Biological Effects of Rosaceae Species in Skin Disorders—An Up-To-Date Overview
Abstract
:1. Introduction
2. General Aspects of Skin Disorders
3. General Aspects of the Rosaceae Family
4. Phytochemical Composition of the Rosaceae Family
4.1. Polyphenolic Compounds (Flavonoids, Anthocyanins, and Hydrolyzable Tannins)
4.2. Volatile Oils
4.3. Triterpenes, Tetraterpenes (Carotenoids), and Vitamins
5. Benefits of Natural Products from Rosaceae Plants Targeting the Skin
5.1. Anti-Inflammatory Activity
5.2. Wound-Healing Effects
5.3. Anticancer Effect
5.4. Anti-Acne Effect
5.5. Antityrosinase Effect
5.6. Natural Products Protect the Molecules of the Extracellular Matrix (Elastin, Collagen, and Hyaluronic Acid)
5.7. Antioxidant Effect
5.8. UV-Protecting Effects
5.9. Antiaging Effect
5.10. Antipsoriasis Effect
5.11. Pharmacological Insights into the Skin-Related Effects of Rosaceae Family Species
6. Modern Pharmaceutical Formulations Using Rosaceae Extracts with Dermatological Potential
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A375 | Human melanoma cell line |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
AGEs | Advanced glycation end products |
AgNPs | Silver nanoparticles |
AKT | Protein Kinase B |
α-MSH pathway | Alpha-melanocyte-stimulating hormone |
AQP3 | Aquaporin 3 |
AP | Apple pomace |
APG | Angiosperm Phylogeny Group |
AME | Aronia melanocarpa extract |
B16 | Tumor line |
B16-F10 | Murine melanoma cell line |
BRAF | A serine–threonine kinase in the family of RAF kinases |
CDKN2A | Cyclin-dependent kinase inhibitor 2A |
CAT | Catalase (antioxidant enzyme) |
COX-1 | Cyclooxygenase 1 |
COX-2 | Cyclooxygenase 2 |
CPDs | Cyclobutane pyrimidine dimers |
DOPA | 3,4-dihydroxyphenylalanine |
DMBA | 7,12-dimethylbenz[a]anthracene |
DNA | Deoxyribonucleic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EBV-EA | Epstein–Barr virus early antigen |
EC | Epicatechin |
ERK | Extracellular Signal-Regulated Kinase |
FcεRI | The high-affinity Fc receptor for immunoglobulin E |
FGF-2 | Fibroblast Growth Factor 2 |
FLG | Filaggrin |
FRAP | Fluorescence recovery after photobleaching |
GBA | Glucosylceramidase Beta |
GCS | Glucosylceramide Synthase |
HaCaT | Human keratinocyte cell line |
H2O2 | Hydrogen peroxide |
HDFa | Human dermal fibroblasts |
Hs27 | Human Fibroblast Cell Line |
HPLC-ESI-MS | High-performance liquid chromatography–electrospray ionization–mass spectrometry |
IC50 | Half-maximal inhibitory concentration |
IgE | Immunoglobulin E |
IFN-γ | Interferon gamma |
IL-1β | Interleukin 1 beta |
IL-10 | Interleukin 10 |
IL-13 | Interleukin 13 |
IL-17 | Interleukin 17 |
IL-22 | Interleukin 22 |
IL-23 | Interleukin 23 |
IL-33 | Interleukin 33 |
IL-36 | Interleukin 36 |
IL-4 | Interleukin 4 |
IL-5 | Interleukin 5 |
IL-6 | Interleukin 6 |
iNOS | Inducible Nitric Oxide Synthase |
INV | Involucrin (structural protein in skin) |
JNK | C-Jun N-Terminal Kinases |
LC-MS | Liquid chromatography–mass spectrometry |
L-DOPA | L-3,4-dihydroxyphenylalanine |
LOX | Lipoxygenase |
MAPK | Mitogen-Activated Protein Kinase |
MMP-2 | Matrix metalloproteinase 2 |
MMP-3 | Matrix metalloproteinase 3 |
MMP-9 | matrix metalloproteinase 9 |
MMPs | Matrix metalloproteinases |
NHDFs | Normal human dermal fibroblasts |
NO | Nitric oxide |
NRAS | Neuroblastoma RAS Viral Oncogene Homolog |
NC/Nga | Mouse models |
p38 MAPK | p38 Mitogen-Activated Protein Kinases |
PPARα, β/δ, and γ | Peroxisome Proliferator-Activated Receptors |
PTEN | Phosphatase and tensin homolog on chromosome 10 |
PVDE | Pourthiaea villosa extract |
TNF-α | Tumor necrosis factor-alpha |
RCLE | Rubus idaeus lipid-soluble extract |
REA | Rosa multiflora Thunb flowers and its subfractions in ethylacetate |
RBT | Rosa multiflora Thunb flowers and its subfractions in n-butanol |
RFCS | Rose flower cell sap |
References
- Richard, M.A.; Paul, C.; Nijsten, T.; Gisondi, P.; Salavastru, C.; Taieb, C.; Trakatelli, M.; Puig, L.; Stratigos, A.; EADV Burden of Skin Diseases Project Team. Prevalence of most common skin diseases in Europe: A population-based study. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1088–1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- du Crest, D.; Madhumita, M.; Enbiale, W.; Zink, A.; Papier, A.; Matewa, G.; Castro, H.; Perandones, H.; De Guzman, J.; Rosenbach, M.; et al. Skin and Digital–The 2024 Narrative. Mayo Clin. Proc. Digit. Health 2024, 2, 322–330. [Google Scholar] [CrossRef]
- Shoaib, S.; Kaur, G.; Yusuf, K.; Yusuf, N. Herbal medicines and skin disorders. In Herbal Medicines; Sarwat, M., Siddique, H., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 307–328. [Google Scholar] [CrossRef]
- Mohd Zaid, N.A.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Lum, P.T.; Begum, M.Y.; Mat Rani, N.N.I.; Vaijanathappa, J.; Wu, Y.S.; Subramaniyan, V.; et al. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des. Dev. Ther. 2022, 16, 23–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bai, Y.; Liu, H.; Zhu, K.; Cheng, Z.M. Evolution and Functional Analysis of the GRAS Family Genes in Six Rosaceae Species. BMC Plant Biol. 2022, 22, 569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Li, J.; Cheng, T.; Zhang, W.; Liu, Y.; Wu, P.; Yang, X.; Wang, L.; Zhou, S. Molecular Systematics of Rosoideae (Rosaceae). Plant Syst. Evol. 2020, 306, 9. [Google Scholar] [CrossRef]
- Onwuchekwa, O.; Watkins, C.S.; Ubi, B.E.; Oraguzie, N.C. Phenolic Compounds in Rosaceae Fruit and Nut Crops. J. Agric. Food Chem. 2014, 62, 9369–9386. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Rose Hips as Complementary and Alternative Medicine: Overview of the Present Status and Prospects. Mediterr. J. Nutr. Metab. 2013, 6, 89–97. [Google Scholar] [CrossRef]
- Roman, I.; Stănilă, A.; Stănilă, S. Bioactive Compounds and Antioxidant Activity of Rosa canina L. Biotypes from Spontaneous Flora of Transylvania. Chem. Cent. J. 2013, 7, 73. [Google Scholar] [CrossRef]
