Asian J. Pharm. Clin. Res. 2016, 9, 21–23. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Jom Kriskamol, N. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Cent. J. 2017, 11, 95. [Google Scholar] [CrossRef]
- Marton, M.-R.; Mandoki, Z.; Csapo-Kiss, Z.; Csapo, J. The role of sprouts inhuman nutrition. Acta Univ. Sapientiae Aliment. 2010, 3, 81–117. [Google Scholar]
- Villaluenga, C.M.; Penas, E.; Ciska, E.; Piskula, M.K.; Kozlowska, H.; Valverde Concepcion, V.-V.; Frias, J. Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chem. 2010, 120, 710–716. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Galkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef]
- Burch, T.A.; Delouche, J.C. Absorption of water by seeds. In Proceedings of the Association of Official Seed Analysts; Association of Official Seed Analysts and the Society of Commercial Seed Technologists (SCST): Moline, IL, USA, 1959; Volume 49, pp. 142–150. [Google Scholar]
- Simon, E.W. CHAPTER 3—Early Events in Germination. In Germination and Reserve Mobilization; Murray, D.R., Ed.; Academic Press: Cambridge, MA, USA, 1984; pp. 77–115. [Google Scholar] [CrossRef]
- Bagarinao, N.C.; King, J.; Leong, S.Y.; Agyei, D.; Sutton, K.; Oey, I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods 2024, 13, 1598. [Google Scholar] [CrossRef]
- Casals, B.A.; Zevallos, L.C. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Oey, I.; Giteru, L.; Sthepen, S.Y. Methods and Protocols for Pulsed Electric Fields Treatment of Foods. In Emerging Food Processing Technologies; Gavahian, M., Ed.; Springer: New York, NY, USA, 2022; pp. 1–29. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Engine Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Dymek, K.; Dejmek, P.; Galindo, F.G. Influence of Pulsed Electric Field Protocols on the Reversible Permeabilization of Rucola Leaves. Food Bioprocess Technol. 2014, 7, 761–773. [Google Scholar] [CrossRef]
- Gürsul, I.; Gueven, A.; Grohmann, A.; Knorr, D. Pulsed electric fields on phenylalanine ammonia lyase activity of tomato cell culture. J. Food Engine 2016, 188, 66–76. [Google Scholar] [CrossRef]
- Peña, C.; Civit, B.; Gallego-Schmid, A.; Druckman, A.; Caldeira-Pires, A.; Weidema, B.; Mieras, E.; Wang, F.; Fava, J.; Canals, L.M.i.; et al. Using life cycle assessment to achieve a circular economy. Int. J. Life Cycle Assess. 2021, 26, 215–220. [Google Scholar] [CrossRef]
- Boussetta, N.; Grimi, N.; Vorobiev, E. Pulsed electrical technologies assisted polyphenols extraction from agricultural plants and bioresources: A review. Int. J. Food Process. Technol. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Bakhshabadi, H.; Mirzaei, H.O.; Ghodsvali, A.J.; Seim, M.; Ziaiifar, A.M. The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed. Food Sci. Nutr. 2018, 6, 111–118. [Google Scholar] [CrossRef]
- Dannehl, D. Effects of electricity on plant responses. Sci. Hortic. 2018, 234, 382–392. [Google Scholar] [CrossRef]
