Identification of Quantitative Trait Loci for Grain Quality Traits in a Pamyati Azieva × Paragon Bread Wheat Mapping Population Grown in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Evaluation of Variation in Studied Traits in MP
2.3. Genotyping of the Mapping Population, QTL Analysis, and Statistics
3. Results
3.1. Phenotypic Variations of Quality Traits
3.2. QTL Mapping of Quality Traits in Northern and Southeastern Regions
4. Discussion
4.1. Phenotypic Variability of and Environmental Influence on 94 RILs in the Pamyati Azieva × Paragon Mapping Population
4.2. Identification and Stability of QTLs for Grain Quality Traits
4.3. Functional Annotation and Potential Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.G.; Si, J.S.; Zhang, B.; Feng, B.; Wang, F.H. Environmental modification of wheat grain protein accumulation and associated processing quality: A case study of China. Austr. J. Crop Sci. 2013, 7, 173–181. [Google Scholar]
- Amiri, R.; Sasani, S.; Jalali-Honarmand, S.; Rasaei, A.; Seifolahpour, B.; Bahraminejad, S. Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits. Physiol. Mol. Biol. Plants 2018, 24, 147–157. [Google Scholar] [CrossRef]
- Subedi, M.; Ghimire, B.; Bagwell, J.W.; Buck, J.W.; Mergoum, M. Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities. Front. Genet. 2023, 13, 1032601. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Xu, Y.; Li, Y.; Li, X. QTL mapping and genomic selection for wheat quality traits. BMC Plant Biol. 2020, 20, 150. [Google Scholar]
- Genievskaya, Y.; Turuspekov, Y.; Rsaliyev, A.; Abugalieva, S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ 2020, 8, e9820. [Google Scholar] [CrossRef]
- Amalova, A.; Griffiths, S.; Abugalieva, S.; Turuspekov, Y. Genome-wide association study of yield-related traits in a nested association mapping population grown in Kazakhstan. Agronomy 2024, 14, 1848. [Google Scholar] [CrossRef]
- Gao, L.; Wang, S.; Jiang, W.; Zhang, X. Advances in understanding the genetic basis of wheat quality traits. Front. Plant Sci. 2019, 10, 1120. [Google Scholar]
- Richard, R.; Lovegrove, A.; Tosi, P.; Casebow, R.; Poole, M.; Wingen, L.U.; Griffiths, S.; Shewry, P.R. Genetic analysis of grain protein content and deviation in wheat. J. Cereal Sci. 2025, 121, 104099. [Google Scholar] [CrossRef]
- Chope, G.; Wan, Y.; Penson, S.; Bhandari, D.; Powers, S.; Shewry, P.; Hawkesford, M.J. Effects of genotype, season, and nitrogen nutrition on gene expression and protein accumulation in wheat grain. J. Agric. Food Chem. 2014, 62, 4399–4407. [Google Scholar] [CrossRef]
- Fatiukha, A.; Lupo, I.; Lidzbarsky, G.; Klymiuk, V.; Korol, A.B.; Pozniak, C.; Fahima, T.; Krugman, T. Grain protein content QTLs identified in a Durum × Wild emmer wheat mapping population tested in five environments. Theor. Appl. Genet. 2020, 133, 119–131. [Google Scholar] [CrossRef]
- Kartseva, T.; Alqudah, A.M.; Aleksandrov, V.; Alomari, D.Z.; Doneva, D.; Arif, M.A.R.; Börner, A.; Misheva, S. Nutritional Genomic Approach for Improving Grain Protein Content in Wheat. Foods 2023, 12, 1399. [Google Scholar] [CrossRef]
- Simons, K.; Anderson, J.A.; Mergoum, M.; Faris, J.D.; Klindworth, D.L.; Xu, S.S.; Sneller, C.; Ohm, J.B.; Hareland, G.A.; Edwards, M.C.; et al. Genetic mapping analysis of bread-making quality traits in spring wheat. Crop Sci. 2012, 52, 2182–2197. [Google Scholar] [CrossRef]
