Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographical Data
2.2. Atmospheric Cloudiness Data
2.3. Solar Insolation Data
2.4. Epidemiological Data (COVID-19 Data Sources)
2.5. Inclusion and Exclusion Criteria
2.6. Statistics
2.6.1. Variables
2.6.2. Data Verification and Transformation
2.7. Modeling
2.7.1. Linear Mixed-Effects
2.7.2. Linear Regression
2.7.3. Model Selection
3. Results
3.1. Aggregated Data
3.2. LME Modeling of Monthly Mortality and Insolation
3.3. LME Modeling of Monthly Mortality and Cloudiness
3.4. Time–Averaged Modeling
3.5. Space–Averaged Modeling
4. Discussion
4.1. Insolation
4.2. Cloudiness
4.3. Latitude (And Geographical Distribution)
4.4. Results of Granger Causality Tests
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
avg. | average |
Bosnia_and_H | Bosnia and Herzegovina |
CI | confidence interval |
COVID-19 | Coronavirus disease 2019 |
LME | linear mixed effect |
mil. | million |
NASA | National Aeronautics and Space Administration |
OLS | ordinary least squares |
quantile–quantile plot | |
REML | restricted maximum likelihood |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
Std. beta | standardized beta coefficient |
UK | The United Kingdom of Great Britain and Northern Ireland |
UV | Ultraviolet radiation |
UV-A | Ultraviolet radiation, type A |
UV-B | Ultraviolet radiation, type B |
VIF | Variable inflation factor |
Appendix A. Statistical Details
Appendix A.1. Monthly Cloudiness Data Points Used in This Study
Appendix A.2. Monthly Insolation Data Points Used in This Study
Appendix A.3. Monthly Mortality Data Points Used in This Study
Appendix A.4. LME Modeling of Monthly Mortality and Insolation
Dependent Variable: | |
---|---|
Monthly Mortality as | |
Previous Insolation Average | −0.01 *** |
(0.001) | |
Latitude | −0.12 *** |
(0.02) | |
Constant | 11.69 *** |
(0.92) | |
Observations | 342 |
Conditional | 0.57 |
Marginal | 0.45 |
Log Likelihood | −546.46 |
AIC | 1102.93 |
BIC | 1122.10 |
Appendix A.5. LME Modeling of Monthly Mortality and Cloudiness
Dependent Variable: | |
---|---|
Monthly Mortality as | |
Previous_Cloud_Fraction (i.e., in previous month) | 1.34 * |
(0.58) | |
Cloud_Fraction (i.e., in current month) | 2.94 *** |
(0.53) | |
Latitude | −0.11 *** |
(0.02) | |
Constant | 6.21 *** |
(0.83) | |
Observations | 342 |
Conditional | 0.24 |
Marginal | 0.16 |
Log Likelihood | −625.49 |
AIC | |
BIC | 1286.00 |
Appendix A.6. Time–Averaged Model Details
Dependent Variable: | |
---|---|
Avg. log1p (Deaths/Million) | |
Avg. Cloud Fraction | 5.62 * |
(2.28) | |
Latitude | −0.13 *** |
(0.03) | |
Constant | 6.97 *** |
(0.72) | |
Observations: | 37 |
R2 | 0.38 |
Adjusted R2 | 0.34 |
Residual Std. Error | 0.58 (df = 34) |
F Statistic | 10.30 *** (df = 2; 34) |
AIC | 69.74 |
BIC | 76.19 |
Appendix A.7. Space–Averaged Model Details
Dependent Variable: | |
---|---|
Avg. log1p (Deaths/Million) | |
Avg. previous insolation | −0.01 *** |
(0.002) | |
Constant | 6.05 *** |
(0.39) | |
Observations | 10 |
R2 | 0.82 |
Adjusted R2 | 0.79 |
Residual Std. Error | 0.46 (df = 8) |
F Statistic | 35.90 *** (df = 1; 8) |
AIC | 16.74 |
BIC | 17.65 |
Appendix A.8. Diagnostic Plots for Data Transformation
References