- Tan, H.; Sonam, T.; Shimizu, K. The Potential of Triterpenoids from Loquat Leaves (Eriobotrya japonica) for Prevention and Treatment of Skin Disorder. Int. J. Mol. Sci. 2017, 18, 1030. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seong, N.W.; Oh, W.J.; Kim, I.S.; Kim, S.J.; Seo, J.E.; Park, C.E.; Kim, D.Y.; Ko, J.W.; Kim, J.C. Efficacy and Local Irritation Evaluation of Eriobotrya japonica Leaf Ethanol Extract. Lab. Anim. Res. 2019, 35, 4. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, Phytochemical, and Biological Aspects of Rosa alba L.: A Systematic Review. Future J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2018, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, A.; Matsui, A.; Shiki, K.; Tateishi, R.; Itoh, T. Oral Administration of Apple Pectin Solution Improves Atopic Dermatitis in a Mouse Model. J. Nutr. Sci. Vitaminol. 2024, 70, 9–18. [Google Scholar] [CrossRef]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef]
- Korman, N.J. Management of Psoriasis as a Systemic Disease: What is the Evidence? Br. J. Dermatol. 2020, 182, 840–848. [Google Scholar] [CrossRef]
- Deng, S.; May, B.H.; Zhang, A.L.; Lu, C.; Xue, C.C.L. Plant Extracts for the Topical Management of Psoriasis: A Systematic Review and Meta-Analysis. Br. J. Dermatol. 2013, 169, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Gavra, D.I.; Endres, L.; Pető, Á.; Józsa, L.; Fehér, P.; Ujhelyi, Z.; Pallag, A.; Marian, E.; Vicas, L.G.; Ghitea, T.C.; et al. In Vitro and Human Pilot Studies of Different Topical Formulations Containing Rosa Species for the Treatment of Psoriasis. Molecules 2022, 27, 5499. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; McCubrey, J.A.; Candido, S.; Libra, M. Cutaneous Melanoma: From Pathogenesis to Therapy (Review). Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef]
- Hodis, E.; Watson, I.; Krasheninina, O.; Heller, D.; Beroukhim, R.; Garraway, L.A.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; et al. A Landscape of Driver Mutations in Melanoma. Cell 2012, 150, 251–263. [Google Scholar] [CrossRef]
- Dumitraș, D.-A.; Andrei, S. Recent Advances in the Antiproliferative and Proapoptotic Activity of Various Plant Extracts and Constituents against Murine Malignant Melanoma. Molecules 2022, 27, 2585. [Google Scholar] [CrossRef]
- Lorz, L.R.; Yoo, B.C.; Kim, M.-Y.; Cho, J.Y. Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract. Int. J. Mol. Sci. 2019, 20, 1043. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lu, Y.; Tonissen, K.; Di Trapani, G.; Tang, W.; Feng, Y. Application of Traditional Chinese Medicine as Skin Depigmentation Agents. Heliyon 2022, 8, e12571. [Google Scholar] [CrossRef]
- Simpson, M.G. Diversity and Classification of Flowering Plants: Eudicots. In Plant Systematics, 3rd ed.; Simpson, M.G., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 285–466. [Google Scholar] [CrossRef]
- The Catalogue of Life Partnership. APG IV: Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants. 2017. Available online: https://www.gbif.org/dataset/fa8ab13c-52ed-4754-b838-aeff74c79718 (accessed on 28 February 2025).
- Zou, D.-T.; Wang, Q.-G.; Luo, A.; Wang, Z.-H. Species Richness Patterns and Resource Plant Conservation Assessments of Rosaceae in China. Chin. J. Plant Ecol. 2019, 43, 1–15. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Rosaceae. Available online: https://www.britannica.com/plant/Rosaceae (accessed on 28 February 2025).
- Taylor, T.N.; Taylor, E.L.; Krings, M. Flowering Plants. In Paleobotany, 2nd ed.; Taylor, T.N., Taylor, E.L., Krings, M., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 873–997. [Google Scholar] [CrossRef]
- Kalkman, C. Rosaceae. In Flowering Plants·Dicotyledons, The Families and Genera of Vascular Plants; Kubitzki, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 6. [Google Scholar] [CrossRef]
- Hummer, K.E.; Janick, J. Rosaceae: Taxonomy, Economic Importance, Genomics. In Genetics and Genomics of Rosaceae; Folta, K.M., Gardiner, S.E., Eds.; Plant Genetics and Genomics: Crops and Models; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, D.; Qiao, P.; Wang, Y.; Wu, P.; Wang, K.; Guo, L.; Huang, L.; Zhou, S. Phylogeny of Genera in Maleae (Rosaceae) Based on Chloroplast Genome Analysis. Front. Plant Sci. 2024, 15, 1367645. [Google Scholar] [CrossRef]
- Soundararajan, P.; Won, S.Y.; Kim, J.S. Insight on Rosaceae Family with Genome Sequencing and Functional Genomics Perspective. BioMed Res. Int. 2019, 2019, 7519687. [Google Scholar] [CrossRef] [PubMed]
- Tomas, M.; Günal-Köroğlu, D.; Kamiloglu, S.; Ozdal, T.; Capanoglu, E. The State of the Art in Anti-Aging: Plant-Based Phytochemicals for Skin Care. Immun. Ageing 2025, 22, 5. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20 (Suppl. S2), 1700–1741. [Google Scholar] [CrossRef]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef]
- Yang, C.; Sun, N.; Qin, X.; Qin, X.; Liu, Y.; Sui, M.; Zhang, Y.; Hu, Y.; Mao, Y.; Shen, X. Analysis of Flavonoid Metabolism of Compounds in Succulent Fruits and Leaves of Three Different Colors of Rosaceae. Sci. Rep. 2024, 14, 4933. [Google Scholar] [CrossRef]
- Păcularu-Burada, B.; Cîrîc, A.-I.; Begea, M. Anti-Aging Effects of Flavonoids from Plant Extracts. Foods 2024, 13, 2441. [Google Scholar] [CrossRef]
- Tonin, T.D.; Thiesen, L.C.; de Oliveira Nunes, M.L.; Broering, M.F.; Donato, M.P.; Goss, M.J.; Petreanu, M.; Niero, R.; Machado, I.D.; Santin, J.R. Rubus imperialis (Rosaceae) Extract and Pure Compound Niga-Ichigoside F1: Wound Healing and Anti-Inflammatory Effects. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Oszmianski, J.; Wojdylo, A.; Lamer-Zarawska, E.; Swiader, K. Antioxidant Tannins from Rosaceae Plant Roots. Food Chem. 2007, 100, 579–583. [Google Scholar] [CrossRef]
- Kostić, D.A.; Velicković, J.M.; Mitić, S.S.; Mitić, M.N.; Randelović, S.S. Phenolic Content, and Antioxidant and Antimicrobial Activities of Crataegus oxyacantha L. (Rosaceae) Fruit Extract from Southeast Serbia. Trop. J. Pharm. Res. 2012, 11, 117–124. [Google Scholar] [CrossRef]
