Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé
Abstract
:1. Introduction
2. Results
2.1. Qualitative Phytochemical Screening
2.2. Qualitative and Quantitative Antioxidant Analysis of Nigerian and South African Mistletoe Extracts
2.2.1. Qualitative DPPH Radical Scavenging Activity of Nigerian DCM Extract
2.2.2. Qualitative DPPH Radical Scavenging Activity of Nigerian and South African Methanol Mistletoe Extract
2.3. Quantitative Analysis of Nigerian and South African Mistletoe Extracts
2.3.1. Quantitative Analysis of SADCM and NGDCM Extracts
2.3.2. Quantitative Analyses of Nigerian and South African Mistletoe Methanol Extracts
2.3.3. Hydrogen Radical Scavenging Activity of NGDCM and SADCM Extracts
2.3.4. Hydrogen Radical Scavenging Activity of Nigerian and SA Methanol Extracts
2.3.5. Ferric Chloride Reducing Power Assay
3. Discussion
4. Materials and Methods
4.1. Plant Collection, Preparation, and Storage
4.2. Extraction of the Plant Material and TLC Analysis of the Extracts
4.3. Qualitative Phytochemical Screening
4.4. Qualitative DPPH Free-Radical Scavenging Activity Assay of the Mistletoe Extracts
4.5. Quantitative Phytochemical Screening
4.5.1. DPPH Free Radical Scavenging Activity of the Mistletoe Extracts
4.5.2. Hydrogen Radical Scavenging Activity
4.5.3. Ferric Chloride Reducing Power Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojewole, J.A.; Kamadyaapa, D.R.; Gondwe, M.M.; Moodley, K.; Musabayane, C.T. Cardiovascular effects of Persea americana Mill (Lauraceae) (avocado) aqueous leaf extract in experimental animals. Cardiovasc. J. Afr. 2007, 18, 69–76. [Google Scholar] [PubMed]
- Amira, O.C.; Okubadejo, N.U. Frequency of complementary and alternative medicine utilization in hypertensive patients attending an urban tertiary care centre in Nigeria. BMC Complement. Altern. Med. 2007, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Oladele, P.O.; Ukwueze, S.E. A comparative study of the phytochemical and anti-microbial properties of the Eastern Nigerian specie of African Mistletoe (Loranthus micranthus Linn.) sourced from different host trees. Bio-Research 2004, 2, 18–23. [Google Scholar]
- Osadebe, P.O.; Omeje, E.O. Comparative acute toxicities and immunomodulatory potentials of five Eastern Nigeria mistletoes. J. Ethnopharmacol. 2009, 126, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Osadebe, P.O.; Okide, G.B.; Akabogu, I.C. Study on anti-diabetic activities of crude methanolic extracts of Loranthus micranthus (Linn.) sourced from five different host trees. J. Ethnopharmacol. 2004, 95, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Zorofchian Moghadamtousi, S.; Hajrezaei, M.; Abdul Kadir, H.; Zandi, K. Loranthus micranthus Linn.: Biological Activities and Phytochemistry. Evidence-Based Complement. Altern. Med. 2013, 2013, 273712. [Google Scholar]
- Nnenna, A.O.; Okwudili, A.; Nwachukwu, O.C. Toxicological Study of Leaf Extracts of Loranthus micranthus Linn Using Albino Wistar Rats. Int. J. Biochem. Res. 2020, 29, 9–16. [Google Scholar] [CrossRef]
- Omeje, E.O.; Osadebe, P.O.; Khan, P.M.; Maurya, R.; Chattopadhyay, N. Analysis of extracts of eastern Ngeria Mistletoe, Loranthus micranthus Linn. (Loranthaceae), parasitic on Kola acuminata and Garcinia kola revealed presence of osteogenic compounds. Planta Medica 2013, 79, PE26. [Google Scholar] [CrossRef]