- Islam, M.M.; Noor, F.M. Correlation between COVID-19 and weather variables: A meta-analysis. Heliyon 2022, 8, e10333. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Yang, B.Y.; Wang, L.J.; Liao, K.; Sun, N.; Liu, Y.C.; Ma, R.F.; Yang, X.D. A meta-analysis result: Uneven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission. Environ. Res. 2022, 212, 113297. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, L.; Cai, D.; Li, B.; Yang, J. Association between meteorological factors and COVID-19: A systematic review. Int. J. Environ. Health Res. 2022, 33, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.D.; Zavaleta-Cortijo, C.; Ainembabazi, T.; Anza-Ramirez, C.; Arotoma-Rojas, I.; Bezerra, J.; Chicmana-Zapata, V.; Galappaththi, E.K.; Hangula, M.; Kazaana, C.; et al. Interactions between climate and COVID-19. Lancet Planet. Health 2022, 6, e825–e833. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Bo, Y.; Lin, C.; Li, H.B.; Zeng, Y.; Zhang, Y.; Hossain, M.S.; Chan, J.W.; Yeung, D.W.; Kwok, K.o.; et al. Meteorological factors and COVID-19 incidence in 190 countries: An observational study. Sci. Total Environ. 2021, 757, 143783. [Google Scholar] [CrossRef] [PubMed]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.D.; Su, X.Y.; Li, H.L.; Ma, R.F.; Qi, F.J.; Cao, Y.E. Impacts of socio-economic determinants, spatial distance and climate factors on the confirmed cases and deaths of COVID-19 in China. PLoS ONE 2021, 16, e0255229. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Portillo, A.; Garcia-Garcia, D.; Leon, I.; Ramis-Prieto, R.; Gómez-Barroso, D. Latitude and longitude as drivers of COVID-19 waves’ behavior in Europe: A time-space perspective of the pandemic. PLoS ONE 2023, 18, e0291618. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Dunstan, F.; Laird, E.; Subramanian, S.; Kenny, R.A. COVID-19 Mortality Increases with Northerly Latitude after Adjustment for Age Suggesting a Link with Ultraviolet and Vitamin D. BMJ Nutr. Prev. Health 2020, 3, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Soto-Díaz, K.; Chalen, I.; Gonzalez-Ricon, R.J.; Istanto, D.; Caetano-Anollés, G. Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide. Evol. Bioinform. 2021, 17, 1176934321989695. [Google Scholar] [CrossRef] [PubMed]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. SSRN Electron. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S. Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor. Sci. Rep. 2021, 11, 1981. [Google Scholar] [CrossRef] [PubMed]
- Ratnesar-Shumate, S.; Williams, G.; Green, B.; Krause, M.; Holland, B.; Wood, S.; Bohannon, J.; Boydston, J.; Freeburger, D.; Hooper, I.; et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J. Infect. Dis. 2020, 222, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Sagripanti, J.; Lytle, C.D. Estimated Inactivation of Coronaviruses by Solar Radiation With Special Reference to COVID-19. Photochem. Photobiol. 2020, 96, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Raiteux, J.; Eschlimann, M.; Marangon, A.; Rogée, S.; Dadvisard, M.; Taysse, L.; Larigauderie, G. Inactivation of SARS-CoV-2 by Simulated Sunlight on Contaminated Surfaces. Microbiol. Spectr. 2021, 9, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Hessling, M.; Lau, B.; Vatter, P. Review of Virus Inactivation by Visible Light. Photonics 2022, 9, 113. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Light as a Cure in COVID-19: A Challenge for Medicine. Photonics 2022, 9, 686. [Google Scholar] [CrossRef]
- Sadraeian, M.; Zhang, L.; Aavani, F.; Biazar, E.; Jin, D. Viral inactivation by light. eLight 2022, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, F.; Sironi, G.; Antonello, E.; Bianco, A.; Biasin, M.; Brucato, J.R.; Ermolli, I.; Pareschi, G.; Salvati, M.; Tozzi, P.; et al. Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Sci. Rep. 2021, 11, 14805. