An Automatic Recognition and Positioning Method for Point Source Targets on Satellite Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Positioning of Point Source Target Image
2.2. Point Source Target Image Recognition
2.2.1. Characteristics of Point Source Target Image
2.2.2. Pre-Recognition of Point Source Target Image
2.2.3. Mismatch Elimination
2.3. Subpixel Positioning of Point Source Target Image
3. Results
3.1. Experimental Data
3.2. Pre-Recognition Experiment Results
3.3. Elimination of False Matches
3.4. Subpixel Positioning Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Belward, A.S.; Skøien, J.O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Dowman, I.; Reuter, H.I. Global geospatial data from Earth observation: Status and issues. Int. J. Digit. Earth 2017, 10, 328–341. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Hu, X.; Su, Z. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite. ISPRS J. Photogramm. 2017, 124, 144–151. [Google Scholar] [CrossRef]
- Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction. ISPRS J. Photogramm. 2015, 100, 35–47. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Montanaro, M.; Lunsford, A.; Tesfaye, Z.; Wenny, B.; Reuter, D. Radiometric calibration methodology of the Landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 8803–8821. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 1127–11152. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T. PRISM on-orbit geometric calibration and DSM performance. IEEE Trans. Geosci. Remote 2009, 47, 4060–4073. [Google Scholar] [CrossRef]
- Radhadevi, P.V.; Solanki, S.S. In-flight geometric calibration of different cameras of IRS-P6 using a physical sensor model. Photogramm. Rec. 2008, 23, 69–89. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, K.; Zhao, R.; Zhang, G.; Cheng, K.; Zhou, P. Stitching images of dual-cameras onboard satellite. ISPRS J. Photogramm. 2017, 128, 274–286. [Google Scholar] [CrossRef]
- Yang, B.; Wang, M.; Xu, W.; Li, D.; Gong, J.; Pi, Y. Large-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images. ISPRS J. Photogramm. 2017, 134, 1–14. [Google Scholar] [CrossRef]
- Mulawa, D. On-orbit geometric calibration of the OrbView-3 high resolution imaging satellite. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 1–6. [Google Scholar]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectificartion, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Zhang, G.; Tang, X.M.; Li, D.; Huang, W.C.; Pan, H.B. Geometric calibration and accuracy assessment of ZiYuan-3 multispectral images. IEEE Trans. Geosci. Remote 2014, 52, 4161–4172. [Google Scholar] [CrossRef]
- Si, X.L.; Zhang, L.M.; Fu, X.K.; Zhu, X.Y.; Li, X.; Dou, X.H.; Yang, B.Y.; Wang, B.Y. Research of Satellite On-Orbit Geometric Calibration Method Based on Artificial Signs. J. Atmos. Environ. Opt. 2014, 9, 149–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Xiong, J.; Lu, Y.; Xiong, X. On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets. IEEE Trans. Geosci. Remote 2014, 52, 224–234. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, X.; Gong, J. In-orbit geometric calibration and validation of ZY-3 three-line cameras based on CCD-detector look angles. Photogramm. Rec. 2015, 30, 211–226. [Google Scholar] [CrossRef]
- Zhou, G.; Li, R. Accuracy evaluation of ground points from IKONOS high-resolution satellite imagery. Photogramm. Eng. Remote Sens. 2000, 66, 1103–1112. [Google Scholar]