- Kumar, A.; Jain, S.; Elias, E.M.; Ibrahim, M.; Sharma, L.K. An overview of QTL identification and marker-assisted selection for grain protein content in wheat. In Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity; Sengar, R.S., Singh, A., Eds.; Springer: Singapore, 2018; pp. 254–274. [Google Scholar] [CrossRef]
- Uauy, C.; Distelfeld, A.; Fahima, T.; Blechl, A.; Dudcovsky, J. A NAC gene regulation senescence improves grain protein, zinc, and iron content in wheat. Science 2006, 314, 1298–1301. [Google Scholar] [CrossRef]
- Gao, Y.; An, K.; Guo, W.; Chen, Y.; Zhang, R.; Zhang, X.; Chang, S.; Rossi, V.; Jin, F.; Cao, X.; et al. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 2021, 33, 603–622. [Google Scholar] [CrossRef]
- Distelfeld, A.; Korol, A.; Dubcovsky, J.; Uauy, C.; Blake, T.; Fahima, T. Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol. Breed. 2008, 22, 25–38. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhao, Y.; Yu, Z.; Zeng, J.; Xu, D.; Dong, J.; Ma, W. Wheat quality formation and its regulatory mechanism. Front. Plant Sci. 2022, 13, 834654. [Google Scholar] [CrossRef]
- Metakovsky, E.; Annicchiarico, P.; Boggini, G.; Pogna, N. Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J. Cereal Sci. 1997, 25, 229–236. [Google Scholar] [CrossRef]
- Helguera, M.; Abugalieva, A.; Battenfield, S.; Békés, F.; Branlard, G.; Cuniberti, M.; Hüsken, A.; Johansson, E.; Morris, C.; Nurit, E.; et al. Grain Quality in Breeding. In Wheat Quality for Improving Processing and Human Health; Igrejas, G., Ikeda, T., Guzmán, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 273–307. [Google Scholar] [CrossRef]
- Liu, L.; He, Z.; Yan, J.; Zhang, Y.; Xia, X.; Pena, R.J. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B. 1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica 2005, 142, 197–204. [Google Scholar] [CrossRef]
- Liang, D.; Tang, J.; Pena, R.J.; Singh, R.; He, X.; Shen, X.; Yao, D.; Xia, X.; He, Z. Characterization of CIMMYT bread wheats for high-and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 2010, 172, 235–250. [Google Scholar] [CrossRef]
- Payne, P.I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu. Rev. Plant Physiol. 1987, 38, 141–153. [Google Scholar] [CrossRef]
- Xu, J.; Bietz, J.A.; Carriere, C.J. Viscoelastic properties of wheat gliadin and glutenin suspensions. Food Chem. 2007, 101, 1025–1030. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Xiang, Z.; Zhang, D.; Yang, H. Comparison and Classification of LMW-GS Genes at Glu-3 Loci of Common Wheat. Genes 2025, 16, 90. [Google Scholar] [CrossRef]
- Ram, S. High molecular weight glutenin subunit composition of Indian wheats and their relationships with dough strength. J. Plant Biochem. Biotechnol. 2003, 12, 151–155. [Google Scholar] [CrossRef]
- Edwards, N.M.; Gianibelli, M.C.; Mccaig, T.N.; Clarke, J.M.; Ames, N.P.; Larroque, O.R.; Dexter, J.E. Relationships between dough strength, polymeric protein quantity and composition for diverse durum wheat genotypes. J. Cereal Sci. 2007, 45, 140–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; He, Z.; Ye, G. Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica 2005, 143, 209–222. [Google Scholar] [CrossRef]