- Faur, C.-A.; Zăhan, M.; Bunea, C.I.; Hârșan, E.; Bora, F.-D.; Bunea, A. Antiproliferative and Biochemical Evaluation of Rose Extracts: Impact on Tumor and Normal Skin Cells. Front. Plant Sci. 2024, 15, 1477243. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, V.S.; Kuz’mina, L.Y.; Melent’ev, A.I.; Shendel’, G. Antibacterial Activity of Polyphenolic Compounds Isolated from Plants of Geraniaceae and Rosaceae Families. Appl. Biochem. Microbiol. 2007, 43, 629–634. [Google Scholar] [CrossRef]
- Čižmárová, B.; Hubková, B.; Tomečková, V.; Birková, A. Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. Int. J. Mol. Sci. 2023, 24, 6324. [Google Scholar] [CrossRef]
- Alrumaihi, F.; Almatroodi, S.A.; Alharbi, H.O.A.; Alwanian, W.M.; Alharbi, F.A.; Almatroudi, A.; Rahmani, A.H. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024, 29, 2007. [Google Scholar] [CrossRef]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A Multifunctional Flavonol in Biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, Occurrence and Biological Activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhu, Q.; Li, T.; Lu, H.; Wei, N.; Huang, Y.; Shi, R.; Ma, X.; Wang, X.; et al. Anti-Skin-Aging Effect of Epigallocatechin Gallate by Regulating Epidermal Growth Factor Receptor Pathway on Aging Mouse Model Induced by d-Galactose. Mech. Ageing Dev. 2017, 164, 1–7. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.-M.; Park, J.; Cho, J.Y. Skin Protective Effect of Epigallocatechin Gallate. Int. J. Mol. Sci. 2018, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Știrbu, I.; Xiao, J.; Leopold, N.; Ayvaz, Z.; Danciu, C.; Ayvaz, H.; Stǎnilǎ, A.; Nistor, M.; Socaciu, C. Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention. Biomedicines 2020, 8, 336. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Li, Y.; Yuan, K.; Zhang, W.; Cai, D.; Peng, Z.; Hu, Y.; Sun, J.; Bai, W. Bioactivity and Application of Anthocyanins in Skin Protection and Cosmetics: An Extension as a Functional Pigment. Phytochem. Rev. 2023, 22, 1441–1467. [Google Scholar] [CrossRef]
- Jourdes, M.; Pouységu, L.; Deffieux, D.; Teissedre, P.L.; Quideau, S. Hydrolyzable Tannins: Gallotannins and Ellagitannins. In Natural Products; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–24. [Google Scholar] [CrossRef]
- Goya, G.M.R.; Bang, W.J.; Kim, Y.B.; Lee, G.E. Gallotannin Improves the Photoaged-Related Proteins by Extracellular Signal-Regulated Kinases/c-Jun N-Terminal Kinases Signaling Pathway in Human Epidermal Keratinocyte Cells. J. Med. Food 2018, 21, 785–792. [Google Scholar] [CrossRef]
- Siddiqui, T.; Khan, M.U.; Sharma, V.; Gupta, K. Terpenoids in Essential Oils: Chemistry, Classification, and Potential Impact on Human Health and Industry. Phytomed. Plus 2024, 4, 100549. [Google Scholar] [CrossRef]
- Padole, V.N.; Sarade, S.; Rathod, S.; More, S.; Mendhi, S. Multivalent Role of Essential Oil in Cosmetics: A Review. Int. J. Pharm. Sci. Rev. Res. 2022, 73, 97–105. [Google Scholar] [CrossRef]
- Kindler, S.; Schuster, M.; Seebauer, C.; Rutkowski, R.; Hauschild, A.; Podmelle, F.; Metelmann, C.; Metelmann, B.; Müller-Debus, C.; Metelmann, H.-R.; et al. Triterpenes for Well-Balanced Scar Formation in Superficial Wounds. Molecules 2016, 21, 1129. [Google Scholar] [CrossRef]
- Dang, Y.-Y.; Liu, T.; Liu, Y.-D.; Li, J.-Y.; Jing, Y.; Yang, M.-J.; Zhang, H.; Jiang, M.-M.; Wu, H.-H.; Yang, W.-Z.; et al. Anti-Photoaging Activity of Triterpenoids Isolated from Centella asiatica. Phytochemistry 2024, 228, 114246. [Google Scholar] [CrossRef]
- Hadipour, E.; Rezazadeh Kafash, M.; Emami, S.A.; Asili, J.; Boghrati, Z.; Tayara-ni-Najaran, Z. Evaluation of Anti-Oxidant and Antimelanogenic Effects of the Essential Oil and Extracts of Rosa × damascena in B16F10 Murine Melanoma Cell Line. Iran. J. Basic Med. Sci. 2023, 26, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.; Hili, P.; Naughton, D.P. Antioxidant and Potential Anti-Inflammatory Activity of Extracts and Formulations of White Tea, Rose, and Witch Hazel on Primary Human Dermal Fibroblast Cells. J. Inflamm. 2011, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Galgon, T.; Wohlrab, W.; Dräger, B. Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes. Exp. Dermatol. 2005, 14, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, Y.; Lu, C.; Chen, H.; Deng, J.; Yan, Y.; Xu, Y.-Y.; Liu, H.; Huang, H.; Wei, J.; et al. Betulinic Acid Suppresses Th17 Response and Ameliorates Psoriasis-like Murine Skin Inflammation. Int. Immunopharmacol. 2019, 73, 343–352. [Google Scholar] [CrossRef]
- Weber, L.A.; Meißner, J.; Delarocque, J.; Kalbitz, J.; Feige, K.; Kietzmann, M.; Michaelis, A.; Paschke, R.; Michael, J.; Pratscher, B.; et al. Betulinic Acid Shows Anticancer Activity Against Equine Melanoma Cells and Permeates Isolated Equine Skin In Vitro. BMC Vet. Res. 2020, 16, 44. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Kuo, H.-C.D.; Kong, A.-N. Ursolic Acid as a Protective Agent Against UVB-Induced Metabolic and Epigenetic Alterations in Human Skin Keratinocytes: An Omics-Based Study. Cancer Prev. Res. 2025, 18, 135–144. [Google Scholar] [CrossRef]
- Park, H.J.; Jo, D.S.; Choi, D.S.; Bae, J.-E.; Park, N.Y.; Kim, J.-B.; Chang, J.H.; Shin, J.J.; Cho, D.-H. Ursolic Acid Inhibits Pigmentation by Increasing Melanosomal Autophagy in B16F1 Cells. Biochem. Biophys. Res. Commun. 2020, 531, 209–214. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.E.; Jang, H.S.; Hong, S.Y.; Lee, J.B.; Park, S.Y.; Hwang, J.S. Oleanolic Acid Protects the Skin from Particulate Matter-Induced Aging. Biomol. Ther. 2021, 29, 220–226. [Google Scholar] [CrossRef]
- Zerres, S.; Stahl, W. Carotenoids in Human Skin. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2020, 1865, 158588. [Google Scholar] [CrossRef]
- Bin-Jumah, M.; Alwakeel, S.S.; Moga, M.; Buvnariu, L.; Bigiu, N.; Zia-Ul-Haq, M. Application of Carotenoids in Cosmetics. In Carotenoids: Structure and Function in the Human Body; Zia-Ul-Haq, M., Dewanjee, S., Riaz, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Januszewski, J.; Forma, A.; Zembala, J.; Flieger, M.; Tyczyńska, M.; Dring, J.C.; Dudek, I.; Świątek, K.; Baj, J. Nutritional Supplements for Skin Health—A Review of What Should Be Chosen and Why. Medicina 2024, 60, 68. [Google Scholar] [CrossRef]