- Tang, X.; Zhang, G.; Zhu, X.; Pan, H.; Jiang, Y.; Zhou, P.; Wang, X. Triple linear-array image geometry model of ZiYuan-3 surveying satellite and its validation. Int. J. Image Data Fusion 2013, 4, 33–51. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A. Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans. Geosci. Remote 2004, 42, 2747–2760. [Google Scholar] [CrossRef]
- Yoshida, M.; Murakami, H.; Mitomi, Y.; Hori, M.; Thome, K.J.; Clark, D.K.; Fukushima, H. Vicarious calibration of GLI by ground observation data. IEEE Trans. Geosci. Remote 2005, 43, 2167–2176. [Google Scholar] [CrossRef]
- Gao, H.L.; Gu, X.F.; Yu, T.; Gong, H.; Li, J.G.; Li, X.Y. HJ-1A HSI on-orbit radiometric calibration and validation research. Sci. China Technol. Sci. 2010, 53, 3119–3128. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; Ong, L.; Thome, K.; McCorkel, J. Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 816–826. [Google Scholar] [CrossRef]
- Schiller, S.J.; Silny, J. The SPecular Array Radiometric Calibration (SPARC) method: A new approach for absolute vicarious calibration in the solar reflective spectrum. In Proceedings of the Remote Sensing System Engineering III, 78130E, San Diego, CA, USA, 26 August 2010; Volume 7813. [Google Scholar]
- Xu, W.W.; Zhang, L.M.; Chen, H.Y.; Li, X.; Yang, B.Y.; Wang, J.X. In-Flight Radiometric Calibration of High Resolution Optical Satellite Sensor Using Reflected Point Sources. Acta Opt. Sin. 2017, 37, 340–347. [Google Scholar] [CrossRef]
- Rauchmiller, R.F.; Schowengerdt, R.A. Measurement of the Landsat Thematic Mapper modulation transfer function using an array of point sources. Opt. Eng. 1988, 27, 274334. [Google Scholar] [CrossRef]
- Robinet, F.; Leger, D.; Cerbelaud, H.; Lafont, S. Obtaining the MTF of a CCD imaging system using an array of point sources: Evaluation of performances. In Proceedings of the IGARSS ’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991; pp. 1357–1361. [Google Scholar]
- Leger, D.; Duffaut, J.; Robinet, F. MTF measurement using spotlight. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 2010–2012. [Google Scholar]
- Rangaswamy, M.K. Quickbird II: Two-Dimensional On-Orbit Modulation Transfer Function Analysis Using Convex Mirror Array. Ph.D. Thesis, Electrical Engineering Department, South Dakota State University, Brookings, SD, USA, 2003. [Google Scholar]
- Xue, F.; Blu, T. A novel SURE-based criterion for parametric PSF estimation. IEEE Trans. Image Process. 2015, 24, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Otsuzumi, K.; Ishihara, Y. PSF Estimation for Restoration of Zoom-Blurred Endoscope Images. J. Signal Process. 2016, 20, 213–216. [Google Scholar] [CrossRef]
- Huang, C.; Townshend, J.R.; Liang, S.; Kalluri, S.N.; DeFries, R.S. Impact of sensor’s point spread function on land cover characterization: Assessment and deconvolution. Remote Sens. Environ. 2002, 80, 203–212. [Google Scholar] [CrossRef]
- Storey, J.C. Landsat 7 on-orbit modulation transfer function estimation. In Proceedings of the Sensors, Systems, and Next-Generation Satellites V, Toulouse, France, 12 December 2001; Volume 4540. [Google Scholar]
- Yang, L.; Ren, J. Remote sensing image restoration using estimated point spread function. In Proceedings of the 2010 International Conference on Information, Networking and Automation (ICINA), Kunming, China, 18–19 October 2010; pp. 41–48. [Google Scholar]
- Fan, C.; Li, G.D.; Wu, C.Y.; Li, C.; Zhong, L. High Accurate Estimation of Point Spread Function Based on Improved Reconstruction of Slant Edge. Acta Geod. Cartogr. Sin. 2015, 44, 1219–1226. [Google Scholar] [CrossRef]