- Cornish, G.B.; Bekes, F.; Allen, H.; Martin, D. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Res. 2001, 52, 1339–1348. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Mason, A.S.; Chen, L.; Liu, C.; Qin, M.; Li, W.; Tian, B.; Wu, Z.; Lei, Z.; et al. Quantitative traits loci mapping and molecular marker development for total glutenin and glutenin fraction contents in wheat. BMC Plant Biol. 2021, 21, 455. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Morita, N. Waxy and high-amylose wheat starches and flours-characteristics, functionality and application. Trends Food Sci. Technol. 2006, 17, 448–456. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Brassac, J.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Argillier, O.; Stiewe, G.; Plieske, J.; Ganal, M.W. Order MProspects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci. Rep. 2020, 10, 12541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, W.; Qi, J.; Shi, P.; Yin, Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. J. Food Sci. Technol. 2014, 51, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Deng, Z.; Xie, Q.; Tian, J. Genetic dissection of the developmental behaviour of total starch content and its components in wheat grain. Crop Pasture Sci. 2015, 66, 445–455. [Google Scholar] [CrossRef]
- Howard, T.; Rejab, N.A.; Griffiths, S.; Leigh, F.; Leverington-Waite, M.; Simmonds, J.; Uauy, C.; Trafford, K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 2021, 62, 2217–2228. [Google Scholar] [CrossRef]
- Li, Y.; Tan, X.; Wang, M.; Li, B.; Zhao, Y.; Wu, C.; Rui, Q.; Wang, J.; Liu, Z.; Bao, Y. Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in arabidopsis thaliana. Sci. Rep. 2017, 7, 40279. [Google Scholar] [CrossRef]
- ADAPTAWHEAT 2012. 7th Framework Programme of the European Union. Available online: https://cordis.europa.eu/project/id/289842 (accessed on 12 March 2025).
- Yermekbayev, K.; Griffiths, S.; Chhetry, M.; Leverington-Waite, M.; Orford, S.; Amalova, A.; Abugalieva, S.; Turuspekov, Y. Construction of a Genetic Map of RILs Derived from Wheat (T. aestivum L.) Varieties Pamyati Azieva × Paragon Using High-Throughput SNP Genotyping Platform KASP-Kompetitive Allele Specific PCR. Russ. J. Genet. 2020, 56, 1090–1098. [Google Scholar] [CrossRef]
- Genievskaya, Y.; Amalova, A.; Sarbayev, A.; Griffths, S.; Abugalieva, S.; Turuspekov, Y. Resistance of common wheat (Triticum aestivum L.) mapping population Pamyati Azieva× Paragon to leaf and stem rusts in conditions of southeast Kazakhstan. Eurasian J. Ecol. 2019, 61, 14–23. [Google Scholar] [CrossRef]
- Genievskaya, Y.; Abugalieva, S.; Rsaliyev, A.; Yskakova, G.; Turuspekov, Y. QTL Mapping for Seedling and Adult Plant Resistance to Leaf and Stem Rusts in Pamyati Azieva × Paragon Mapping Population of Bread Wheat. Agronomy 2020, 10, 1285. [Google Scholar] [CrossRef]
- Amalova, A.Y.; Yermekbayev, K.A.; Griffiths, S.; Abugalieva, S.I.; Turuspekov, Y.K. Phenotypic variation of common wheat mapping population Pamyati Azieva x Paragon in southeast of Kazakhstan. Int. J. Biol. Chem. 2019, 12, 11–17. [Google Scholar] [CrossRef]
- Amalova, A.; Yermekbayev, K.; Griffiths, S.; Abugalieva, S.; Babkenov, A.; Fedorenko, E.; Abugalieva, A.; Turuspekov, Y. Identification of quantitative trait loci of agronomic traits in bread wheat using a Pamyati Azieva× Paragon mapping population harvested in three regions of Kazakhstan. PeerJ 2022, 10, e14324. [Google Scholar] [CrossRef]
- Kowalski, A.M.; Gooding, M.; Ferrante, A.; Slafer, G.A.; Orford, S.; Gasperini, D.; Griffiths, S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes. Field Crops Res. 2016, 191, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Dospekhov, B. Methods of Field Experience; Kolos: Moscow, Russia, 1985. [Google Scholar]
- American Association of Cereal Chemists. Available online: https://www.cerealsgrains.org/resources/methods/Pages/default.aspx (accessed on 25 March 2025).