- Omeje, E.O.; Khan, M.P.; Osadebe, P.O.; Tewari, D.; Khan, M.F.; Dev, K.; Chattopadhyay, N. Analysis of constituents of the eastern Nigeria mistletoe, Loranthus micranthus linn revealed presence of new classes of osteogenic compounds. J. Ethnopharmacol. 2014, 151, 643–651. [Google Scholar] [CrossRef]
- Ojezele, M.O.; Erhirhie, E.O.; Arojojoye, O.A. Effects of Viscum album (mistletoe) from three host plants (cocoa, kola and coffee) on semen quality of wistar albino rats. Chem. Int. 2017, 2, 25–29. [Google Scholar]
- Ikponmwonsa, O.; Osaherumwen, I.S.; Mugadam, M.M.; Oumar, S. Nigeria-South Africa Rivalry in Quest for regional power status: From material potential to unsecurity Council membership. Весmнuк Poccuйcкoгo yнuвepcumema дpyжбы нapoдoв. Сepuя Meждyнapoдныe omнoшeнuя 2020, 20, 147–157. [Google Scholar]
- Gurung, P.; De, P. Spectrum of biological properties of cinchona alkaloids: A brief review. J. Pharmacogn. Phytochem. 2017, 6, 162–166. [Google Scholar]
- Mapfumari, S.; Nogbou, N.D.; Musyoki, A.; Gololo, S.; Mothibe, M.; Bassey, K. Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. Plants 2022, 11, 2094. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ding, K.; Qiao, Y.; Zhang, L.; Zheng, L.; Pan, T.; Zhang, L. Flavonoids regulate inflammation and oxidative stress in cancer. Molecules 2020, 25, 5628. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; Maldonado-Navas, D.; García-Domínguez, I.; López Lázaro, M. Evaluating the cancer therapeutic potential of cardiac glycosides. BioMed Res. Int. 2014, 2014, 794930. [Google Scholar] [CrossRef]
- Johansson, S.; Lindholm, P.; Gullbo, J.; Larsson, R.; Bohlin, L.; Claeson, P. Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anti-Cancer Drugs 2001, 12, 475–483. [Google Scholar] [CrossRef]
- Guzmán, D.C.; Olguín, H.J.; Corona, Q.V.; Herrera, M.O.; Brizuela, N.O.; Mejía, G.B. Consumption of cooked common beans or saponins could reduce the risk of diabetic complications. Diabetes Metab. Syndr. Obes. 2020, 13, 3481. [Google Scholar] [CrossRef]
- Süntar, I.; Akkol, E.K.; Nahar, L.; Sarker, S.D. Wound healing and antioxidant properties: Do they coexist in plants? Free. Radic. Antioxid. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Pachisia, J. Persimmon (Diospyros kaki): Apple of the Orient: A Review. Int. J. Health Sci. Res. 2020, 10, 129–133. [Google Scholar]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. Medicinal plants: From farm to pharmacy. J. Med. Plants 2020, 10, 978-3. [Google Scholar]
- Ukwueze, S.E.; Osadebe, P.O.; Ezenobi, N.O. Bioassay-guided evaluation of the antibacterial activity of Loranthus species of the African mistletoe. Int. J. Pharm. Biomed. 2013, 4, 79–82. [Google Scholar]
- Ko, B.S.; Kang, S.; Moon, B.R.; Ryuk, J.A.; Park, S. A 70% ethanol extract of mistletoe rich in Betulin, betulinic acid, and Oleanolic acid potentiated β-cell function and mass and enhanced hepatic insulin sensitivity. Evid.-Based Complement. Altern. Med. 2016, 2016, 7836823. [Google Scholar] [CrossRef] [PubMed]
- Duval, J.; Pecher, V.; Poujol, M.; Lesellier, E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind. Crops Prod. 2016, 94, 812–833. [Google Scholar] [CrossRef]
- Govindappa, C.M.; Sadananda, T.S.; Chandrappa, C.P. Phytochemical Analysis of Loranthus micranthus Extracts and Their in Vitro Antioxidant and Antibacterial Activities. J. Biol. Act. Prod. Nat. 2014, 4, 303–315. [Google Scholar] [CrossRef]
- Aljahdali, M.S.; El-Sherif, A.A. Synthesis and biological evaluation of novel Zn (II) and Cd (II) Schiff Complexes as antimicrobial, antifungal, and antioxidant agents. Bioinorg. Chem. Appl. 2020, 2020, 8866382. [Google Scholar] [CrossRef]