- Gao, H.T.; Liu, W.; He, H.Y.; Wu, M. Static PSF of TDI-CCD Measurement with multi-phase-knife Method. Opto-Electron. Eng. 2016, 43, 13–18. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. 1986, 6, 679–698. [Google Scholar] [CrossRef]
Category | Maximum | Minimum | Average Value |
---|---|---|---|
Point source image | 0.93 | 0.81 | 0.86 |
Nonpoint source image | 0.87 | 0.80 | 0.83 |
Error Type | Error Rate | |||||
---|---|---|---|---|---|---|
, | ||||||
I | 0 | 0 | 0 | 0 | 0 | 0 |
II | 13.9% | 16.7% | 0 | 0 | 0 | 13.9% |
III | 9.6% | 11.5% | 0 | 0 | 0 | 9.6% |
I | II | III | I | II | III | I | II | III | I | II | III |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | ||||||||
9.29 | 9.25 | 9.30 | 17.72 | 17.79 | 17.67 | 25.48 | 25.46 | 25.46 | 34.00 | 33.99 | 33.98 |
19.60 | 19.62 | 19.59 | 19.64 | 19.66 | 19.62 | 19.74 | 19.77 | 19.72 | 19.80 | 19.83 | 19.75 |
M5 | M6 | M7 | M8 | ||||||||
9.37 | 9.35 | 9.38 | 17.25 | 17.23 | 17.28 | 25.71 | 25.78 | 25.68 | 33.90 | 33.95 | 33.85 |
27.96 | 27.97 | 27.91 | 28.00 | 27.99 | 27.97 | 28.01 | 27.99 | 27.98 | 28.03 | 28.00 | 28.02 |
M9 | M10 | M11 | M12 | ||||||||
9.17 | 9.10 | 9.25 | 17.49 | 17.58 | 17.56 | 25.82 | 25.86 | 25.76 | 33.89 | 33.94 | 33.86 |
36.07 | 36.01 | 36.07 | 36.07 | 36.01 | 36.09 | 36.08 | 36.02 | 36.11 | 36.11 | 36.04 | 36.14 |
M13 | M14 | M15 | M16 | ||||||||
9.10 | 9.05 | 9.17 | 17.18 | 17.12 | 17.24 | 25.60 | 25.64 | 25.61 | 33.63 | 33.67 | 33.61 |
44.22 | 44.16 | 44.26 | 44.35 | 44.27 | 44.35 | 44.33 | 44.27 | 44.33 | 44.40 | 44.36 | 44.39 |
I | II | III | I | II | III | I | II | III | I | II | III |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | ||||||||
0.01 | −0.03 | 0.02 | 0 | 0.01 | −0.03 | 0.02 | 0 | 0.01 | −0.03 | 0.02 | 0 |
−0.003 | 0.017 | −0.013 | 0 | −0.003 | 0.017 | −0.013 | 0 | −0.003 | 0.017 | −0.013 | 0 |
M5 | M6 | M7 | M8 | ||||||||
0.003 | −0.017 | 0.013 | −0.003 | 0.003 | −0.017 | 0.013 | −0.003 | 0.003 | −0.017 | 0.013 | −0.003 |
0.013 | 0.023 | −0.036 | 0.014 | 0.013 | 0.023 | −0.036 | 0.014 | 0.013 | 0.023 | −0.036 | 0.014 |
M9 | M10 | M11 | M12 | ||||||||
−0.003 | −0.073 | 0.077 | −0.053 | −0.003 | −0.073 | 0.077 | −0.053 | −0.003 | −0.073 | 0.077 | −0.053 |
0.02 | −0.04 | 0.02 | 0.013 | 0.02 | −0.04 | 0.02 | 0.013 | 0.02 | −0.04 | 0.02 | 0.013 |
M13 | M14 | M15 | M16 | ||||||||
0.027 | −0.023 | −0.003 | 0 | 0.027 | −0.023 | −0.003 | 0 | 0.027 | −0.023 | −0.003 | 0 |
0.007 | −0.053 | 0.047 | 0.027 | 0.007 | −0.053 | 0.047 | 0.027 | 0.007 | −0.053 | 0.047 | 0.027 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zhang, Y.; Zhang, Z.; Yu, Y. An Automatic Recognition and Positioning Method for Point Source Targets on Satellite Images. ISPRS Int. J. Geo-Inf. 2018, 7, 434. https://doi.org/10.3390/ijgi7110434
Li K, Zhang Y, Zhang Z, Yu Y. An Automatic Recognition and Positioning Method for Point Source Targets on Satellite Images. ISPRS International Journal of Geo-Information. 2018; 7(11):434. https://doi.org/10.3390/ijgi7110434
Chicago/Turabian StyleLi, Kai, Yongsheng Zhang, Zhenchao Zhang, and Ying Yu. 2018. "An Automatic Recognition and Positioning Method for Point Source Targets on Satellite Images" ISPRS International Journal of Geo-Information 7, no. 11: 434. https://doi.org/10.3390/ijgi7110434
APA StyleLi, K., Zhang, Y., Zhang, Z., & Yu, Y. (2018). An Automatic Recognition and Positioning Method for Point Source Targets on Satellite Images. ISPRS International Journal of Geo-Information, 7(11), 434. https://doi.org/10.3390/ijgi7110434