- Joshi, M.; Hiremath, P.; John, J.; Ranadive, N.; Nandakumar, K.; Mudgal, J. Modulatory Role of Vitamins A, B3, C, D, and E on Skin Health, Immunity, Microbiome, and Diseases. Pharmacol. Rep. 2023, 75, 1096–1114. [Google Scholar] [CrossRef]
- Biskanaki, F.; Kalofiri, P.; Tertipi, N.; Sfyri, E.; Andreou, E.; Kefala, V.; Rallis, E. Carotenoids and Dermoaesthetic Benefits: Public Health Implications. Cosmetics 2023, 10, 120. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khanavi, M.; Yousefbeyk, F. A Review of Edible Fruits from the Rosaceae Family: Rich Sources of Phytochemicals with Potent Anti-inflammatory Properties. Res. J. Pharmacogn. 2025, 12, 77–96. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Fraga-Corral, M.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Scientific Basis for the Industrialization of Traditionally Used Plants of the Rosaceae Family. Food Chem. 2020, 330, 127197. [Google Scholar] [CrossRef]
- Hendrich, A.B.; Strugała, P.; Dudra, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Wojnicz, D.; Cisowska, A.; Sroka, Z.; Gabrielska, J. Microbiological, Antioxidant and Lipoxygenase-1 Inhibitory Activities of Fruit Extracts of Chosen Rosaceae Family Species. Adv. Clin. Exp. Med. 2020, 29, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.H.; Hajizadeh Moghaddam, A.; Chaichi, M.J. Identification, Determination, and Study of Antioxidative Activities of Hesperetin and Gallic Acid in Hydro-Alcoholic Extract from Flowers of Eriobotrya japonica (Lindl.). Avicenna J. Phytomed. 2014, 4, 260–266. [Google Scholar]
- Cha, D.S.; Eun, J.S.; Jeon, H. Anti-inflammatory and Antinociceptive Properties of the Leaves of Eriobotrya japonica. J. Ethnopharmacol. 2011, 134, 305–312. [Google Scholar] [CrossRef]
- Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Taguchi, Y.; Akazawa, H.; Ukiya, M.; Kimura, Y.; Suzuki, T.; Nishino, H. Anti-Inflammatory and Antitumor-Promoting Effects of the Triterpene Acids from the Leaves of Eriobotrya japonica. Biol. Pharm. Bull. 2005, 28, 1995–1999. [Google Scholar] [CrossRef]
- Zhang, H.; Li, G.; Han, R.; Zhang, R.; Ma, X.; Wang, M.; Shao, S.; Yan, M.; Zhao, D. Antioxidant, Anti-Inflammatory, and Cytotoxic Properties and Chemical Compositions of Filipendula palmata (Pall.) Maxim. Evid. Based Complement. Altern. Med. 2021, 2021, 6659620. [Google Scholar] [CrossRef]
- Mi, X.J.; Kim, J.K.; Lee, S.; Moon, S.K.; Kim, Y.J.; Kim, H. In Vitro Assessment of the Anti-Inflammatory and Skin-Moisturizing Effects of Filipendula palmata (Pall.) Maxim. on Human Keratinocytes and Identification of Its Bioactive Phytochemicals. J. Ethnopharmacol. 2022, 296, 115523. [Google Scholar] [CrossRef]
- Najman, K.; Adrian, S.; Sadowska, A.; Świąder, K.; Hallmann, E.; Buczak, K.; Waszkiewicz-Robak, B.; Szterk, A. Changes in Physicochemical and Bioactive Properties of Quince (Cydonia oblonga Mill.) and Its Products. Molecules 2023, 28, 3066. [Google Scholar] [CrossRef] [PubMed]
- Kostecka-Gugała, A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants 2024, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rocha, K.M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Larrosa-Pérez, M.; Moreno-Jiménez, M.R. Phenolic Acids and Flavonoids in Acetonic Extract from Quince (Cydonia oblonga Mill.): Nutraceuticals with Antioxidant and Anti-Inflammatory Potential. Molecules 2022, 27, 2462. [Google Scholar] [CrossRef] [PubMed]
- Boby, N.; Abbas, M.A.; Lee, E.B.; Im, Z.E.; Hsu, W.H.; Park, S.C. Protective Effect of Pyrus ussuriensis Maxim. Extract Against Ethanol-Induced Gastritis in Rats. Antioxidants 2021, 10, 439. [Google Scholar] [CrossRef]
- Cho, K.; Kang, M.C.; Parveen, A.; Yumnam, S.; Kim, S.Y. Anti-Inflammatory Effect of Chloroform Fraction of Pyrus ussuriensis Maxim. Leaf Extract on 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in NC/Nga Mice. Nutrients 2019, 11, 276. [Google Scholar] [CrossRef]
- Ninfali, P.; Antonini, E.; Frati, A.; Scarpa, E.-S. C-Glycosyl Flavonoids from Beta vulgaris Cicla and Betalains from Beta vulgaris Rubra: Antioxidant, Anticancer, and Antiinflammatory Activities—A Review. Phytother. Res. 2017, 31, 871–884. [Google Scholar] [CrossRef]
- Turnalar Ülger, T.; Oçkun, M.A.; Guzelmeric, E.; Sen, N.B.; Sipahi, H.; Özhan, Y.; Kan, Y.; Yesilada, E. Comprehensive Analysis of the Chemical and Bioactivity Profiles of Endemic Crataegus turcicus Dönmez in Comparison with Other Crataegus Species. Molecules 2023, 28, 6520. [Google Scholar] [CrossRef]
- Szymanowska, U.; Baraniak, B.; Bogucka-Kocka, A. Antioxidant, Anti-Inflammatory, and Postulated Cytotoxic Activity of Phenolic and Anthocyanin-Rich Fractions from Polana Raspberry (Rubus idaeus L.) Fruit and Juice—In Vitro Study. Molecules 2018, 23, 1812. [Google Scholar] [CrossRef]
- Nayebi, N.; Khalili, N.; Kamalinejad, M.; Emtiazy, M. A Systematic Review of the Efficacy and Safety of Rosa damascena Mill. with an Overview on Its Phytopharmacological Properties. Complement. Ther. Med. 2017, 34, 129–140. [Google Scholar] [CrossRef]
- Krzemińska, B.; Dybowski, M.P.; Klimek, K.; Typek, R.; Miazga-Karska, M.; Dos Santos Szewczyk, K. The Anti-Acne Potential and Chemical Composition of Two Cultivated Cotoneaster Species. Cells 2022, 11, 367. [Google Scholar] [CrossRef]
- Cruz, S.; Vecerek, N.; Elbuluk, N. Targeting Inflammation in Acne: Current Treatments and Future Prospects. Am. J. Clin. Dermatol. 2023, 24, 681–694. [Google Scholar] [CrossRef]
- Krzemińska, B.; Dybowski, M.P.; Klimek, K.; Typek, R.; Miazga-Karska, M.; Ginalska, G.; Dos Santos Szewczyk, K. Can Extracts from the Leaves and Fruits of the Cotoneaster Species Be Considered Promising Anti-Acne Agents? Molecules 2022, 27, 2907. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.M. Atopic Dermatitis: New Insights and Opportunities for Therapeutic Intervention. J. Allergy Clin. Immunol. 2000, 105, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Jeong, M.S.; Park, K.J.; Choi, Y.W.; Seo, S.J.; Lee, M.W. Topical Application of Rosa multiflora Root Extract Improves Atopic Dermatitis-Like Skin Lesions Induced by Mite Antigen in NC/Nga Mice. Biol. Pharm. Bull. 2014, 37, 178–183. [Google Scholar] [CrossRef]
