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Abstract: Natural plants from plateaus have been the richest source of secondary metabolites 

extensively used in traditional and modern health care systems. They were submitted to years of 

natural selection, co-evolved within that habitat, and show significant anti-fatigue-related 

pharmacological effects. However, currently, no review on high-altitude plants with anti-fatigue 

related properties has been published yet. This study summarized several Chinese traditional high-

altitude plants, including Rhodiola rosea L., Crocus sativus L., Lepidium meyenii W., 

Hippophaerhamnoides L., which are widely used in the Qinghai–Tibet Plateau and surrounding 

mountains, as well as herbal markets in the plains. Based on phytopharmacology studies, deeper 

questions can be further revealed regarding how these plants regulate fatigue and related mental or 

physical disease conditions. Many active derivatives in high-altitude medical plants show 

therapeutic potential for the management of fatigue and related disorders. Therefore, high-altitude 

plants significantly relieve central or peripheral fatigue by acting as neuroprotective agents, energy 

supplements, metabolism regulators, antioxidant, and inflammatory response inhibitors. Their 

applications on the highland or flatland and prospects in natural medicine are further forecast, 

which may open treatments to reduce or prevent fatigue-related disorders in populations with sub-

optimal health. 
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1. Introduction 

In recent years, the challenges of sub-health, aging of the rising population, as well 

as the prevalence of chronic diseases need perfect healthcare systems to support human 

fitness. Meanwhile, major life stressors are among the strongest proximal risk factors for 

fatigue in the pathological or sub-healthy state. Actually, numerous traditional Chinese 

medicines (TCM) have been shown to exert significant anti-fatigue actions, mainly 

through regulating the central nervous system, supplementing vital energy, and boosting 

muscle contractility, which could provide additional natural compounds for management 

of fatigue [1]. As for regulating physical fatigue, the multiple pharmacological activities 

of alpine plants (especially Tibetan medicines) have been demonstrated, such as for 

Rhodiola rosea L. [2], Crocus sativus L. [3], Lepidium meyenii (Walp.) [4], Hippophaerhamnoides 

L. [5], etc. Notably, these plants have also been widely used in the prevention and 

treatment of fatigue-related symptoms (i.e., weakness, bradykinesia, depressed mood) for 

a long time. The mechanism underlying their effects remains largely unclear, but the 

provision of these supplements has yielded improvement in aerobic performance and not 

only in high-altitude hypoxia environments [6]. 
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There is much evidence suggesting that the growth and development of plants 

influence the production of secondary metabolites [7], and the highlighted medicinal 

value in a multitude of alpine plants might be related to thousands of years of adaptation 

and evolution in the high-altitude mountain ecosystem. Pharmacological studies have 

proved that various active ingredients (i.e., polysaccharide, flavonoids, triterpenes, and 

alkaloids) in Chinese medicinal plants might improve physical resistance to fatigue [8]: 

polysaccharides could promote energy supply (glycogen synthesis and metabolism); 

flavonoids could enhance antioxidant capacity; triterpenes and alkaloids could increase 

the reservation of glycogen substances and reduce the accumulation of metabolites. 

Notably, some special functional ingredients are involved in managing the crucial process 

of fatigue, such as salidroside [9], macaenes and macamides [10], sulforaphane [11], 

cordycepin [12], crocin [13], etc. (Figure 1). Thus, high-altitude medicinal plants and fruits 

are receiving increasing interest for their versatile pharmacological and biological 

activities [7]. 

 

Figure 1. Structures of some special functional ingredients from high-altitude plants with anti-

fatigue effect. (a) Salidroside from Rhodiola rosea L., (b) macaenes and macamides from Lepidium 

meyenii W., (c) sulforaphane from cruciferous family (Brassica rapa L.), (d) cordycepin from Cordyceps 

sinensis Sacc., (f) crocin from Crocus sativus L. 