- Samrot, A.V.; Bennet Rohan, D.; Sahiti, K.; Raji, P.; Kumar, D. TLC bioautography guided identification of antioxidant and antibacterial activity of various extracts of Punica granatum. J. Chem. Pharm. Res. 2016, 8, 815–820. [Google Scholar]
- Minich, D.M. A review of the science of colorful, plant-based food and practical strategies for “eating the rainbow”. J. Nutr. Metab. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Nwankwo, N.; Anthony, E.A.; Chime, J.; Belonwu, E. Effects of separation on the phytochemical properties and antimicrobial activity of extracts and a fraction of the African Mistletoe (Loranthus micranthus Linn) leaves. J. Nat. Sci. Res. 2013, 3, 44–51. [Google Scholar]
- Ishiwu, C.N.; Obiegbuna, J.E.; Aniagolu, N.M. Evaluation of Chemical Properties of Mistletoe Leaves from Three Different Trees (Avocado, African Oil Bean and Kola). Niger. Food J. 2013, 31, 1–7. [Google Scholar] [CrossRef]
- Tabe, N.N.; Ushie, O.A.; Jones, B.B.; Kendenson, A.C.; Muktar, M.; Ojeka, C.U. Phytochemical Analysis of Methanolic Extract of Mistletoe Leaf. Int. J. Adv. Res. Chem. Sci. 2018, 5, 7–11. [Google Scholar]
- Bandonien, D.; Murkovic, M. The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. J. Biochem. Biophys. Methods 2002, 53, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. Phenolic compounds. In Phytochemical Methods; Springer: Dordrecht, The Netherlands, 1973; pp. 33–88. [Google Scholar]
- Sofowora, A. Screening Plants for Bioactive Agents. In Medicinal Plants and Traditional Medicinal in Africa, 2nd ed.; Spectrum Books Ltd.: Ibadan, Nigeria, 1993; pp. 134–156. [Google Scholar]
- Evans, W.C. Trease and Evans Pharmacognosy, 15th ed.; Sanders Co., Ltd.: Singapore, 2002. [Google Scholar]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Salkowski, E. Ueber cholesterin. Z. Phys. Chem. (N F) 1871, 1, 1–8. [Google Scholar]
- Keller, H.J.; Killani, H. Die kupterprobe aat Gallensaure im Harn [The copper test for acids in urin]. Linische Wochenschr. 1993, 12, 907–908. [Google Scholar]
Phytochemicals | Mistletoe Extracts Investigated | |||
---|---|---|---|---|
NGDCM | SADCM | NGMeOH | SAMeOH | |
1. Alkaloids | − | − | − | − |
2. Flavonoids | − | − | ++ | ++ |
3. Cardiac glycosides | ++ | + | ++ | + |
4. Saponins | ++ | ++ | +++ | ++++ |
5. Phenolics | + | + | +++ | +++ |
6. Phlobatannins | − | − | ++ | ++ |
7. Tannins | ++ | ++ | +++ | ++++ |
8. Terpenoids | + | + | ++ | ++ |
9. Anthraquinones | − | − | − | − |
Mistletoe Tree Extracts | ||||
---|---|---|---|---|
Band Number | SADCM | NGDCM | ||
Rf Value | Antioxidant | Rf Value | Antioxidant | |
1 | 0 | ++ | 0 | ++ |
2 | 0.1 | − | 0.12 | − |
3 | 0.15 | − | 0.22 | + |
4 | 0.3 | ++ | 0.27 | − |
5 | 0.47 | ++ | 0.42 | − |
6 | 0.53 | ++ | 0.62 | − |
7 | 0.6 | ++ | 0.83 | ++ |
8 | 0.73 | +++ | 0.85 | ++ |
Mistletoe Extracts Investigated | ||||
---|---|---|---|---|
Band Number | NGMeOH | SAMeOH | ||
Rf Value | Antioxidant | Rf Value | Antioxidant | |
1 | 0 | +++ | 0 | − |
2 | 0.1 | +++ | 0.10 | − |
3 | 0.31 | +++ | 0.20 | − |
4 | 0.43 | +++ | 0.30 | − |
5 | 0.53 | + | 0.40 | − |
6 | 0.61 | − | 0.52 | − |
7 | 0.7 | − | 0.62 | − |
8 | 0.75 | − | 0.73 | − |
9 | 0.8 | − | 0.75 | − |
Extracts and Standards | IC50 mg/mL | ||
---|---|---|---|
DPPH Scavenging | H2O2 Scavenging | Reducing Power | |
NGDCM | 0.51 | 0.95 | 0.60 |
SADCM | 0.31 | 0.51 | 0.76 |