- Shelar, A.; Nile, S.H.; Singh, A.V.; Rothenstein, D.; Bill, J.; Xiao, J.; Patil, R. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: Challenges, risk assessment, and future perspectives. Nano-Micro Lett. 2023, 15, 54. [Google Scholar] [CrossRef]
- Du, W.; Tan, W.; Yin, Y.; Rong, J.; Guo, H.; Gardeatorresday, J.L. Differential Effects of Copper Nanoparticles/Microparticles in Agronomic and Physiological Parameters of Oregano (Origanum vulgare). Sci. Total Environ. 2018, 618, 306–312. [Google Scholar] [CrossRef]
- Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 2016, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Sarkar, J. Green synthesis of copper/copper oxide nano-particles and their applications: A review. Green Chem. Lett. Rev. 2022, 15, 187–215. [Google Scholar] [CrossRef]
- Kachel, M.; Stryjecka, M.; Ślusarczyk, L.; Matwijczuk, A.; Budziak-Wieczorek, I.; Gładyszewski, G. Impact of Metal Nanoparticles on the Phytochemical and Antioxidative Properties of Rapeseed Oil. Materials 2023, 16, 694. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef]
- Feigl, G. The impact of copper oxide nanoparticles on plant growth: A comprehensive review. J. Plant Interact. 2023, 18, 2243098. [Google Scholar] [CrossRef]
- Setty, J.; Samant, S.B.; Yadav, M.K.; Manjubala, M.; Pandurangam, V. Beneficial Effects of Bio-Fabricated Selenium Nanoparticles as Seed Nanopriming Agent on Seed Germination in Rice (Oryza sativa L.). Sci. Rep. 2023, 13, 22349. [Google Scholar] [CrossRef]
- Devika, S.O.; Singh, S.; Sarkar, B.; Deepranjan, S.; Prabhakar, S.; Jarupula, S.; Rakshit, A. Seed Priming: A Potential Supplement in Integrated Resource Management Under Fragile Intensive Ecosystems. Front. Sustain. Food Syst. 2021, 5, 654001. [Google Scholar] [CrossRef]
- Sencan, A.; Kilic, S.; Kaya, H. Stimulating Effect of Biogenic Nanoparticles on the Germination of Basil (Ocimum basilicum L.) Seeds. Sci. Rep. 2024, 14, 1715. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, H.; Kong, L.; Li, L.; Wang, R.; Shen, W. A novel mechanism underlying multi-walled carbon nanotube-triggered tomato lateral root formation: The involvement of nitric oxide. Nanoscale Res. Lett. 2020, 15, 2–10. [Google Scholar] [CrossRef]
- Mahendran, D.; Geetha, N.; Venkatachalam, P. Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. In In Vitro Plant Breeding Towards Novel Agronomic Traits; Springer: Singapore, 2019; pp. 59–74. [Google Scholar] [CrossRef]
- Prażak, R.; Święciło, A.; Krzepiłko, A.; Michałek, S.; Arczewska, M. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture 2020, 10, 312. [Google Scholar] [CrossRef]
- Vu, N.Q.H.H.; Hong, T.K.; Quang, H.T. Effects of different treatments of silver nanoparticles (AgNPs) on the growth & physiological characteristics of lotus (Nelumbo nucifera). IOP Conf. Ser. Environ. Earth Sci. 2021, 947, 012038. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Salama, D.M.; Morsi, S.M.M.; Youssef, A.M.; El-Sakhawy, M. Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev. Chem. Eng. 2022, 38, 603–616. [Google Scholar] [CrossRef]