- Pathak, D.; Mazumder, A. A Critical Overview of Challenging Roles of Medicinal Plants in Improvement of Wound Healing Technology. Daru 2024, 32, 379–419. [Google Scholar] [CrossRef] [PubMed]
- Derakhshanfar, A.; Moayedi, J.; Derakhshanfar, G.; Poostforoosh Fard, A. The Role of Iranian Medicinal Plants in Experimental Surgical Skin Wound Healing: An Integrative Review. Iran. J. Basic Med. Sci. 2019, 22, 590–600. [Google Scholar] [CrossRef]
- Van de Velde, F.; Esposito, D.; Grace, M.H.; Pirovani, M.E.; Lila, M.A. Anti-inflammatory and Wound Healing Properties of Polyphenolic Extracts from Strawberry and Blackberry Fruits. Food Res. Int. 2019, 121, 453–462. [Google Scholar] [CrossRef]
- Hanbisa, S.; Tadesse, W.T.; Abula, T. Evaluation of Wound Healing Activity of 80% Methanol Stem-Bark Extract and Solvent Fractions of Prunus africana (Hook.f.) Kalkman (Rosaceae) in Mice. J. Exp. Pharmacol. 2023, 15, 349–365. [Google Scholar] [CrossRef]
- Lordani, T.V.A.; de Lara, C.E.; Ferreira, F.B.P.; de Souza Terron Monich, M.; Mesquita da Silva, C.; Felicetti Lordani, C.R.; Giacomini Bueno, F.; Vieira Teixeira, J.J.; Lonardoni, M.V.C. Therapeutic Effects of Medicinal Plants on Cutaneous Wound Healing in Humans: A Systematic Review. Mediat. Inflamm. 2018, 2018, 7354250. [Google Scholar] [CrossRef]
- Choi, S.-I.; Lee, J.S.; Lee, S.; Cho, B.-Y.; Choi, S.-H.; Han, X.; Sim, W.-S.; Kim, Y.-C.; Lee, B.-Y.; Kang, I.-J.; et al. Protective Effects and Mechanisms of Pourthiaea villosa (Thunb.) Decne. Extract on Hydrogen Peroxide-Induced Skin Aging in Human Dermal Fibroblasts. J. Med. Food 2019, 22, 841–850. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- de O. Raphaelli, C.; Azevedo, J.G.; Dalmazo, G.O.; Vinholes, J.R.; Braganhol, E.; Vizzotto, M.; Nora, L. Effect of Fruit Secondary Metabolites on Melanoma: A Systematic Review of In Vitro Studies. Front. Pharmacol. 2020, 11, 1009. [Google Scholar] [CrossRef]
- de O. Raphaelli, C.; Azevedo, J.G.; Pereira, E.d.S.; Vinholes, J.R.; Camargo, T.M.; Hoffmann, J.F.; Ribeiro, J.A.; Vizzotto, M.; Rombaldi, C.V.; Wink, M.R.; et al. Phenolic-rich Apple Extracts Have Photoprotective and Anti-cancer Effects in Dermal Cells. Phytomed. Plus 2021, 1, 100112. [Google Scholar] [CrossRef]
- Ito, H.; Kobayashi, E.; Li, S.-H.; Hatano, T.; Sugita, D.; Kubo, N.; Shimura, S.; Itoh, Y.; Tokuda, H.; Nishino, H.; et al. Antitumor Activity of Compounds Isolated from Leaves of Eriobotrya japonica. J. Agric. Food Chem. 2002, 50, 2400–2403. [Google Scholar] [CrossRef]
- Chen, Q.; Tao, W.; Wang, J.; Li, J.; Zheng, M.; Liu, Y.; Lu, S.; Fang, Z. Inhibitive Mechanism of Loquat Flower Isolate on Tyrosinase Activity and Melanin Synthesis in Mouse Melanoma B16 Cells. Biomolecules 2024, 14, 895. [Google Scholar] [CrossRef]
- Martinelli, F.; Perrone, A.; Yousefi, S.; Papini, A.; Castiglione, S.; Guarino, F.; Cicatelli, A.; Aelaei, M.; Arad, N.; Gholami, M.; et al. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules 2021, 26, 7266. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.; Mokdad-Bzéouich, I.; Maatouk, M.; Ghedira, K.; Hennebelle, T.; Chekir-Ghedira, L. Antitumoral, Antioxidant, and Antimelanogenesis Potencies of Hawthorn, a Potential Natural Agent in the Treatment of Melanoma. Melanoma Res. 2016, 26, 211–222. [Google Scholar] [CrossRef]
- Ito, H.; Miyake, M.; Nishitani, E.; Mori, K.; Hatano, T.; Okuda, T.; Konoshima, T.; Takasaki, M.; Kozuka, M.; Mukainaka, T.; et al. Anti-Tumor Promoting Activity of Polyphenols from Cowania mexicana and Coleogyne ramosissima. Cancer Lett. 1999, 143, 5–13. [Google Scholar] [CrossRef]
- Sangueza-Acosta, M.; Sandoval-Romero, E. Epstein-Barr Virus and Skin. An. Bras. Dermatol. 2018, 93, 786–799. [Google Scholar] [CrossRef]
- Koch, W.; Zagórska, J.; Michalak-Tomczyk, M.; Karav, S.; Wawruszak, A. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules 2024, 29, 4234. [Google Scholar] [CrossRef]
- Keshari, S.; Kumar, M.; Balasubramaniam, A.; Chang, T.W.; Tong, Y.; Huang, C.M. Prospects of Acne Vaccines Targeting Secreted Virulence Factors of Cutibacterium acnes. Expert Rev. Vaccines 2019, 18, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Sabitov, A.; Gaweł-Bęben, K.; Sakipova, Z.; Strzępek-Gomółka, M.; Hoian, U.; Satbayeva, E.; Głowniak, K.; Ludwiczuk, A. Rosa platyacantha Schrenk from Kazakhstan—Natural Source of Bioactive Compounds with Cosmetic Significance. Molecules 2021, 26, 2578. [Google Scholar] [CrossRef]
- Michalak, M. Plant Extracts as Skin Care and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 15444. [Google Scholar] [CrossRef]
- Desmiaty, Y.; Hanafi, M.; Saputri, F.C.; Elya, B.; Rifai, E.A.; Syahdi, R.R. Two Triterpenoids from Rubus fraxinifolius Leaves and Their Tyrosinase and Elastase Inhibitory Activities. Sci. Rep. 2021, 11, 20452. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Dai, L.; Jin, L.; Liu, Y.; Li, X.; Luo, M.; Wang, Z.; Kai, G. Bioactive Components, Pharmacological Effects, and Drug Development of Traditional Herbal Medicine Rubus chingii Hu (Fu-Pen-Zi). Front. Nutr. 2023, 9, 1052504. [Google Scholar] [CrossRef]
- Lu, Y.H.; Chen, J.; Wei, D.Z.; Wang, Z.T.; Tao, X.Y. Tyrosinase Inhibitory Effect and Inhibitory Mechanism of Tiliroside from Raspberry. J. Enzyme Inhib. Med. Chem. 2009, 24, 1154–1160. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.; Liu, J.; Kim, D.H.; Kai, G. Exploitation of Apple Pomace Towards Extraction of Triterpenic Acids, Antioxidant Potential, Cytotoxic Effects, and Inhibition of Clinically Important Enzymes. Food Chem. Toxicol. 2019, 131, 110563. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Takahashi, K.; Nakamura, H.; Itoh, K.; Matsuda, H. Search for Skin-Whitening Agent from Prunus Plants and the Molecular Targets in Melanogenesis Pathway of Active Compounds. Nat. Prod. Commun. 2014, 9, 185–188. [Google Scholar] [CrossRef]