Much has been said recently about the use of Chinese traditional medicinal plants in 

anti-fatigue, especially about those cultivated at high altitude. In this review, we 

investigated Zhonghua Bencao, Flora of China, Standard of Tibetan Medicines in Sichuan 

Province (2020) and scientific databases, and then summarized 15 representative Chinese 

traditional high-altitude plants with corroborating anti-fatigue efficacy (Figure 2). Most of 

them are distributed among the Tibetan Plateau and surrounding mountains, as well as 

other regions such as Yungui Plateau and Junín plateau (Peru). The detailed Latin name, 

family, elevation, distributions, and main active ingredients were supplemented in Table 

1. Based on plant physiology and pharmacology, a biologically plausible, multi-level 

theory was proposed that describes plant pharmacology mechanisms that link medical 

plant adaptation to harsh environmental stress with human internal biological processes 

to alleviate physical fatigue. Central to this intersectional adaptation theory is the 

hypothesis that some functional components in high-altitude plants share similar routes 

of delivery and modes of action in the management of physical fatigue. Based on plant 

pharmacology, deeper questions can be revealed regarding how alpine plants regulate 

symptoms of fatigue and relationships to mental or physical disease conditions. This work 

may also suggest new opportunities for preventing and managing fatigue with high-

altitude plants via multi-targets (i.e., neuroprotection, metabolism regulation, anti-

oxidation, or anti-inflammation) and new directions. 
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Figure 2. Distribution of high-altitude plants with anti-fatigue effect. Here, 15 representative high-

altitude plants with anti-fatigue effect are summarized, which are distributed among the Tibetan 

Plateau and surrounding mountains (mainly across six provinces). The boundary of the Qinghai–

Tibet Plateau in the map is circled in blue (solid line). Color represents average elevation; the darker 

the color, the higher the area. 

Table 1. The anti-fatigue effects and main active ingredients from high-altitude plants. 

No. Latin Name Family 
Elevation/

m 
Distributions Used Part Main Active Ingredients 

1 Rhodiola rosea L. Crassulaceae 2800– Tibet, Xinjiang 
Root, 

rhizome 
Flavonoids, salidroside 

2 Brassica rapa L. Brassica 3500- 
Tibet, Xinjiang, 

Qinghai 
Root 

Polysaccharide, 

isothiocyanates 

3 Crocus sativus L. Iridaceae 5000- Tibet Filament Flavonoids, crocin 

4 Lepidium meyenii W. Brassicaceae 3800- Tibet Root 
Polysaccharide, alkaloids 

(macamides) 

5 Hippophaerhamnoides L. Elaeagnaceae 800– Qinghai, Gansu Fruit Flavonoids 

6 
Saussurea involucrata Sch.-

Bip. 
Compositae 4300- Tibet Flower Flavonoids 

7 Cordyceps sinensis Sacc. 
Clavicipitace

ae 
5000- Tibet Complex Polysaccharide, cordycepin 

8 Ajuga ciliata Bunge Labiatae 2500– Xinjiang Whole grass Flavonoids, triterpenes 

9 Arnebia euchroma Johnst. Boraginaceae 2500– Xinjiang Root Polysaccharide 

10 
Anthriscus sylvestris Hoffm. 

Gen 
Umbelliferae 4500- Liaoning, Sichuan Root Lactones 

11 Polygonatum kingianum Liliaceae 700– Yunnan Root 
Polysaccharide, flavonoids, 

triterpenes 

12 Cimicifuga foetida L. 
Ranunculace

ae 
1700– 

Tibet, Liaoning, 

Sichuan 
Root Triterpenes 
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Stachyurus himalaicus var. 

himalaicus Hook. f. et Thoms. 

ex Benth 

Stachyuracea

e 
1500– 

Tibet, Yunnan, 

Sichuan 
Stem pith Polyphenols, triterpenes 

14 Camellia reticulata Lindl. Theaceae 2200– Yunnan 
Flower, 

leaves 
Polyphenols 

15 
Pedicularis longiflora var. 

tubiformis 
Pedicularis 2700– Tibet Whole grass Flavonoids, boschnaloside 

2. Habitat and Adaptation 

Exposure to various natural environmental factors leads to subject stress in medical 

plants, which may in turn affect multiple biological processes [14]. Plateau environmental 

stress on medical plants during their evolution has attracted considerable attention. Along 

with increase in altitude, the environment becomes harsher, which results in nutritional 

deficiencies, frost, ultraviolet radiation, and oxidative stress. Plant-related metabolites are 

highly abundant “background” metabolites that are involved with plant physiology 

changes, showing differential abundance under various stress conditions. There is much 

evidence suggesting that growth and development of plants influence the production of 

secondary metabolites [7], and the highlighted medicinal values in a multitude of alpine 

plants might benefit from thousands of years of adaptation and evolution in high-altitude 

mountain ecosystems. Shi et al. [15] observed that immune genes in Maca root were up-

regulated during daytime and stress tolerance genes were up-regulated from October to 