- Azhar, W.; Khan, A.R.; Salam, A.; Ulhassan, Z.; Qi, J.; Shah, G.; Gan, Y. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environ. Sci. Pollut. Res. 2023, 30, 26137–26149. [Google Scholar] [CrossRef]
- Arnott, A.; Galagedara, L.; Thomas, R.; Cheema, M.; Sobze, J.-M. The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: A review. Sci. Total Environ. 2021, 775, 145139. [Google Scholar] [CrossRef]
- Khinaa, A.G.; Lisichkina, G.V.; Krutyakov, Y.A. Effect of Silver Nanoparticles on the Physiology of Higher Plants. Russ. J. Plant Physiol. 2024, 71, 169. [Google Scholar] [CrossRef]
- Faraz, A.; Farizan, M.; Rajput, V.D.; Minkina, T.; Hayat, S.; Faisal, M.; Alatar, A.A.; Abdel-Salam, E.A. Cuo nanoparticle-mediated seed priming improves physio- biochemical and enzymatic activities of Brassica juncea. Plants 2023, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko, P.; Milošić, A.; Domijan, A.M.; Vinković Vrček, I.; Tolić, S.; Peharec Štefanić, P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 18. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.R.R.; Corrêa, T.Z.; Bruni, A.T.; da Veiga, M.A.M.S. The effects of solubility of silver nanoparticles, accumulation, and toxicity to the aquatic plant Lemna minor. Environ. Sci. Pollut. Res. 2021, 28, 16720. [Google Scholar] [CrossRef]
- Spielman-Sun, E.; Avellan, A.; Bland, G.; Tappero, R.; Acerbo, A.; Unrine, J.; Giraldo, J.; Lowry, G. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ. Sci. Nano 2019, 6, 2508. [Google Scholar] [CrossRef]
- Pandey, C.; Khan, E.; Mishra, A.; Sardar, M.; Gupta, M. Silver nanoparticles and its effect on seed germination and physiology in Brassica Juncea L. (Indian mustard) plant. Adv. Sci. Lett. 2014, 20, 1673–1676. [Google Scholar] [CrossRef]
- Hojjat, S.S.; Kamyab, M. The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Russ. Agric. Sci. 2017, 43, 61–65. [Google Scholar] [CrossRef]
- Sable, S.V.; Ranade, S.; Joshi, S. Role of AgNPs in the enhancement of seed germination and its effect on plumule and radicle length of Pennisetum glaucum. IET Nanobiotechnology 2018, 12, 922–926. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Khan, S.R.; Ikram, M.; Islam, N.U. The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Arshad, M.; Satti, S.H. Effect of green synthesized silver nanoparticles on seed germination and seedling growth in wheat Int. J. Agric. Biosyst. Eng. 2018, 12, 14–16. [Google Scholar]
- Shams, M.; Yildirim, E.; Agar, G.; Ercisli, S.; Dursun, A.; Ekinci, M.; Kul, R. Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Not. Bot. Horti Agrobot. 2018, 46, 167–172. [Google Scholar] [CrossRef]
- Hong, J.; Rico, C.M.; Zhao, L.; Adeleye, A.S.; Keller, A.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ. Sci. Process. Impacts 2015, 17, 177–185. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; McLean, J.E.; Latta, D.E.; Manangón, E.; Britt, D.W.; Johnson, W.P. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanoparticle Res. 2012, 14, 1125. [Google Scholar] [CrossRef]