- International Organization for Standardization. Available online: https://www.iso.org/standards.html (accessed on 25 March 2025).
- GOST10840-2017; Grain Methods for Determining Test Weight Per Liter Moscow. GOST: Moscow, Russia, 2019; pp. 1–21. (In Russian)
- GOST 10846-91; Grain and Its Processed Products. Method for Determination of Grain Protein Content. GOST: Moscow, Russia, 2009; pp. 1–8. (In Russian)
- ISO 1871:2009; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- GOST 10845-98; Grain and Its Processed Products. Method for Determination of Grain Starch Content. GOST: Minsk, Russia, 2009; pp. 1–4. (In Russian)
- GOST 13586.1-68; Grain. Methods for Determining the Quantity and Quality of Gluten in Wheat. GOST: Moscow, Russia, 2009; pp. 1–6. (In Russian)
- ISO 21415-1:2006; Wheat and Wheat Flour—Gluten Content—Part 1: Determination of Wet Gluten by a Manual Method. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 21415-2:2006; Wheat and Wheat Flour—Gluten Content—Part 2: Determination of Wet Gluten by a Mechanical Method. International Organization for Standardization: Geneva, Switzerland, 2006.
- Sinitsyn, S.S.; Zelova, L.A. Mass two-fold determination of the strength of wheat flour, grain sample from 0.5 to 0.15 g. Sib. Bull. Agric. Sci. 1978, 3, 39–44. [Google Scholar]
- GOST9353-2016; Wheat Technical Conditions. GOST: Moscow, Russia, 2016; pp. 1–15. (In Russian)
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2012. Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 20 October 2021).
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Ensembl Plants. Available online: http://plants.ensembl.org/Triticum_aestivum/Info/Index (accessed on 6 October 2024).
- RStudio Team RStudio: Integrated Development for, R. RStudio, PBC, Boston, MA. Available online: http://www.rstudio.com/ (accessed on 11 February 2023).
- Guo, Y.; Wang, G.; Guo, X.; Chi, S.; Yu, H.; Jin, K.; Huang, H.; Wang, D.; Wu, C.; Tian, J.; et al. Genetic dissection of protein and starch during wheat grain development using QTL mapping and GWAS. Front. Plant Sci. 2023, 14, 1189887. [Google Scholar] [CrossRef]
- Geyer, M.; Mohler, V.; Hartl, L. Genetics of the inverse relationship between grain yield and grain protein content in common wheat. Plants 2022, 11, 2146. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Gardner, K.A.; Kerton, M.; Swarbreck, S.M.; Bentley, A.R. Balancing quality with quantity: A case study of UK bread wheat. Plants People Planet 2024, 6, 1000–1013. [Google Scholar] [CrossRef]
- Wieser, H.; Kieffer, R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J. Cereal Sci. 2001, 34, 19–27. [Google Scholar] [CrossRef]
- Bouabdellah, N.; Pascual, L.; Giraldo, P.; Ruiz, M. Impact of quantitative and qualitative Glutenin Variation on wheat quality within a similar genetic background. J. Cereal Sci. 2025, 122, 104125. [Google Scholar] [CrossRef]