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.; Biegel, B.; Huang, L. Inactivation times from 290 to 315 nm UVB in sunlight for SARS coronaviruses CoV and CoV-2 using OMI satellite data for the sunlit Earth. Air Qual. Atmos. Health 2020, 14, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Karapiperis, C.; Kouklis, P.; Papastratos, S.; Chasapi, A.; Danchin, A.; Angelis, L.; Ouzounis, C.A. A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels. Viruses 2021, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.D.; Li, H.L.; Cao, Y.E. Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int. J. Environ. Res. Public Health 2021, 18, 484. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A. COVID-19 and air pollution and meteorology-an intricate relationship: A review. Chemosphere 2021, 263, 128297. [Google Scholar] [CrossRef] [PubMed]
- Kerr, G.H.; Badr, H.S.; Gardner, L.M.; Perez-Saez, J.; Zaitchik, B.F. Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations. ONE Health 2021, 12, 100225. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Ge, S.; Jones, T.; Santosh, M.; Silva, L.F.; Cao, Y.; Oliveira, M.L.; Zhang, M.; BéruBé, K. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geosci. Front. 2021, 12, 101189. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Han, J.; Zhang, L.; Wang, H.; Luo, X.; Meng, X.; Zhang, Y.; Niu, X.; Lan, Y.; Wu, S.; et al. Unanswered questions on the airborne transmission of COVID-19. Environ. Chem. Lett. 2023, 21, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Bourdrel, T.; Annesi-Maesano, I.; Alahmad, B.; Maesano, C.N.; Bind, M.A. The impact of outdoor air pollution on COVID-19: A review of evidence fromin vitro, animal, and human studies. Eur. Respir. Rev. 2021, 30, 200242. [Google Scholar] [CrossRef] [PubMed]
- Solimini, A.; Filipponi, F.; Fegatelli, D.A.; Caputo, B.; De Marco, C.M.; Spagnoli, A.; Vestri, A.R. A global association between COVID-19 cases and airborne particulate matter at regional level. Sci. Rep. 2021, 11, 6256. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Fernández-Martínez, M.; Cobo, S.; Badiella, L.; Sardans, J. Does urban particulate matter hinder COVID-19 transmission rate? Air Qual. Atmos. Health 2024, 17, 2307–2319. [Google Scholar] [CrossRef]
- Luzzatto-Fegiz, P.; Temprano-Coleto, F.; Peaudecerf, F.J.; Landel, J.R.; Zhu, Y.; McMurry, J.A. UVB Radiation Alone May Not Explain Sunlight Inactivation of SARS-CoV-2. J. Infect. Dis. 2021, 223, 1500–1502. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.L.; Boehm, A.B.; Davies-Colley, R.J.; Dodd, M.C.; Kohn, T.; Linden, K.G.; Liu, Y.; Maraccini, P.A.; McNeill, K.; Mitch, W.A.; et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modeling approaches. Environ. Sci. Process. Impacts 2018, 20, 1089–1122. [Google Scholar] [CrossRef] [PubMed]
- Kohn, T.; Nelson, K.L. Sunlight-Mediated Inactivation of MS2 Coliphage via Exogenous Singlet Oxygen Produced by Sensitizers in Natural Waters. Environ. Sci. Technol. 2006, 41, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Tyrovolas, S.; Tsiampalis, T.; Morena, M.; Leung, A.Y.M.; Faka, A.; Chalkias, C.; Tsiodras, S.; Panagiotakos, D. COVID-19 Mortality in Europe, by Latitude and Obesity Status: A Geo-Spatial Analysis in 40 Countries. Nutrients 2022, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, P.B. COVID-19 Fatalities, Latitude, Sunlight, and Vitamin D. Am. J. Infect. Control 2020, 48, 1042–1044. [Google Scholar] [CrossRef] [PubMed]
- Faes, C.; Abrams, S.; Van Beckhoven, D.; Meyfroidt, G.; Vlieghe, E.; Hens, N. Time between Symptom Onset, Hospitalisation and Recovery or Death: Statistical Analysis of Belgian COVID-19 Patients. Int. J. Environ. Res. Public Health 2020, 17, 7560. [Google Scholar] [CrossRef] [PubMed]