December in the Yungui Plateau (3300 m above sea level). Alternative splicing (AS), 

coupled to nonsense-mediated decay (NMD), might act as an essential mechanism for 

Maca in its adaptation to a high-altitude ecosystem. These plants have to coordinate 

remobilization and relocation of metabolites in an extreme climate with low oxygen 

concentration and strong ultraviolet radiation in the Junín plateau (4138 m above sea 

level) [16]. Supplements of high-altitude medicines or natural products containing 

characteristic ingredients are associated with several other nutrients, so they seem to 

present ergogenic effects. Generally, soluble sugars, fatty acids, and alkaloids in alpine 

plants are highly sensitive to environmental stress. Nonetheless, it is not possible to 

attribute anti-fatigue properties to these ingredients only. Recent technological 

developments have revealed adaptive mechanisms of medical plants along the altitude 

gradient at the level of proteomics [17] and metabolomics [18]. Thus, high-altitude 

medicinal plants and fruits have attracted increasing interest for their versatile 

pharmacological and biological activities [7]. 

3. Environmental Stresses of Natural Plants at High Altitude 

3.1. Low Oxygen Concentration 

Medicinal plants have been the richest source of secondary metabolites extensively 

used in traditional and modern healthcare systems. The extreme environmental 

conditions of high-altitude region (i.e., low oxygen concentration, high ultraviolet (UV) 

radiation, extreme temperature, salinity, etc.) might affect plant growth and distribution 

[19]. Yet, how medicinal plants in response to high-altitude environmental stresses is not 

sufficiently studied [17]. In total, about 90 species of Crassulaceae family are native to the 

arctic regions of Eurasia and North America, which are cold-tolerant and characterized 

by hypoxia and strong UV radiation [20]. Compared with lowland cultivation, higher-

altitude colonized plants are exposed to rougher conditions. Their vegetation periods are 

shorter and produce more rhizome than root biomass, with higher content of bio-active 

compositions such as salidroside, tyrosol, rosarin, rosavin, and cinnamyl alcohol (trans-

cinnamic alcohol) [21]. 
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3.2. Ultraviolet Radiation 

High-altitude plants might remobilize and relocate some metabolites between source 

and sink organs [16]. In below-ground organs, the more bio-active ingredient of 

carbohydrate, glucosinolates, phenolics compounds, etc. were synthesized by some 

possible signaling pathways, which were reactive oxygen species (ROS)-related and/or 

UV-specific photoreceptors. Docking and enzyme kinetic studies indicated that enzymes 

of flavonoid biosynthesis pathway might confer plants with tolerance to UV-B and 

dehydration in planta [22]. Therefore, plants activated UV-B-induced compounds, such 

as flavonoids, antioxidants, etc., to protect the photosynthetic apparatus from permanent 

damage [23]. 

3.3. Extreme Climates 

The extreme climate of high-altitude regions, defined by stressors such as low 

temperature, limits plant growth and distribution, which affects the life cycle of plants 

[17]. Saussurea involucrata (Kar. et Kir.), a rare traditional medicinal plant, grows in high 

mountains covered by snow in the Tibet and Tianshan Mountains areas of China [24]. It 

takes more than 8 years to mature before harvest, under rather harsh climatic conditions. 

Different from the alpine plants above, Saussurea involucrata might be more involved in 

chilling and freezing tolerance via the cold-response signaling pathways and molecular 

metabolic reactions [25]. 