- Saini, P.; Sheikh, I.; Saini, D.K.; Mir, R.R.; Dhaliwal, H.S.; Tyagi, V. Consensus genomic regions associated with grain protein content in hexaploid and tetraploid wheat. Front. Genet. 2022, 13, 1021180. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, G.; Guo, B.; Qu, C.; Zhang, M.; Kong, F.; Zhao, Y.; Li, S. QTL mapping for quality traits using a high-density genetic map of wheat. PLoS ONE 2020, 15, e0230601. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mantovani, E.E.; Simsek, S.; Jain, S.; Elias, E.M.; Mergoum, M. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS ONE 2019, 14, e0221826. [Google Scholar] [CrossRef]
- Barakat, M.; Al-Doss, A.; Moustafa, K.; Motawei, M.; Alamri, M.; Mergoum, M.; Sallam, M.; Al-Ashkar, I. QTL analysis of farinograph and mixograph related traits in spring wheat under heat stress conditions. Mol. Biol. Rep. 2020, 47, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, Z.; Jia, L.; Qiu, H.; Guan, H.; Liu, C.; Qin, M.; Wang, Y.; Li, W.; Yao, W.; et al. Genetic basis of gluten aggregation properties in wheat (Triticum aestivum L.) dissected by QTL mapping of glutopeak parameters. Front. Plant Sci. 2021, 11, 611605. [Google Scholar] [CrossRef]
- Goel, S.; Singh, K.; Singh, B.; Grewal, S.; Dwivedi, N.; Alqarawi, A.A.; Allah, E.F.; Ahmad, P.; Singh, N.K. Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population. PLoS ONE 2019, 14, e0200669. [Google Scholar] [CrossRef]
- Yao, E.; Blake, V.C.; Cooper, L.; Wight, C.P.; Michel, S.; Cagirici, H.B.; Lazo, G.R.; Birkett, C.; Waring, D.; Jannink, J.; et al. GrainGenes: A data-rich repository for small grains genetics and genomics. Database 2022, 2022, baac034. [Google Scholar] [CrossRef]
- Beales, J.; Turner, A.; Griffiths, S.; Snape, J.W.; Laurie, D.A. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 115, 721–733. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef] [PubMed]
- Appels, R.; Eversole, K.; Feuille, C.; Keller, B.; Rogers, J.; Stein, N. The International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, 10–1126. [Google Scholar]
- Pan, Y.H.; Chen, L.; Guo, H.F.; Feng, R.; Lou, Q.J.; Rashid, M.A.R.; Zhu, X.; Qing, D.; Liang, H.; Gao, L.; et al. Systematic analysis of NB-ARC gene family in rice and functional characterization of GNP12. Front. Genet. 2022, 13, 887217. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, C.; Xu, Y.; Wei, Q.; Imtiaz, M.; Lan, H.; Gao, S.; Cheng, L.; Wang, M.; Fei, Z.; et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 2014, 26, 2038–2054. [Google Scholar] [CrossRef] [PubMed]
- Borst, P.; Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 2002, 71, 537–592. [Google Scholar] [CrossRef] [PubMed]
Grain Quality Trait | Standards | |
---|---|---|
Interstate | International | |
Test weight per liter (TWL, g/L) | GOST 10840-2017 [48] | AACC 55-10 [46] |
Grain protein content (GPC, %) | GOST 10846-91 [49] | ISO 1871:2009 [47,50] |