- Lee, W.M.; An, Y.J.; Yoon, H.; Kweon, H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mungbean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxic. Chem. 2008, 27, 1915–1921. [Google Scholar] [CrossRef]
- Zafar, H.; Ali, A.; Zia, M. CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. App. Biochem. Biotech. 2017, 181, 365–378. [Google Scholar] [CrossRef]
- Sakouhi, L.; El, F.E. Efects of excess copper on sunflower seedling growth, mineral nutrition, and cellular redox state. Euro-Mediterr. J. Environ. Integr. 2022, 7, 583–591. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Ren, Y.; Zhang, L.; Xue, Y.; Zhang, L.; He, J. Phytotoxicity assessment of copper oxide nanoparticles on the germination, early seedling growth, and physiological responses in Oryza sativa L. Bull. Environ. Contam. Toxicol. 2020, 104, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Xu, C.; Liu, Q.; Sun, L.; Luo, Y.; Shi, J. Fate and transformation of CuO nanoparticles in the soil–rice system during the life cycle of rice plants. Environ. Sci. Technol. 2017, 51, 4907–4917. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, J.; Dou, R.; Gao, X.; Mao, C.; Wang, L. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Public Health 2015, 12, 15100–15109. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Medina-Velo, I.A.; Barrios, A.C.; Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ. Sci. Process. Impacts 2015, 17, 1783–1793. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.-P. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Alvarez-Parilla, E.; de la Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant activity of Fresh and Processed jalapeño and serrano Peppers. J. Agric. Food Chem. 2011, 59, 163. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Song, Y. Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon 2018, 136, 94–102. [Google Scholar] [CrossRef]
- Tighe-Neira, R.; Carmora, E.; Recio, G. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiol. Biochem. 2018, 130, 408–417. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Fedorenco, A. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci. Total Environ. 2018, 645, 1103–1113. [Google Scholar] [CrossRef]
- Ahmed, B.; Khan, M.S.; Musarrat, J. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum licopersicon): A study on growth dynamics and plants cell death. Environ. Pollut. 2018, 240, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Deng, C.; Wang, Y. Interaction of nanoparticles in secondary metabolites accumulation, photosynthesis, and nitrogen fixation in plant system. Compr. Anal. Chem. 2019, 84, 55–74. [Google Scholar]
- Pointner, T.; Rauh, K.; Auñon-Lopez, A.; Veličkovska, S.K.; Mitrev, S.; Arsov, E.; Pignitter, M. Comprehensive analysis of oxidative stability and nutritional values of germinated linseed and sunflower seed oil. Food Chem. 2024, 454, 139790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Sun, P.; Su, W.; Qu, Z.; Dong, Y.; Du, S.; Yu, X. Effect of germination pretreatment on the physicochemical properties and lipid concomitants of flaxseed oil. RSC Adv. 2023, 13, 3306–3316. [Google Scholar] [CrossRef]