- Atamenta, T.; Cherie, A.; Alemu, W. Time to death and its predictors among adult patients with COVID-19: A retrospective cohort study in Ethiopia. Front. Epidemiol. 2023, 2, 1065184. [Google Scholar] [CrossRef] [PubMed]
- de Roquetaillade, C.; Bredin, S.; Lascarrou, J.B.; Soumagne, T.; Cojocaru, M.; Chousterman, B.G.; Leclerc, M.; Gouhier, A.; Piton, G.; Pène, F.; et al. Timing and causes of death in severe COVID-19 patients. Crit. Care 2021, 25, 224. [Google Scholar] [CrossRef] [PubMed]
- Wiliński, A.; Kupracz, L.; Senejko, A.; Chrzastek, G. COVID-19: Average time from infection to death in Poland, USA, India and Germany. Qual. Quant. 2022, 56, 4729–4746. [Google Scholar] [CrossRef] [PubMed]
- van Heerwaarden, C.C.; Guerau de Arellano, J.V. Relative Humidity as an Indicator for Cloud Formation over Heterogeneous Land Surfaces. J. Atmos. Sci. 2008, 65, 3263–3277. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Fan, J.; Liu, Y.; Rosenfeld, D.; Ding, Y. Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 2011, 4, 888–894. [Google Scholar] [CrossRef]
- Twohy, C.H.; Coakley, J.A.; Tahnk, W.R. Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Frederick, J.E.; Steele, H.D. The Transmission of Sunlight through Cloudy Skies: An Analysis Based on Standard Meteorological Information. J. Appl. Meteorol. 1995, 34, 2755–2761. [Google Scholar] [CrossRef]
- Jacovides, C.P.; Steven, M.D.; Asimakopoulos, D.N. Spectral Solar Irradiance and Some Optical Properties for Various Polluted Atmospheres. Sol. Energy 2000, 69, 215–227. [Google Scholar] [CrossRef]
- Frederick, J.E.; Erlick, C. The Attenuation of Sunlight by High-Latitude Clouds: Spectral Dependence and Its Physical Mechanisms. J. Atmos. Sci. 1997, 54, 2813–2819. [Google Scholar] [CrossRef]
- Patterson, T.; Kelso, N.V.; Furno, D.; Buckingham, T.; Buckingham, B.; Springer, N.; Cross, L.; Zillmer, S.; Haggit, C.; Bennet, S.; et al. Made with Natural Earth. Free Vector and Raster Map Data @ naturalearthdata.com. 2022. Available online: https://www.naturalearthdata.com/ (accessed on 1 February 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Massicotte, P.; South, A. Rnaturalearth: World Map Data from Natural Earth; R Package Version 1.0.1; 2023. Available online: https://CRAN.R-project.org/package=rnaturalearth (accessed on 8 July 2025).
- Pebesma, E.J.; Bivand, R. Classes and methods for spatial data in R. R News 2005, 5, 9–13. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R; Chapman and Hall/CRC: London, UK, 2023; p. 352. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; Comprehensive R Archive Network; R Package Version 3.6-32; 2025. Available online: https://CRAN.R-project.org/package=raster (accessed on 8 July 2025).
- Google Developers. Dataset Publishing Language: Country Centroids. 2012. Available online: https://developers.google.com/public-data/docs/canonical/countries_csv (accessed on 2 June 2021).
- OpenStreetMap Contributors. Planet Dump Retrieved from Planet OSM. 2017. Available online: https://www.openstreetmap.org (accessed on 2 February 2021).
- NASA, MODIS Atmosphere Science Team. Cloud Fraction. 2022. Available online: https://neo.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_CLD_FR (accessed on 1 July 2022).
- Douglass, D.H.; Clader, B.D. Climate Sensitivity of the Earth to Solar Irradiance. Geophys. Res. Lett. 2002, 29, 33-1–33-4. [Google Scholar] [CrossRef]
- Lean, J.; Rind, D. Climate Forcing by Changing Solar Radiation. J. Clim. 1998, 11, 3069–3094. [Google Scholar] [CrossRef]
- NASA, CERES/FLASHFlux Science Team. Solar Insolation. 2022. Available online: https://neo.gsfc.nasa.gov/view.php?datasetId=CERES_INSOL_M (accessed on 1 July 2022).