Grain starch content (GSC, %) | GOST 10845-98 [51] | - |
Gluten content (GC, %) | GOST 13586.1-68 [52] | ISO 21415-1:2006 [47,53], ISO 21415-2:2006 [47,54] |
Name of the Traits | Characteristics of Bread Wheat by Classes | ||||
---|---|---|---|---|---|
Class | 1st | 2nd | 3rd | 4th | 5th |
Grain protein content, % | ≥14.5 | ≥13.5 | ≥12.0 | ≥10.0 | Not limited |
Gluten content, % | ≥32.0 | ≥28.0 | ≥23.0 | ≥18.0 | Not limited |
Gluten deformation index, unit | I group | II group | Not limited | ||
43–≤77 | 18–≤102 | ||||
Test weight per liter, g/L | ≥750 | ≥730 | ≥710 | Not limited |
Grain protein content (GPC, %) | ||
Classes | NKAES | KRIAPG |
1 class (14,5–19.0%) | 88 RILs | 94 RILs |
2 class (13.5%) | 3 RILs | - |
3 class (12.0%) | 1 RILs | - |
Unclassified | 2 RILs | - |
Gluten content (GC, %) | ||
Classes | NKAES | KRIAPG |
1 class (32%) | 58 RILs | 94 RILs |
2 class (28%) | 27 RILs | - |
3 class (23%) | 5 RILs | - |
Unclassified | 4 RILs | - |
Sedimentation value (SV, mL) | ||
Classes | NKAES | KRIAPG |
Strong (>70 mL) | 28 RILs | 17 RILs |
Valuable (51–70 mL) | 46 RILs | 58 RILs |
Filler (31–50 mL) | 17 RILs | 19 RILs |
Unclassified | 3 RILs | - |
Gluten deformation index (GDI, unit) | ||
Group | NKAES | KRIAPG |
I (43–77 unit) | 30 RILs | 22 RILs |
II (18–102 unit) | 60 RILs | 68 RILs |
Unclassified | 4 RILs | 4 RILs |
Test weight per liter (TWL, g/L) | ||
Classes | NKAES | KRIAPG |
1/2 class (750–790 g/L) | 4 RILs | 38 RILs |
3 class (730 g/l) | 27 RILs | 35 RILs |
4 class (710 g/l) | 30 RILs | 19 RILs |
Unclassified | 33 RILs | 2 RILs |
Traits | All QTL | Major QTL 1 | Stable QTL 2 | Stable QTL | |
---|---|---|---|---|---|
NKAES | KRIAPG | ||||
Test weight per liter (TWL, g/L), | 15 | 15 | 3 | 3 | 3 |
Grain protein content (GPC, %) | 12 | 11 | 4 | 2 | 2 |
Gluten content (GC, %), | 11 | 11 | 3 | 2 | 3 |
Gluten deformation index in flour (GDI, unit) | 11 | 2 | 5 | 5 | 5 |
Grain starch content (GSC, %) | 12 | 12 | 2 | 2 | 2 |
Sedimentation value (SV, mL) | 10 | 9 | 3 | 2 | 3 |
Total | 71 | 60 | 20 | 16 | 18 |
Traits | QTL | Chromosome | Interval cM | LOD | Max. R2 % | Additive | Conditions (Region, Year) | |
---|---|---|---|---|---|---|---|---|
Effect | Allele | |||||||
TWL | Qtwl-PA × P_ipbb- 1A | 1A | 75.2–93.0 | 4.2 | 12 | 12.2 | Pamyati Azieva | KRIAPG-19, NKAES-18 |
TWL | Qtwl-PA × P_ipbb-4A | 4A | 94.0–115.0 | 4.8 | 17 | 10.5 | Pamyati Azieva | KRIAPG-17, NKAES-17, NKAES 3-years mean |
TWL | Qtwl-PA × P_ipbb-7D | 7D | 62.4–84.2 | 4.7 | 34 | 12 | Pamyati Azieva | KRIAPG-18, KRIAPG 4-years mean, NKAES-19, NKAES 3-years mean |
GPC | QGpc-PA × P.ipbb-4A | 4A | 27.2–58.0 | 6 | 24 | 0.39 | Pamyati Azieva | NKAES-19, NKAES 3-years mean |
GPC | QGpc-PA × P.ipbb-5B | 5B | 176.7–202.2 | 3.9 | 12 | −0.36 | Paragon | KRIAPG-16, KRIAPG 4-years mean |
GPC | QGpc-PA × P.ipbb-6A | 6A | 22.3–47.1 | 4 | 13 | −0.35 | Paragon | KRIAPG-18, KRIAPG-19, KRIAPG 4-years mean |