- Weisz, G.M.; Kammerer, D.R.; Carle, R. Identification and quantification of phenolic compounds from sunfower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem. 2009, 11, 758–765. [Google Scholar] [CrossRef]
- Fisk, I.D.; White, D.A.; Carvalho, A.; Gray, D.A. Tocopherol—An intrinsic component of sunflower seed oil bodies. J. Am. Oil Chem. Soc. 2006, 83, 341–344. [Google Scholar] [CrossRef]
- Paśko, P.; Barton, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Mohammadi, A.; Keyhani, A.; Rafiee, S.; Emam-Djomeh, Z. Kinetic Models for Colour Changes in Kiwifruit Slices During Hot Air Drying. World J. Agric. Sci. 2008, 4, 376–383. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phospho-molybdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
Sample | PEF Energy Unit | Germination Capacity | Stem Length | Root Length |
---|---|---|---|---|
mm | ||||
crude control | kJ kg−1 | 91.00 ± 0.01 a | 70.00 ± 1.12 a | 59.00 ± 1.50 a |
control-1 | 91.70 ± 0.58 aa | 70.70 ± 1.15 aa | 60.30 ± 1.53 ab | |
control-5.5 | 94.30 ± 1.15 ab | 57.70 ± 1.53 ab | 76.30 ± 1.52 ab | |
Cu25-1 | 96.30 ± 0.58 bb | 52.30 ± 2.08 bb | 61.00 ± 1.73 ab | |
Cu50-1 | 89.70 ± 1.53 bb | 45.70 ± 1.15 bb | 59.00 ± 0.90 ba | |
Cu25-5.5 | 71.70 ± 0.59 bb | 61.70 ± 1.53 bb | 45.00 ± 1.60 bb | |
Cu50-5.5 | 91.00 ± 1.00 ba | 60.30 ± 1.58 bb | 76.70 ± 1.53 ab | |
Ag25-1 | 96.30 ± 1.53 bb | 86.70 ± 1.53 bb | 80.70 ± 2.08 bb | |
Ag50-1 | 93.30 ± 2.52 bb | 78.70 ± 1.50 bb | 79.70 ± 1.53 bb | |
Ag25-5.5 | 52.70 ± 0.58 ab | 37.70 ± 1.53 bb | 70.70 ± 2.09 bb | |
Ag50-5.5 | 90.70 ± 1.15 ba | 84.70 ± 1.48 bb | 79.70 ± 1.54 bb |
Sample | PEF Energy Unit | L | a | b | C | h |
---|---|---|---|---|---|---|
crude control | kJ kg−1 | 50.15 ± 0.39 a | −1.28 ± 0.63 a | 21.48 ± 0.44 a | 21.52 ± 0.48 a | 86.63 ± 1.6 a |
control 1 | 48.78 ± 0.31 ab | −2.11 ± 0.19 aa | 25.83 ± 0.55 ab | 25.92 ± 0.55 ab | 85.34 ± 0.41 ab | |
control 5.5 | 53.8 ± 0.37 ab | −1.88 ± 0.40 aa | 25.22 ± 0.14 ab | 25.29 ± 0.17 ab | 85.74 ± 0.88 aa | |
Cu25-1 | 47.70 ± 0.17 bc | −3.38 ± 0.18 bc | 24.76 ± 0.28 bb | 24.99 ± 0.28 ab | 82.22 ± 0.42 bc | |
Cu50-1 | 52.82 ± 0.14 bc | −2.94 ± 0.30 bb | 25.52 ± 0.33 bc | 25.69 ± 0.34 ab | 83.44 ± 0.65 bc | |
Cu25-5.5 | 44.68 ± 0.25 bc | −4.25 ± 0.23 bc | 27.34 ± 0.27 bc | 27.67 ± 0.30 bb | 81.18 ± 0.41 bb | |
Cu50-5.5 | 51.16 ± 0.25 bc | −1.74 ± 0.32 aa | 22.31 ± 0.32 ba | 22.38 ± 0.33 bb | 85.55 ± 0.81 ab | |
AG25-1 | 53.21 ± 0.3 bc | −1.74 ± 0.37 aa | 22.73 ± 0.54 ba | 22.8 ± 0.56 ba | 85.63 ± 0.84 aa | |
Ag50-1 | 48.00 ± 0.42 ab | −1.44 ± 0.24 aa | 22.97 ± 0.24 ba | 23.01 ± 0.25 ab | 86.42 ± 0.57 ba | |
Ag25-5.5 | 53.29 ± 0.48 ab | −3.96 ± 0.14 bc | 27.56 ± 0.36 bb | 27.85 ± 0.35 bc | 81.82 ± 0.33 bc | |
Ag50-5.5 | 55.09 ± 0.32 ab | −1.59 ± 0.51 ab | 23.72 ± 0.38 bb | 23.78 ± 0.40 bc | 86.19 ± 1.18 ab |