- Ren, G.; Xue, P.; Sun, X.; Zhao, G. Determination of the Volatile and Polyphenol Constituents and the Antimicrobial, Antioxidant, and Tyrosinase Inhibitory Activities of the Bioactive Compounds from the By-Product of Rosa rugosa Thunb. var. plena Regal Tea. BMC Complement. Med. Ther. 2018, 18, 307. [Google Scholar] [CrossRef]
- Fujii, M. The Pathogenic and Therapeutic Implications of Ceramide Abnormalities in Atopic Dermatitis. Cells 2021, 10, 2386. [Google Scholar] [CrossRef]
- Takeda, S.; Shimoda, H.; Takarada, T.; Imokawa, G. Strawberry Seed Extract and Its Major Component, Tiliroside, Promote Ceramide Synthesis in the Stratum Corneum of Human Epidermal Equivalents. PLoS ONE 2018, 13, e0205061. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, H.; Nakamura, S.; Morioka, M.; Tanaka, J.; Matsuda, H.; Yoshikawa, M. Effect of Cinnamoyl and Flavonol Glucosides Derived from Cherry Blossom Flowers on the Production of Advanced Glycation End Products (AGEs) and AGE-induced Fibroblast Apoptosis. Phytother. Res. 2011, 25, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Zhang, J.-Q.; Li, L.; Guo, M.-M.; He, Y.-F.; Dong, Y.-M.; Meng, H.; Yi, F. Advanced Glycation End Products in the Skin: Molecular Mechanisms, Methods of Measurement, and Inhibitory Pathways. Front. Med. 2022, 9, 837222. [Google Scholar] [CrossRef]
- Tito, A.; Bimonte, M.; Carola, A.; De Lucia, A.; Barbulova, A.; Tortora, A.; Colucci, G.; Apone, F. An Oil-Soluble Extract of Rubus idaeus Cells Enhances Hydration and Water Homeostasis in Skin Cells. Int. J. Cosmet. Sci. 2015, 37, 588–594. [Google Scholar] [CrossRef]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Comparative Analysis of Polyphenolic Profiles and Antioxidant and Antimicrobial Activities of Tunisian Pome Fruit Pulp and Peel Aqueous Acetone Extracts. J. Agric. Food Chem. 2008, 56, 1084–1090. [Google Scholar] [CrossRef]
- Benedetto, N.; Mangieri, C.; De Biasio, F.; Carvalho, R.F.; Milella, L.; Russo, D. Malus pumila Mill. cv Annurca Apple Extract Might Be Therapeutically Useful Against Oxidative Stress and Patterned Hair Loss. FEBS Open Bio 2024, 14, 955–967. [Google Scholar] [CrossRef] [PubMed]
- Gǎlbǎu, C.-Ș.; Irimie, M.; Neculau, A.E.; Dima, L.; Pogačnik da Silva, L.; Vârciu, M.; Badea, M. The Potential of Plant Extracts Used in Cosmetic Product Applications—Antioxidants Delivery and Mechanism of Actions. Antioxidants 2024, 13, 1425. [Google Scholar] [CrossRef]
- Cefali, L.C.; Gomes Franco, J.; Ferreira Nicolini, G.; Ataide, J.A.; Mazzola, P.G. In Vitro Antioxidant Activity and Solar Protection Factor of Blackberry and Raspberry Extracts in Topical Formulation. J. Cosmet. Dermatol. 2019, 18, 539–544. [Google Scholar] [CrossRef]
- Papaccio, F.; D’Arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; González-Paramás, A.M.; Santos-Buelga, C.; Quiles, J.L.; Bompadre, S.; Mezzetti, B.; et al. An Anthocyanin-Rich Strawberry Extract Protects Against Oxidative Stress Damage and Improves Mitochondrial Functionality in Human Dermal Fibroblasts Exposed to an Oxidizing Agent. Food Funct. 2014, 5, 1939–1948. [Google Scholar] [CrossRef]
- Trendafilova, A.; Staleva, P.; Petkova, Z.; Ivanova, V.; Evstatieva, Y.; Nikolova, D.; Rasheva, I.; Atanasov, N.; Topouzova-Hristova, T.; Veleva, R.; et al. Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules 2023, 28, 7666. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- Shabrina, A.M.; Azzahra, R.S.S.; Permata, I.N.; Dewi, H.P.; Safitri, R.A.; Maya, I.; Aulia, R.N.; Sriwidodo, S.; Mita, S.R.; Amalia, E.; et al. Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen. Cosmetics 2025, 12, 10. [Google Scholar] [CrossRef]
- Her, Y.; Lee, T.-K.; Kim, J.D.; Kim, B.; Sim, H.; Lee, J.-C.; Ahn, J.H.; Park, J.H.; Lee, J.-W.; Hong, J.; et al. Topical Application of Aronia melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020, 25, 4577. [Google Scholar] [CrossRef] [PubMed]
- Kwak, C.S.; Yang, J.; Shin, C.-Y.; Chung, J.H. Rosa multiflora Thunb Flower Extract Attenuates Ultraviolet-Induced Photoaging in Skin Cells and Hairless Mice. J. Med. Food 2020, 23, 988–997. [Google Scholar] [CrossRef]
- Martins, R.M.; Alves, G.d.A.D.; Martins, S.d.S.; de Freitas, L.A.P.; Rochette, P.J.; Moulin, V.J.; Fonseca, M.J.V. Apple Extract (Malus sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Res. 2020, 23, 465–475. [Google Scholar] [CrossRef]
- Choi, M.-H.; Shin, H.-J. Anti-Melanogenesis Effect of Quercetin. Cosmetics 2016, 3, 18. [Google Scholar] [CrossRef]
- Matsui, Y.; Sugiyama, K.; Kamei, M.; Takahashi, T.; Suzuki, T.; Katagata, Y.; Ito, T. Extract of Passion Fruit (Passiflora edulis) Seed Containing High Amounts of Piceatannol Inhibits Melanogenesis and Promotes Collagen Synthesis. J. Agric. Food Chem. 2010, 58, 11112–11118. [Google Scholar] [CrossRef]
- Kikowska, M.A.; Chmielewska, M.; Włodarczyk, A.; Studzińska-Sroka, E.; Żuchowski, J.; Stochmal, A.; Kotwicka, M.; Thiem, B. Effect of Pentacyclic Triterpenoids-Rich Callus Extract of Chaenomeles japonica (Thunb.) Lindl. ex Spach on Viability, Morphology, and Proliferation of Normal Human Skin Fibroblasts. Molecules 2018, 23, 3009. [Google Scholar] [CrossRef]
- Lasota, M.; Lechwar, P.; Kukula-Koch, W.; Czop, M.; Czech, K.; Gaweł-Bęben, K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024, 29, 1133. [Google Scholar] [CrossRef]
- Khiljee, T.; Akhtar, N.; Khiljee, S.; Khiljee, B.; Rasheed, H.M.; Ansari, S.A.; Alkahtani, H.M.; Ansari, I.A. Gauging Quince Phytonutrients and Its 4% Emulgel Effect on Amplifying Facial Skin Moisturizing Potential. Gels 2023, 9, 934. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M.; Global Psoriasis Atlas. National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef]