- Miller, A.R.; Charepoo, S.; Yan, E.; Frost, R.W.; Sturgeon, Z.J.; Gibbon, G.; Balius, P.N.; Thomas, C.S.; Schmitt, M.A.; Sass, D.A.; et al. Reliability of COVID-19 data: An evaluation and reflection. PLoS ONE 2022, 17, e0251470. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, V.; Vassilakis, E.; Hatzaki, M. Is Crowdsourcing a Reliable Method for Mass Data Acquisition? The Case of COVID-19 Spread in Greece During Spring 2020. ISPRS Int. J. Geo-Inf. 2020, 9, 605. [Google Scholar] [CrossRef]
- Baris, O.F.; Pelizzo, R. Research Note: Governance Indicators Explain Discrepancies in COVID-19 Data. World Aff. 2020, 183, 216–234. [Google Scholar] [CrossRef]
- Choucair, J.; Waked, R.; Saliba, G.; Haddad, F.; Haddad, E.; Makhoul, J. Discrepancy in reports of COVID-19 onset of symptoms: Are faulty data being collected? Clin. Microbiol. Infect. 2020, 26, 1433–1434. [Google Scholar] [CrossRef] [PubMed]
- Badker, R.; Miller, K.; Pardee, C.; Oppenheim, B.; Stephenson, N.; Ash, B.; Philippsen, T.; Ngoon, C.; Savage, P.; Lam, C.; et al. Challenges in reported COVID-19 data: Best practices and recommendations for future epidemics. BMJ Glob. Health 2021, 6, e005542. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, M.P.; Walkowiak, D. Underestimation in Reporting Excess COVID-19 Death Data in Poland during the First Three Pandemic Waves. Int. J. Environ. Res. Public Health 2022, 19, 3692. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.m.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases. J. Clin. Med. 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, E. A worldwide epidemiological database for COVID-19 at fine-grained spatial resolution. Sci. Data 2022, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, E.; Ardia, D. COVID-19 Data Hub. J. Open Source Softw. 2020, 5, 2376. [Google Scholar] [CrossRef]
- Worldometers.info. COVID-19 Coronavirus Pandemic. 2020. Available online: http://web.archive.org/web/20210607000129/https://www.worldometers.info/coronavirus/ (accessed on 1 June 2021).
- Das, C. Death Certificates in Germany, England, The Netherlands, Belgium and the USA. Eur. J. Health Law 2005, 12, 193–211. [Google Scholar] [CrossRef] [PubMed]
- Arnastauskaitė, J.; Ruzgas, T.; Bražėnas, M. An Exhaustive Power Comparison of Normality Tests. Mathematics 2021, 9, 788. [Google Scholar] [CrossRef]
- Gosselin, R.D. Testing for normality: A user’s (cautionary) guide. Lab. Anim. 2024, 58, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.U. Ranking of Normality Tests: An Appraisal through Skewed Alternative Space. Symmetry 2019, 11, 872. [Google Scholar] [CrossRef]
- Lee, D.K. Data transformation: A focus on the interpretation. Korean J. Anesthesiol. 2020, 73, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J. Notes on the use of data transformations. Pract. Assess. Res. Eval. 2002, 8. [Google Scholar] [CrossRef]
- Griffith, D.A. Reciprocal Data Transformations and Their Back-Transforms. Stats 2022, 5, 714–737. [Google Scholar] [CrossRef]
- R Core Team. Log: Logarithms and Exponentials; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means; R package Version 1.10.1; 2024. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 July 2025).
- Ben-Shachar, M.S.; Lüdecke, D.; Makowski, D. effectsize: Estimation of Effect Size Indices and Standardized Parameters. J. Open Source Softw. 2020, 5, 2815. [Google Scholar] [CrossRef]
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.S.; Wiernik, B.M. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN. 2023. Available online: https://easystats.github.io/report/ (accessed on 8 July 2025).
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests; R Package Version 0.7.2; 2023. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 8 July 2025).
- Hlavac, M. stargazer: Well-Formatted Regression and Summary Statistics Tables; R Package Version 5.2.3; Social Policy Institute: Bratislava, Slovakia, 2022. [Google Scholar]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science; R Package Version 2.8.17; 2024. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 8 July 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Meteyard, L.; Davies, R.A. Best practice guidance for linear mixed-effects models in psychological science. J. Mem. Lang. 2020, 112, 104092. [Google Scholar] [CrossRef]