Sample | PEF Energy Unit | Chlorophyll a | Chlorophyll b | ∑ Carotenoids |
---|---|---|---|---|
(mg 100 g−1 DM) | ||||
crude control | kJ kg−1 | 36.4 ± 0.46 a | 19.2 ± 0.15 a | 34.6 ± 0.29 a |
control-1 | 36.7 ± 0.24 aa | 18.5 ± 0.11 aa | 34.1 ± 0.42 aa | |
control-5.5 | 36.8 ± 0.61 aa | 17.8 ± 0.13 ab | 35.3 ± 0.28 ab | |
Cu25-1 | 38.4 ± 0.4 bb | 17.9 ± 0.09 ab | 36.6 ± 0.29 ab | |
Cu50-1 | 38.4 ± 0.47 bb | 19.8 ± 0.08 ba | 36.2 ± 0.39 ab | |
Cu25-5.5 | 38.7 ± 0.43 bb | 16.4 ± 0.11 bc | 37.0 ± 0.53 bc | |
Cu50-5.5 | 38.3 ± 0.38 bb | 20.6 ± 0.11 bc | 36.3 ± 0.36 bb | |
AG25-1 | 38.2 ± 0.41 bc | 21.3 ± 0.05 b | 37.5 ± 0.36 bb | |
Ag50-1 | 38.9 ± 0.33 bc | 20.7 ± 0.15 bb | 37.7 ± 0.49 bc | |
Ag25-5.5 | 40.2 ± 0.15 bc | 22.8 ± 0.11 bb | 38.3 ± 0.29 cb | |
Ag50-5.5 | 41.6 ± 0.22 bc | 22.2 ± 0.05 bc | 39.4 ± 0.20 cb |
Sample | PEF Energy Unit | FRAP | Polyphenols | TPC | ABTS | DPPH |
---|---|---|---|---|---|---|
[mg TE g−1 DM] | [mgGAE g−1 DW] | [μmol Trolox g−1 DW] | ||||
crude control | kJ kg−1 | 10.20 ± 0.03 a | 42.23 ± 0.06 a | 21.10 ± 0.22 a | 78.20 ± 0.70 a | 46.70 ± 0.09 a |
control-1 | 11.08 ± 0.04 aa | 43.59 ± 0.04 ab | 20.20 ± 0.13 aa | 79.60 ± 0.93 aa | 46.10 ± 0.25 aa | |
control-5.5 | 10.91 ± 0.03 aa | 44.27 ± 0.04 ab | 20.70 ± 0.31 aa | 80.60 ± 0.28 ab | 48.30 ± 0.31 ab | |
Cu25-1 | 12.85 ± 0.02 bc | 48.67 ± 0.09 bc | 21.60 ± 0.14 ab | 82.20 ± 0.54 bc | 48.80 ± 0.29 bc | |
Cu50-1 | 12.18 ± 0.04 bc | 48.35 ± 0.02 bc | 21.70 ± 0.16 ba | 81.50 ± 0.65 bc | 48.40 ± 0.32 bc | |
Cu25-5.5 | 12.95 ± 0.03 bc | 49.19 ± 0.04 bc | 22.60 ± 0.11 bc | 80.00 ± 0.23 ab | 49.80 ± 0.32 bc | |
Cu50-5.5 | 12.34 ± 0.03 bc | 48.88 ± 0.05 bc | 21.50 ± 0.24 ba | 82.70 ± 0.23 bc | 49.30 ± 0.16 bb | |
AG25-1 | 12.18 ± 0.04 bc | 45.53 ± 0.04 bc | 20.80 ± 0.05 aa | 80.60 ± 0.47 ab | 50.40 ± 0.11 bc | |
Ag50-1 | 12.05 ± 0.03 ac | 45.31 ± 0.03 bc | 22.70 ± 0.28 bc | 82.60 ± 0.63 bc | 48.90 ± 0.21 bc | |
Ag25-5.5 | 11.53 ± 0.05 ab | 47.96 ± 0.02 bc | 22.90 ± 0.21 bc | 84.70 ± 0.32 bc | 51.40 ± 0.30 bc | |
Ag50-5.5 | 11.31 ± 0.02 ab | 46.19 ± 0.08 bc | 23.90 ± 0.13 bc | 82.00 ± 0.38 bc | 51.20 ± 0.29 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachel-Górecka, M.; Sokal, K.; Stryjecka, M. Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower. Plants 2025, 14, 2512. https://doi.org/10.3390/plants14162512
Kachel-Górecka M, Sokal K, Stryjecka M. Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower. Plants. 2025; 14(16):2512. https://doi.org/10.3390/plants14162512
Chicago/Turabian StyleKachel-Górecka, Magdalena, Karolina Sokal, and Małgorzata Stryjecka. 2025. "Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower" Plants 14, no. 16: 2512. https://doi.org/10.3390/plants14162512
APA StyleKachel-Górecka, M., Sokal, K., & Stryjecka, M. (2025). Effect of Nanometals and Pulsed Electric Field (PEF) on the Germination Capacity of Seeds and Antioxidative Properties of Seedlings of Sunflower. Plants, 14(16), 2512. https://doi.org/10.3390/plants14162512