NGMeOH | 0.20 | 0.17 | 1.15 |
SAMeOH | 0.51 | 0.23 | 0.86 |
Gallic acid | 1.17 | 1.54 | 0.62 |
BHT | 1.47 | 1.04 | 1.15 |
Phytochemical Group | Qualitative Chemical Test Protocol | Reference |
---|---|---|
Alkaloids-Anticho- linesterase | A total of 5.0 % of aqueous HCl + about 0.5 g of plant extract. Filter and treat 1 mL of filtrate with a few drops of Dragendorff reagent. The presence of precipitates in the mixture would indicate a preliminary positive test for alkaloids. A total of 0.5 g plant extract + a few drops of magnesium strip + drops of concentrated H2SO4. A red coloration indicates a positive test for flavonoids. A total of 0.5 g of dry powdered material is boiled in 20 mL of water and filtered. A few drops of 0.1 % ferric chloride are added to the filtrate. A brownish, green to blue-black coloration indicates a positive test for tannins. The aqueous extract of the plant is boiled in 1.0% aqueous HCl acid. A positive test for phlobatannins is indicated by deposition of red precipitate. Say 2.0 g of powdered plant material is boiled in 20 mL of distilled water and then filtered. A total of 10 mL of the filtrate is further mixed with 5.0 mL of distilled water and shaken vigorously till a stable froth is formed. The froth is finally mix with a few drops of olive oil and shaken vigorously. The formation of an emulsion indicates a positive test for saponins. About 2.0 mL of acetic anhydride is added to 0.5 g ethanolic extract of the plant material. To this mix should be added 2.0 mL of H2SO4. The color of the mixture changing from violet to blue or green indicates a positive test for steroids. Mix 5.0 mL of plant extract with 2.0 mL of CHCl3, and to the mixture add 3.0 mL of concentrated H2SO4 acid in drops to form a layer. A red-to-brown coloration on the inter-phase of the mixture is a positive result for terpenoids. A total of 5.0 mL of the plant extract is usually treated with 2.0 mL of glacial acetic acid containing a few drops of ferric chloride solution. This should be treated with 1 mL of concentrate of H2SO4. If a brown ring is formed at the interphase of the solution, a deoxy sugar of cardenolides is present. A violet ring may also form below the brown ring. The Borntrager’s test is used to test for this class of plant metabolites. It involves mixing about 5.0 g of plant extract with 10 mL of benzene, shaking vigorously and then filtering. To the filtrate should be added 10 % ammonia solution. The entire mixture is shaken. The presence of a pink, red, or violet color in the lower phase of the mixtures is a positive test for hydroxyl anthraquinones. | [32] |
Flavonoids | [33] | |
Tannins | [34] | |
Phlobatannins | [35] | |
Saponins | [35] | |
Steroids | [34] | |
Terpenoids | [36] | |
Cardiac glycosides | [37] | |
Free anthraquinones | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlophe, S.; Bassey, K. Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé. Plants 2023, 12, 2016. https://doi.org/10.3390/plants12102016
Hlophe S, Bassey K. Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé. Plants. 2023; 12(10):2016. https://doi.org/10.3390/plants12102016
Chicago/Turabian StyleHlophe, Siyabonga, and Kokoette Bassey. 2023. "Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé" Plants 12, no. 10: 2016. https://doi.org/10.3390/plants12102016
APA StyleHlophe, S., & Bassey, K. (2023). Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé. Plants, 12(10), 2016. https://doi.org/10.3390/plants12102016