GPC | QGpc-PA × P.ipbb-7B | 7B | 20.4–42.7 | 4 | 12 | −0.47 | Paragon | NKAES-18, NKAES 3-years mean |
GSC | QGsc-PA × P.ipbb-3A | 3A | 101.2–133.6 | 4 | 15 | −0.51 | Paragon | KRIAPG-18, KRIAPG 4-years mean, NKAES-18 |
GSC | QGsc-PA × P.ipbb-4A | 4A | 23.4–50.2 | 5.4 | 19 | −0.46 | Paragon | KRIAPG 4-years mean, NKAES-19, NKAES 3-years mean |
GC | QGC-PA × P.ipbb-1D | 1D | 0.0–30.0 | 9.7 | 32 | −2.47 | Paragon | KRIAPG-18, NKAES-17, NKAES-19, NKAES 3-years mean |
GC | QGC-PA × P.ipbb-6A.2 | 6A | 40.6–63.8 | 4.9 | 17 | −1.41 | Paragon | KRIAPG-19, KRIAPG 4-years mean |
GC | QGC-PA × P.ipbb-6A.1 | 6A | 53.2–88.9 | 6.5 | 20 | −1.86 | Paragon | KRIAPG-18, NKAES-18 |
GDI | QGDI-PA × P.ipbb-1D.1 | 1D | 0.0–12.3 | 19.4 | 53 | −8.48 | Paragon | KRIAPG-17, KRIAPG-18, KRIAPG-19, KRIAPG 4-years mean; NKAES-17, NKAES-19 |
GDI | QGDI-PA × P.ipbb-1D.2 | 1D | 64.4–88.0 | 9.2 | 19 | 4.76 | Pamyati Azieva | KRIAPG-17, KRIAPG-18, KRIAPG 4-years mean; NKAES 17, NKAES 3-years mean |
GDI | QGDI-PA × P.ipbb-2B | 2B | 0.0–13.3 | 3.3 | 5 | −2.6 | Paragon | KRIAPG-17; NKAES-17 |
GDI | QGDI-PA × P.ipbb-4B | 4B | 33.1–59.6 | 3.2 | 6 | 2.77 | Pamyati Azieva | KRIAPG-17; NKAES-17 |
GDI | QGDI-PA × P.ipbb-5A | 5A | 63.2–87.9 | 3.9 | 7 | 0.42 | Pamyati Azieva | KRIAPG-18; NKAES-19 |
SED | QSed-PA × P_ipbb-1D | 1D | 0.0–11.9 | 16.9 | 50 | 14.4 | Pamyati Azieva | KRIAPG-16–KRIAPG-19, KRIAPG 4-years mean/NKAES-17–NKAES-19, NKAES 3-years mean |
SED | QSed-PA × P.ipbb-6B | 6B | 28.4–66.0 | 5.8 | 8 | −3.02 | Paragon | KRIAPG-16, KRIAPG 4-years mean |
SED | QSed-PA × P.ipbb-7A | 7A | 52.2–73.1 | 3.5 | 12 | 3.96 | Pamyati Azieva | KRIAPG-17, NKAES-17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amalova, A.; Griffiths, S.; Abugalieva, A.; Abugalieva, S.; Turuspekov, Y. Identification of Quantitative Trait Loci for Grain Quality Traits in a Pamyati Azieva × Paragon Bread Wheat Mapping Population Grown in Kazakhstan. Plants 2025, 14, 1728. https://doi.org/10.3390/plants14111728
Amalova A, Griffiths S, Abugalieva A, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci for Grain Quality Traits in a Pamyati Azieva × Paragon Bread Wheat Mapping Population Grown in Kazakhstan. Plants. 2025; 14(11):1728. https://doi.org/10.3390/plants14111728
Chicago/Turabian StyleAmalova, Akerke, Simon Griffiths, Aigul Abugalieva, Saule Abugalieva, and Yerlan Turuspekov. 2025. "Identification of Quantitative Trait Loci for Grain Quality Traits in a Pamyati Azieva × Paragon Bread Wheat Mapping Population Grown in Kazakhstan" Plants 14, no. 11: 1728. https://doi.org/10.3390/plants14111728
APA StyleAmalova, A., Griffiths, S., Abugalieva, A., Abugalieva, S., & Turuspekov, Y. (2025). Identification of Quantitative Trait Loci for Grain Quality Traits in a Pamyati Azieva × Paragon Bread Wheat Mapping Population Grown in Kazakhstan. Plants, 14(11), 1728. https://doi.org/10.3390/plants14111728