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models: A Practical Guide Using Statistical Software, 1st ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Brown, V.A. An Introduction to Linear Mixed-Effects Modeling in R. Adv. Methods Pract. Psychol. Sci. 2021, 4, 251524592096035. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2012, 4, 133–142. [Google Scholar] [CrossRef]
- Nieminen, P. Application of Standardized Regression Coefficient in Meta-Analysis. BioMedInformatics 2022, 2, 434–458. [Google Scholar] [CrossRef]
- Ellis, P.D. (Ed.) The Essential Guide to Effect Sizes, 6th ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Venables, V.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Allison, P.D. Multiple Regression: A Primer, 1st ed.; Pine Forge Press: Newbury Park, CA, USA, 1999. [Google Scholar]
- Lopez, L.; Weber, S. Testing for Granger Causality in Panel Data. Stata J. Promot. Commun. Stat. Stata 2017, 17, 972–984. [Google Scholar] [CrossRef]
- Erbs, D.; Klein, S.; Duffie, J. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Kambezidis, H.D. The Solar Radiation Climate of Greece. Climate 2021, 9, 183. [Google Scholar] [CrossRef]
- Nichols, G.L.; Gillingham, E.L.; Macintyre, H.L.; Vardoulakis, S.; Hajat, S.; Sarran, C.E.; Amankwaah, D.; Phalkey, R. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 2021, 21, 1101. [Google Scholar] [CrossRef] [PubMed]
- Asyary, A.; Veruswati, M. Sunlight Exposure Increased COVID-19 Recovery Rates: A Study in the Central Pandemic Area of Indonesia. Sci. Total Environ. 2020, 729, 139016. [Google Scholar] [CrossRef] [PubMed]
- Korman, M.; Tkachev, V.; Reis, C.; Komada, Y.; Kitamura, S.; Gubin, D.; Kumar, V.; Roenneberg, T. Outdoor daylight exposure and longer sleep promote wellbeing under COVID-19 mandated restrictions. J. Sleep Res. 2021, 31, e13471. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.P.; Mamouri, R.E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, W.; Zhang, C.; Wang, X.; Wang, Y. Study on the influence of fog and haze on solar radiation based on scattering-weakening effect. Renew. Energy 2019, 134, 178–185. [Google Scholar] [CrossRef]
- Estupiñán, J.G.; Raman, S.; Crescenti, G.H.; Streicher, J.J.; Barnard, W.F. Effects of clouds and haze on UV-B radiation. J. Geophys. Res. Atmos. 1996, 101, 16807–16816. [Google Scholar] [CrossRef]
- Sabburg, J.; Calbó, J. Five years of cloud enhanced surface UV radiation measurements at two sites (in the Northern and Southern Hemispheres). Atmos. Res. 2009, 93, 902–912. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z. Contrasting Effects on Deep Convective Clouds by Different Types of Aerosols. Nat. Commun. 2018, 9, 3874. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.S.; Cavalli, L.; Fabrizi, E.; Guastella, G.; Lippo, E.; Parisi, M.L.; Pontarollo, N.; Rizzati, M.; Varacca, A.; Vergalli, S. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. Environ. Resour. Econ. 2020, 76, 611–634. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, J.; Armas, O.; Barroso-Arévalo, S.; Gortázar, C.; García-Seco, T.; Buendía-Andrés, A.; Villanueva, F.; Soriano, J.A.; Mazuecos, L.; Vaz-Rodrigues, R.; et al. Good and bad get together: Inactivation of SARS-CoV-2 in particulate matter pollution from different fuels. Sci. Total Environ. 2022, 844, 157241. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.T.; Cowley, L.O.; Simonds, S.E. The Physiological Effects of Air Pollution: Particulate Matter, Physiology and Disease. Front. Public Health 2022, 10, 882569. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Groisman, P.Y.; Bradley, R.S.; Keimig, F.T. Temporal Changes in the Observed Relationship between Cloud Cover and Surface Air Temperature. J. Clim. 2000, 13, 4341–4357. [Google Scholar] [CrossRef]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The Effect of Temperature on Persistence of SARS-CoV-2 on Common Surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef] [PubMed]
- Nandin de Carvalho, H. Latitude impact on pandemic Sars-CoV-2 2020 outbreaks and possible utility of UV indexes in predictions of regional daily infections and deaths. J. Photochem. Photobiol. 2022, 10, 100108. [Google Scholar] [CrossRef] [PubMed]
- Nordhaus, W.D. Geography and macroeconomics: New data and new findings. Proc. Natl. Acad. Sci. USA 2006, 103, 3510–3517. [Google Scholar] [CrossRef] [PubMed]
- Pawliczek, A.; Kurowska-Pysz, J.; Smilnak, R. Relation between Globe Latitude and the Quality of Life: Insights for Public Policy Management. Sustainability 2022, 14, 1461. [Google Scholar] [CrossRef]