3.4. Other Factors 

The plateau ecosystem is recognized as the most vulnerable to various factors, such 

as natural ecological elements (symbiotic microbial community, herbivores) and 

anthropogenic activities (metal toxicity, air pollution). An analysis [26] of days to 

flowering (DTF) on Brassica species (Qinghai–Tibet Plateau) showed that the external 

environment affected herbivore pressure, vegetative growth, and its genetic self-

regulation. In addition, the genome size (GS) of turnip from plateau environments 

(Qinghai–Tibetan Plateau) was always smaller than that from lower latitudes (Yunnan 

Plateau), where 15.5% variation was observed [27]. Thus, turnip was conventionally 

named with regional characteristics for distinguishment (e.g., ‘Tibetan turnip’) and 

became a main source of food for inhabitants. Compared with plain areas, higher regions 

with arid and stressful environments (e.g., Qinghai–Tibet Plateau and Xinjiang areas) 

have proven profitable for the accumulation of the total glucosinolate in Brassica rapa L. 

[28,29]. 

4. Pharmacological Effects on Treatment of Fatigue-Related Disorders 

High-altitude plants contain flavonoids, polysaccharides, phenols, triterpenes, 

alkaloids, glycosides, and other main active ingredients (Table 1), and their 

pharmacological effects of anti-fatigue are mainly concentrated in scavenging free 

radicals, antioxidants, anti-inflammatory, and other effects such as neuromodulation and 

immune stimulation (Table S1). 

4.1. Neuroprotective Agent: Adjustment of the Level of the Central Neurotransmitters 

It is generally believed that central serotonergic and dopaminergic systems are fully 

engaged in central fatigue and onset of exercise-induced fatigue [30]. Neurotransmitter 

receptors, along with their transporters, are thought to be very important markers in the 

fatigue process. The enhancement of brain dopamine (DA), noradrenaline (NA), neural 

activity, and inhibition of the synthesis and metabolism of 5-HT could postpone the 

occurrence of fatigue [31]. The positive effects of alpine plants on exercise capacity 

declination via neuroprotection/stimulation during long-time exercise has been observed. 

Macamides demonstrated similar medicinal properties to cannabinoids via CB1 receptor 

activation in the central nervous system [32]. Rhodiola and salidroside are also well-known 
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for their neuroprotective and antidepressant activity [33]. Of course, alpine plants with 

compatibility and multiple targets acted on not only the autonomic nervous system (ANS) 

but also the hypothalamic pituitary–adrenal axis (HPA) to protect the central nervous 

system and resist fatigue [34]. The HPA axis is an important regulator of 

neurotransmitters, metabolites, and inflammatory cytokines. Sea buckthorn suppressed 

cortisol, adreno-cortico-tropic-hormone (ACTH) levels, and increased DA and 

norepinephrine levels [35]. 

4.2. Energy Supply and Metabolism: Maintainance of Energy Homeostasis 

Physiological fatigue can also be defined as a reduction in the force output and 

energy-generating capacity of a body after chronic exposure to work or usual activities at 

the same intensity. When exercise leads to exhaustion, peripheral fatigue and activation 

of muscle afferents probably contribute to limiting exercise performance [36]. Therefore, 

energy homeostasis maintains exercise capacity of the body, preventing exhaustion of 

physical energy reserves such as adenosine triphosphate (ATP), glycogen, and fat. Most 

traditional medicinal plants, especially those with polysaccharides such as are found in 

Tibetan medicines, generally possess the capacity to improve glycogen stores by 

increasing glycogen storage or delaying glycogen consumption, or both [5,8]. For 

example, ethanol extract of Maca increased glycogen uptake in an adipocyte cell line by 

mediating phosphorylation of insulin receptor (IR) and phosphatidylinositol-3-

kinase/protein kinase B (PI3K/AKT) pathways [37]. Generally, anti-fatigue natural plants 

improve exercise mainly by increasing glycogen storage, but also by regulating related 

metabolism. Various studies have demonstrated that supplements of high-altitude plants 

or active ingredients promote the recovery of fatigue in mice by regulating glucose 

metabolism [38], lipid metabolism [39], and energy metabolism [40]. The activation of 

amp-dependent protein kinase (AMPK) is the axis of energy homeostasis, highly involved 

in the regulation of biological energy metabolism. Some alpine plants [41] triggered 

AMPK catabolic pathways that produced ATP, while inhibiting energy-consuming 

anabolic activities mediated by mTOR, such as Chikusetsu saponin Iva (1400–4000 m) [42]. 