- Affandi, A.M.; Thiruchelvam, K. Patient Perspective on Psoriasis: Psychosocial Burden of Psoriasis and Its Management in Malaysia. PLoS ONE 2024, 19, e0305870. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling Pathways and Targeted Therapies for Psoriasis. Signal Transduct. Target. Ther. 2023, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Ren, X.; Tang, Z.; Li, W.; Chen, W.; He, Y.; Wei, B.; Zhang, H.; Ma, F.; Chen, X.; et al. Exploring the Association and Causal Effect Between White Blood Cells and Psoriasis Using Large-Scale Population Data. Front. Immunol. 2023, 14, 1043380. [Google Scholar] [CrossRef]
- Yao, Z.; Cheng, F.; Ming, T.; Sun, C.; Ran, Q.; Zhang, C.; Shen, C.; Zhang, R.; Peng, C. Eriobotrya japonica (Thunb.) Lindl Leaves: Reviewing Their Specialized Metabolites and Pharmacology. Biochem. Syst. Ecol. 2023, 110, 104707. [Google Scholar] [CrossRef]
- Tian, X.; Tang, L.; Wei, F.; Chen, H.; Sheng, L.; Yang, Y.; Zhou, X.; Li, Y.; Xu, X.; Zhang, B.; et al. Pentacyclic Triterpene Compounds from Loquat Leaves Reduce Skin Inflammation and Epidermal Hyperplasia in Psoriasis via Inhibiting the Th17 Cells. Mol. Immunol. 2021, 132, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhao, X.; Ma, Y.; Yang, J.; Li, F. Total Saponins from Rubus parvifolius L. Inhibit Cell Proliferation, Migration, and Invasion of Malignant Melanoma In Vitro and In Vivo. Biosci. Rep. 2021, 41, BSR20201178. [Google Scholar] [CrossRef]
- Bae, J.Y.; Lim, S.S.; Choi, J.S.; Kang, Y.H. Protective Actions of Rubus coreanus Ethanol Extract on Collagenous Extracellular Matrix in Ultraviolet-B Irradiation-Induced Human Dermal Fibroblasts. Nutr. Res. Pract. 2007, 1, 279–284. [Google Scholar] [CrossRef]
- Pyeon, S.; Kim, O.-K.; Yoon, H.-G.; Kim, S.; Choi, K.-C.; Lee, Y.-H.; Lee, J.; Park, J.; Jun, W. Water Extract of Rubus coreanus Prevents Inflammatory Skin Diseases In Vitro Models. Plants 2021, 10, 1230. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W. Alleviation Effects of Rubus coreanus Miquel Root Extract on Skin Symptoms and Inflammation in Chronic Atopic Dermatitis. Food Funct. 2022, 13, 2823. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Shin, S.Y.; Kim, S.; Lee, K.H.; Shin, J.C.; Park, K.M. Comparison of Antiaging, Anti-Melanogenesis Effects, and Active Components of Raspberry (Rubus occidentalis L.) Extracts According to Maturity. J. Food Biochem. 2020, 44, e13464. [Google Scholar] [CrossRef] [PubMed]
- Süntar, I.; Koca, U.; Keleş, H.; Akkol, E.K. Wound Healing Activity of Rubus sanctus Schreber (Rosaceae): Preclinical Study in Animal Models. Evid. Based Complement. Altern. Med. 2011, 2011, 816156. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Y.-S.; Hwang, E.; Lin, P.; Bae, J.; Seo, S.A.; Yan, Z.; Yi, T.-H. Rubus idaeus L. (Red Raspberry) Blocks UVB-Induced MMP Production and Promotes Type I Procollagen Synthesis via Inhibition of MAPK/AP-1, NF-κB and Stimulation of TGF-β/Smad, Nrf2 in Normal Human Dermal Fibroblasts. J. Photochem. Photobiol. B 2018, 185, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Hering, A.; Stefanowicz-Hajduk, J.; Hałasa, R.; Olech, M.; Nowak, R.; Kosiński, P.; Ochocka, J.R. Polyphenolic Characterization, Antioxidant, Antihyaluronidase and Antimicrobial Activity of Young Leaves and Stem Extracts from Rubus caesius L. Molecules 2022, 27, 6181. [Google Scholar] [CrossRef]
- De Luca, M.; Tuberoso, C.I.G.; Pons, R.; García, M.T.; Morán, M.d.C.; Ferino, G.; Vassallo, A.; Martelli, G.; Caddeo, C. Phenolic Fingerprint, Bioactivity and Nanoformulation of Prunus spinosa L. Fruit Extract for Skin Delivery. Pharmaceutics 2023, 15, 1063. [Google Scholar] [CrossRef]
- Choi, H.; Ha, J.H.; Kang, H.C.; Seo, W.S.; Bin, B.-H. The Protective Effects of Moisturizer Containing Potentilla anserina Extract in the Topical Treatment of Skin Damage Caused by Masks. Int. J. Mol. Sci. 2023, 24, 14294. [Google Scholar] [CrossRef]
- Yu, H.-J.; Ahn, C.-H.; Yang, I.-H.; Won, D.-H.; Jin, B.; Cho, N.-P.; Hong, S.D.; Shin, J.-A.; Cho, S.-D. Apoptosis Induced by Methanol Extract of Potentilla discolor in Human Mucoepidermoid Carcinoma Cells Through STAT3/PUMA Signaling Axis. Mol. Med. Rep. 2018, 17, 5258–5264. [Google Scholar] [CrossRef]
- Bradic, J.; Petrovic, A.; Nikolic, M.; Nedeljkovic, N.; Andjic, M.; Baljak, J.; Jakovljevic, V.; Kocovic, A.; Tadic, V.; Stojanovic, A.; et al. Potentilla tormentilla Extract Loaded Gel: Formulation, In Vivo and In Silico Evaluation of Anti-Inflammatory Properties. Int. J. Mol. Sci. 2024, 25, 9389. [Google Scholar] [CrossRef]
- Park, B.; Hwang, E.; Seo, S.A.; Zhang, M.; Park, S.-Y.; Yi, T.-H. Dietary Rosa damascena Protects Against UVB-Induced Skin Aging by Improving Collagen Synthesis via MMPs Reduction. J. Funct. Foods 2017, 36, 480–489. [Google Scholar] [CrossRef]
- Jeong, M.; Cho, J.; Lim, D.; Choi, M.; Park, Y.; Cheong, Y.; Kang, Y.; Kang, I.; Kim, S.; Kim, D. The Biological Effects of Rosa rugosa Extract on Keratinocyte Differentiation and Enhancement of Skin Barrier Function. Adv. Tradit. Med. 2025, 25, 451–457. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, L.; Li, X.; Wang, C.-Y.; Zhou, Y.; Li, M.; Li, Y.; Fu, X. Folium Crataegi Boosts Skin Regeneration for Burn Injury in Rats Through Multiple Ways. Biomed. Pharmacother. 2023, 167, 115457. [Google Scholar] [CrossRef]
- Mirabile, S.; D’Angelo, V.; Germanò, M.P.; Pouramin Arabi, S.; Parisi, V.; Raimondo, F.M.; Rosa, E. Chemical Profile and Health-Promoting Activities of Crataegus laciniata (Rosaceae) Flowers. Plants 2024, 13, 34. [Google Scholar] [CrossRef]
- Schmitt, M.; Magid, A.A.; Nuzillard, J.-M.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Investigation of Antioxidant and Elastase Inhibitory Activities of Geum urbanum Aerial Parts. Nat. Prod. Commun. 2020, 15, 1934578X2091530. [Google Scholar] [CrossRef]
- Lee, H.-D.; Tonog, G.; Uy, N.P.; Lee, Y.; Kim, K.-Y.; Kim, H.; Lee, S. Phytochemical Profile, Antioxidant, Anti-Atopic, and Anti-Inflammatory Activities of Filipendula glaberrima Nakai at Different Growth Stages. Pharmaceuticals 2024, 17, 928. [Google Scholar] [CrossRef]
- Jin, S.; Kim, K.C.; Kim, J.-S.; Jang, K.-I.; Hyun, T.K. Anti-Melanoma Activities and Phytochemical Compositions of Sorbus commixta Fruit Extracts. Plants 2020, 9, 1076. [Google Scholar] [CrossRef]