- Gong, Z.; Song, T.; Hu, M.; Che, Q.; Guo, J.; Zhang, H.; Li, H.; Wang, Y.; Liu, B.; Shi, N. Natural and socio-environmental factors in the transmission of COVID-19: A comprehensive analysis of epidemiology and mechanisms. BMC Public Health 2024, 24, 2196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.; Ao, Z.; Xiao, K.; Yan, C.; Xin, Q. Gap-Filling and Missing Information Recovery for Time Series of MODIS Data Using Deep Learning-Based Methods. Remote Sens. 2022, 14, 4692. [Google Scholar] [CrossRef]
- Chi, Y.; Wu, Z.; Liao, K.; Ren, Y. Handling Missing Data in Large-Scale MODIS AOD Products Using a Two-Step Model. Remote Sens. 2020, 12, 3786. [Google Scholar] [CrossRef]
- Liu, H.; Lu, N.; Jiang, H.; Qin, J.; Yao, L. Filling Gaps of Monthly Terra/MODIS Daytime Land Surface Temperature Using Discrete Cosine Transform Method. Remote Sens. 2020, 12, 361. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Jin, J.Q.; Zhang, R.; Zhang, T.H.; Chen, J.J.; Yang, J.; Ou, C.Q.; Guo, Y. Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels. Remote Sens. 2020, 12, 3008. [Google Scholar] [CrossRef]
- Deegan, J. On the Occurrence of Standardized Regression Coefficients Greater Than One. Educ. Psychol. Meas. 1978, 38, 873–888. [Google Scholar] [CrossRef]
- Johnston, R.; Jones, K.; Manley, D. Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual. Quant. 2017, 52, 1957–1976. [Google Scholar] [CrossRef] [PubMed]
- Gatrell, A.C.; Bailey, T.C.; Diggle, P.J.; Rowlingson, B.S. Spatial Point Pattern Analysis and Its Application in Geographical Epidemiology. Trans. Inst. Br. Geogr. 1996, 21, 256. [Google Scholar] [CrossRef]
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2020, 19, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Marrast, L.; Conigliaro, J. COVID-19: Magnifying the Effect of Health Disparities. J. Gen. Intern. Med. 2020, 35, 2441–2442. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef] [PubMed]
- King, P.E. Problems of spatial analysis in geographical epidemiology. Soc. Sci. Med. Part D Med. Geogr. 1979, 13, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, F.; Redelmeier, D.A. COVID-19 deaths on weekends. BMC Public Health 2023, 23, 1596. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Sella, Y.; Agre, P.; Casadevall, A. Oscillations in U.S. COVID-19 Incidence and Mortality Data Reflect Diagnostic and Reporting Factors. mSystems 2020, 5, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Iftime, A.; Omer, S.; Burcea, V.A.; Calinescu, O.; Babes, R.M. Monthly Values of Solar Irradiance, Cloud Fraction, COVID-19 Mortality, for European Countries in 2020. Zendo Open Data Repository. 2025. Available online: https://zenodo.org/records/15481351 (accessed on 21 May 2025).
Statistic | N | Median | Mean | St.Dev | Min | Max | Skewness |
---|---|---|---|---|---|---|---|
Monthly insolation | 370 | 213.34 | 190.77 | 97.46 | 1.31 | 404.12 | –0.27 |
(as W/) | |||||||
Monthly cloud fraction | 370 | 0.64 | 0.62 | 0.17 | 0.07 | 0.96 | –0.55 |
(as decimal fraction) | |||||||
Monthly deaths | 342 | 169 | 1515.23 | 3846.44 | 0 | 33,854 | 4.47 |
Monthly mortality | 342 | 23.16 | 81.51 | 120.31 | 0 | 600.32 | 2.01 |
(as deaths/million) | |||||||
(deaths/million) | 342 | 3.18 | 3.29 | 1.64 | 0 | 6.40 | –0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftime, A.; Omer, S.; Burcea, V.-A.; Călinescu, O.; Babeș, R.-M. Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation. ISPRS Int. J. Geo-Inf. 2025, 14, 283. https://doi.org/10.3390/ijgi14080283
Iftime A, Omer S, Burcea V-A, Călinescu O, Babeș R-M. Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation. ISPRS International Journal of Geo-Information. 2025; 14(8):283. https://doi.org/10.3390/ijgi14080283
Chicago/Turabian StyleIftime, Adrian, Secil Omer, Victor-Andrei Burcea, Octavian Călinescu, and Ramona-Madalina Babeș. 2025. "Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation" ISPRS International Journal of Geo-Information 14, no. 8: 283. https://doi.org/10.3390/ijgi14080283
APA StyleIftime, A., Omer, S., Burcea, V.-A., Călinescu, O., & Babeș, R.-M. (2025). Spatial and Temporal Correlations of COVID-19 Mortality in Europe with Atmospheric Cloudiness and Solar Radiation. ISPRS International Journal of Geo-Information, 14(8), 283. https://doi.org/10.3390/ijgi14080283