PPARγ and its coactivator-1α (PGC-1α), downstream genes of AMPK, were shown to 

have effects on glucose metabolism and energy metabolism-related genes [43], which 

were stimulated by Rhodiola sacra [41], Maca [44], or Saussurea involucrata (rutin) [45]. 

Recently, increasing evidence suggests that mitochondria are essential for maintaining 

energy homeostasis. Extract of Maca (macamides) [37], Rhodiola sacra (salidroside) [46], 

possessed marked anti-fatigue effects, which might enhance mitochondrial quality 

control, including mitophagy, mitochondrial dynamics, and biogenesis in mice. 

4.3. Removal of Accumulated Metabolites: Enhancement of Muscle and Organ Adaptation 

Metabolic stress, a physiological process during exercise, accelerates the declination 

of exercise capacity in muscle [47]. Blood lactate (BLA), blood urea nitrogen (BUN), and 

lactic dehydrogenase (LDH) activity are important indicators of body fatigue. They 

interfere with non-oxidative ATP production and glycogenolysis, protein and amino acid 

metabolism, ATP generation capacity, and removal of lactic acid in skeletal muscle. High-

altitude plants have functions of resisting fatigue, where they reduce metabolites 

accumulation and thus slow down exhaustion time and improve exercise endurance. The 

extract of Rhodiola rosea [40], Maca [4], sea buckthorn [48], and other anti-fatigue alpine 

plants [49] could clear the accumulation of BLA and BUN. Zhang et al. [10] found that 

macamides could increase LDH and creatine kinase (CK) levels, effectively eliminating 

BLA and BUN to attenuate skeletal muscle and myocardium damage. During high-

intensity exercises, other metabolites such as malondialdehyde (MDA), lactate, phosphate 

inorganic (Pi), and ions of hydrogen (H+) are also produced to damage the muscle, causing 

the dissolution of muscle cells. Supplementation of polysaccharides [50], and some 

flavonoids [45] and alkaloids [51], significantly reduced CK levels and enhanced exercise 
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endurance in mice. Additionally, elevation of alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST), glutamic oxaloacetic transaminase (GOT), and 

glutamic pyruvic transaminase (GPT) are predictors of heart and hepatocyte injury 

induced by intense physical activity. These increasing cytosolic enzyme level indicate that 

dysfunction of organs has occurred or is occurring. Chronic Rhodiola rosea extract 

supplementation significantly enhanced content of liver glycogen, and reduced GOT and 

GPT levels in a dose-dependent manner [40]. Thus, exercise-induced metabolic stress is 

alleviated by anti-fatigue plants via multiple metabolic networks that remove metabolite 

accumulation in a series of metabolic pathways, consistent with “catastrophe” models of 

fatigue [52]. 

4.4. Free Radical Scavenger: Antioxidant Activity 

Free radicals, such as hydroxyl radicals and superoxide anion radicals, are some by-

products produced in the process of metabolism of organisms. The generation and 

removal are in a dynamic equilibrium under normal circumstance. However, when 

exercising too vigorously, the acutely generated ROS are out of balance. Thus, free radicals 

accumulate and lead to oxidative stress, which is partly regarded as a causal factor for 

muscle damage and body tiredness [53]. Thus, exogenous sources of antioxidants are vital 

to cope with oxidative stress-induced fatigue in organisms, apart from endogenous 

antioxidant defense mechanisms [54]. Supplements of exogenous sources of antioxidants 

from high-altitude plants have a positive significance in the repair of oxidative injuries. In 

this way, physiological fatigue is eliminated via moving ROS, relieving oxidative stress, 

and keeping the balance between ROS and antioxidant system. A large number of high-

altitude medicines [46,55,56] prolonged mice exercise endurance via enzymatic 

antioxidant system, including superoxide dismutase (SOD), glutathione peroxidase 

(GSH-Px), and catalase (CAT). Extracts of Maca could activate the phosphorylation of 

AMPK, which was an important target for energy metabolism and treatment of fatigue 

[37]. In addition, Nrf2 is a new cell antioxidant regulator, while sulforaphane can induce 

expression [38,57]. Salidroside inhibited oxidative stress and inflammation by inducing 

Nox2 and Nox4 and reducing Nrf2 and NQO1 in denervated muscles [58]. 