- Forni, C.; Braglia, R.; Mulinacci, N.; Urbani, A.; Ronci, M.; Gismondi, A.; Tabolacci, C.; Provenzano, B.; Lentini, A.; Beninati, S. Antineoplastic Activity of Strawberry (Fragaria × ananassa Duch.) Crude Extracts on B16-F10 Melanoma Cells. Mol. Biosyst. 2014, 10, 1255–1263. [Google Scholar] [CrossRef]
- Watz, C.G.; Moacă, E.A.; Cioca, A.; Șuta, L.M.; Krauss Maldea, L.; Magyari-Pavel, I.Z.; Nicolov, M.; Sîrbu, I.O.; Loghin, F.; Dehelean, C.A. Cutaneous Evaluation of Fe3O4 Nanoparticles: An Assessment Based on 2D and 3D Human Epidermis Models under Standard and UV Conditions. Int. J. Nanomed. 2025, 20, 3653–3670. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Moon, S.-K.; Kim, W.-J.; Dhandapani, S.; Kim, H.; Kim, Y.-J. Biologically Synthesized Rosa rugosa-Based Gold Nanoparticles Suppress Skin Inflammatory Responses via MAPK and NF-κB Signaling Pathway in TNF-α/IFN-γ-Induced HaCaT Keratinocytes. ACS Omega 2022, 7, 35951–35960. [Google Scholar] [CrossRef]
- Cima, L.M.; Stanciu, G.; Neculai, A.M.; Mititelu, M. Development of Dermato-Cosmetic Hydrogels with Antioxidant Action Using Macerates from Rosa canina L. Plant. J. Sci. Arts 2024, 24, 947–962. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Ćujić, D.; Stojadinović, B.; Čutović, N.; Živković, J.; Šavikin, K. Liposomal Bilayer as a Carrier of Rosa canina L. Seed Oil: Physicochemical Characterization, Stability, and Biological Potential. Molecules 2023, 28, 276. [Google Scholar] [CrossRef] [PubMed]
- Jabir, M.S.; Hussien, A.A.; Sulaiman, G.M.; Yaseen, N.Y.; Dewir, Y.H.; Alwahibi, M.S.; Rizwana, H. Green Synthesis of Silver Nanoparticles from Eriobotrya japonica Extract: A Promising Approach against Cancer Cells Proliferation, Inflammation, Allergic Disorders and Phagocytosis Induction. Artif. Cells Nanomed. Biotechnol. 2021, 49, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Folle, C.; Marqués, A.M.; Díaz-Garrido, N.; Espina, M.; Sánchez-López, E.; Badia, J.; Baldoma, L.; Calpena, A.C.; García, M.L. Thymol-Loaded PLGA Nanoparticles: An Efficient Approach for Acne Treatment. J. Nanobiotechnol. 2021, 19, 359. [Google Scholar] [CrossRef] [PubMed]
Species | Anti-Inflammatory Mechanisms of Action | Targeted Skin Conditions | References |
---|---|---|---|
Eriobotrya japonica | ↓ NF-κB, ↓ p38 MAPK, ↓ ERK | Inflammation, edema, acne | [76] |
Filipendula palmata | ↓ Chemokine genes/proteins (via MAPK and NF-κB pathways) | Burns, skin inflammation | [79] |
Cydonia oblonga | ↓ NF-κB, ↓ p38 MAPK, ↑ AKT, ↓ COX-2 | General inflammation, skin aging | [81,82] |
Pyrus ussuriensis | ↓ NO, ↓ IL-6, ↓ IL-1β | Atopic dermatitis | [84] |
Crataegus spp. | ↓ TNF-α, ↓ IL-1β, ↓ IL-6, ↓ IL-33, ↓ NO, ↓ PGE2, ↑ IL-10 | Chronic inflammation, wound healing | [85,86] |
Rubus idaeus | ↓ COX, ↓ LOX | Inflammatory and oxidative skin damage | [87] |
Rosa damascena | ↓ Inflammation gene Expression | Wound healing, antiaging | [88] |
Cotoneaster spp. | ↓ Hyaluronidase, ↓ COX-1/2, ↓ LOX, ↓ prostaglandins | Acne, oxidative stress, skin inflammation | [89,91] |
Rosa multiflora | Downregulation of iNOS and COX-2 expression | Atopic dermatitis | [93] |
Species | Main Active Compounds | Antioxidant Mechanism of Action | References |
---|---|---|---|
Malus domestica (apple pomace) | Polyphenols, triterpenes | ↓ ROS, stabilizes free radicals | [116] |
Malus pumila cv. Annurca | Procyanidin B2, chlorogenic acid | ↑ SOD, ↑ CAT, ↑ FGF-2, ↓ ROS | [125] |
Rubus idaeus (raspberry) | Flavonoids | Inhibits DPPH by 82.33% | [127] |
Rubus fruticosus (blackberry) | Flavonoids | Inhibits DPPH by 74.01% | [127] |
Fragaria vesca (strawberry) | Anthocyanins, polyphenols | Protects fibroblasts, ↓ROS, prevents apoptosis | [129] |
Pourthiaea villosa | Flavonoids | ↓ ROS, ↑ SOD1/SOD2, protection against oxidative stress | [99] |
Rosa damascene | Kaempferol, quercetin, phenolic acids | Strong scavenging of DPPH, ABTS, FRAP | [130] |
Genus | Plant Species | Biological Effect | Results | References |
---|---|---|---|---|
Rubus | Rubus parvifolius L. |
|
| [147] |
Rubus coreanus L. |
|
| [148] | |
|
| [149] | ||
|
| [150] | ||
Rubus occidentalis L. |
|
| [151] | |
Rubus sanctus S. |
|
| [152] | |
Rubus idaeus L. |
|
| [153] | |
Rubus caesius L. |
|
| [154] | |
Prunus | Prunus spinosa L. |
|
| [155] |
Potentilla | Potentilla anserina |
|
| [156] |
Potentilla discolor |
|
| [157] | |
Potentilla tormentilla |
|
| [158] | |
Rosa | Rosa damascena |
|
| [159] |
Rosa rugosa |
|
| [160] | |
Crataegus | Crataegus pinnatifida Bge. |
|
| [161] |
Crataegus laciniata |
|
| [162] | |
Geum | Geum urbanum |
|
| [163] |
Filipendula | Filipendula glaberrima |
|
| [164] |
Sorbus | Sorbus commixta Hedl. |
|
| [165] |
Fragaria | Fragaria ananassa Duch. (strawberry) |
|
| [166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristea, A.M.; Smeu, A.; Cîmpeanu, I.-A.; Iftode, A.; Liga, S.; Tchiakpe-Antal, D.-S.; Vlad, D.; Dehelean, C.A.; Iliescu, D. Biological Effects of Rosaceae Species in Skin Disorders—An Up-To-Date Overview. Plants 2025, 14, 1605. https://doi.org/10.3390/plants14111605
Cristea AM, Smeu A, Cîmpeanu I-A, Iftode A, Liga S, Tchiakpe-Antal D-S, Vlad D, Dehelean CA, Iliescu D. Biological Effects of Rosaceae Species in Skin Disorders—An Up-To-Date Overview. Plants. 2025; 14(11):1605. https://doi.org/10.3390/plants14111605
Chicago/Turabian StyleCristea, Andreea Maria, Andreea Smeu, Ioan-Alexandru Cîmpeanu, Andrada Iftode, Sergio Liga, Diana-Simona Tchiakpe-Antal, Daliborca Vlad, Cristina Adriana Dehelean, and Dan Iliescu. 2025. "Biological Effects of Rosaceae Species in Skin Disorders—An Up-To-Date Overview" Plants 14, no. 11: 1605. https://doi.org/10.3390/plants14111605
APA StyleCristea, A. M., Smeu, A., Cîmpeanu, I.-A., Iftode, A., Liga, S., Tchiakpe-Antal, D.-S., Vlad, D., Dehelean, C. A., & Iliescu, D. (2025). Biological Effects of Rosaceae Species in Skin Disorders—An Up-To-Date Overview. Plants, 14(11), 1605. https://doi.org/10.3390/plants14111605