4.5. Inflammatory Response Inhibitor: Anti-Inflammatory Activity 

Exhaustive exercise leads to excessive ROS production and accumulation and causes 

rapid release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), 

interleukin-1β (IL-1β), and interleukin-6 (IL-6), damaging biomembranes, proteins, and 

DNA. It is generally believed to be a convincing contributor to bodily dysfunctions, such 

as inflammatory diseases, vascular disorder, cognitive impairment, aging, and chronic 

fatigue [59]. High-altitude plants with anti-inflammatory activities, such as ethanoic 

extract from Maca [60], significantly inhibited the activities of TNF-α, IL-6, and IL-1β, and 

alleviated exercise-induced fatigue. In addition, macamides could also interacted the 

expression of analog of exogenous anandamide (AEA) and receptor (CB1) [32], so that it 

might reduce exercise-induced inflammatory nociception mediated by endocannabinoid 

[61,62]. IL-10 is an anti-inflammatory cytokine that can reduce antigen presentation, 

negatively regulating the activity of pro-inflammatory cytokines. For example, Rhodiola 

rosea [63] significantly potentiated serum levels of IL-10, thus preventing attenuation of 

pro-inflammatory cytokines as well as chemcytokines release. Furthermore, herbal 

supplements like sea buckthorn [64] downregulated the master immune transcription 

factor nuclear factor kappa B (NF-κB). Hou et al. [35] also found that sea buckthorn 

significantly inhibited the increase of serum corticosterone and adrenaline levels through 

the HPA axis under chronic stress (exhausted swimming, 10 min/day, 21 days). 

Meanwhile, mitogen-activated protein kinases (MAPK) are another important factor in 

regulation of inflammation. Anti-inflammatory activity of salidroside was partly linked 

to the blocking of the both NF-κB and MAPK signaling pathways [65]. 
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5. Conclusions and Prospects 

Plateau environmental stress on natural plants during their evolution has attracted 

considerable attention [66]. Along with an increase in altitude, the environment becomes 

harsher, which results in nutritional deficiencies, frost, ultraviolet radiation, and oxidative 

stress. Plant-related metabolites are highly abundant “background” metabolites that are 

involved with plant physiology changes, showing differential abundance under various 

stress conditions. Generally, soluble sugars, fatty acids, and alkaloids in alpine plants are 

highly sensitive to environmental stress. Nonetheless, it is not possible to attribute anti-

fatigue properties to these ingredients only. Alpine plants tend to be potential therapeutic 

strategies for greater tolerance to fatigue in traditional usage. The traditional medicinal 

high-altitude plants are also known as “Daodi herb” in TCM, which refers to geo-

authentic/authentic/genuine or superior medicinal herbal material. There is growing 

evidence that these plants may be also an advantageous strategy for the treatment of 

fatigue or sub-health, mainly through the aspects of neuroprotection and regulation of 

neurotransmitter disorder, regulation of energy supply and metabolism, delaying the 

accumulation of metabolites and promotion of mitochondrial function, antioxidant stress, 

and inflammatory response inhibition. Thus, the anti-fatigue ability of these plants and 

nutraceuticals might be highly correlated with stress acclimation. 

In recent years, there are several TCM plant databases, such as TCM Systems 

Pharmacology Database (TCMSP), and TCM Integrated Database (TCMID), that enhance 

and expand the medicinal applications of plants in many ways. However, they are not 

specifically designed for alpine plants and may lead to the absence of alpine plants. Thus, 

a regional database with alpine plants is needed in the future, and all of them for any 

pharmacological activity potentially useful against fatigue and related disorders. 

However, much still remains to be done since an alpine plant database would be made up 

of hundreds of unexploited medicinal plants. We expect that this review will provide a 

scientific basis for understanding medicinal plants with anti-fatigue effects at high 

altitude. These natural plants, products, or prescriptions deserve to be further clarified for 

market positioning, which is critical for relieving the stress of fatigue and improving 

quality of life and well-being in specific sub-health groups living on either plain or 

plateau. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Table S1: The main active ingredients and anti-fatigue mechanism of high-

altitude plants. 
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