Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cell Lines, Culture, and Experimental Conditions
2.3. Macrophage Migration Assay
2.4. Assessment of the Capacity of Palmitoyl Epigallocatechin Gallate to Modulate THP-1 Monocytic Cell Differentiation Towards M1 and M2 Phenotypes
2.5. Profiling Interleukin Environments
2.6. Statistical Analysis
3. Results and Discussion
3.1. Interleukin Profile Produced by Intestinal Epithelium After Treating Cells with EGCG and PEGCG
3.1.1. Modulation of Pro-Inflammatory Interleukins Secreted by a Caco-2-Based Intestinal Barrier Under Inflammatory Conditions
3.1.2. Modulation of Anti-Inflammatory Interleukins Secreted by a Monolayer Caco-2-Based Intestinal Barrier Under Inflammatory Conditions
3.2. Differential Capacity of PEGCG and EGCG to Modulate Macrophage Migration into the Inflammasome
3.3. Polarisation of Macrophage Differentiation Towards M1/M2 Phenotypes by PEGCG vs. EGCG
3.3.1. Contribution of PEGCG and EGCG to the Macrophage Polarisation Towards Pro-Inflammatory (M1) Cells
3.3.2. Contribution of PEGCG and EGCG to Macrophage Polarisation Towards Anti-Inflammatory (M2) Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BSA | Bovine serum albumin |
Caco-2 | Human colon adenocarcinoma cell line |
COX-2 | Cyclooxygenase-2 |
EDTA | Trypsin-ethylenediaminetetraacetic acid |
EGCG | Epigallocatechin gallate |
EGCG-DHA | Epigallocatechin gallate-docosahexaenoic acid |
EGCG-DPA | Epigallocatechin gallate-docosapentanoic acid |
EMEM | Eagle’s minimum essential medium |
FBS | Foetal bovine serum |
IBD | Intestinal bowel disease |
IFN-γ | Interferon gamma |
IL | Interleukin |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
MIF | Macrophage migration inhibitory factor |
NF-κB | Nuclear factor κB |
NO | Nitric oxide |
PBS | Phosphate-buffered saline |
PEGCG | Palmitoyl epigallocatechin gallate |
PGE2 | Prostaglandin E2 |
PMA | Phorbol 12-myristate 13-acetate |
RPMI | Roswell Park Memorial Institute Medium |
SD | Standard deviation |
THP-1 | Human monocytic cell line |
TNF-α | Tumour necrosis factor-alpha |
References
- Kaplan, G.G.; Ng, S.C. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology 2017, 152, 313–321.e2. [Google Scholar] [CrossRef] [PubMed]
- Hracs, L.; Windsor, J.W.; Gorospe, J.; Cummings, M.; Coward, S.; Buie, M.J.; Quan, J.; Goddard, Q.; Caplan, L.; Markovinović, A.; et al. Global Evolution of Inflammatory Bowel Disease across Epidemiologic Stages. Nature 2025, 642, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Holman, J.; Hurd, M.; Moses, P.L.; Mawe, G.M.; Zhang, T.; Ishaq, S.L.; Li, Y. Interplay of Broccoli/Broccoli Sprout Bioactives with Gut Microbiota in Reducing Inflammation in Inflammatory Bowel Diseases. J. Nutr. Biochem. 2023, 113, 109238. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.D.; Wang, Y.D. The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Front. Microbiol. 2020, 11, 1065. [Google Scholar] [CrossRef]
- Ahn, J.; Hayes, R.B. Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annu. Rev. Public Health 2020, 42, 277–292. [Google Scholar] [CrossRef]
- Hakansson, A.; Molin, G. Gut Microbiota and Inflammation. Nutrients 2011, 3, 637–687. [Google Scholar] [CrossRef]
- Tracey, K.J. The Inflammatory Reflex. Nature 2002, 420, 853–859. [Google Scholar] [CrossRef]
- Niero, M.; Bartoli, G.; De Colle, P.; Scarcella, M.; Zanetti, M. Impact of Dietary Fiber on Inflammation and Insulin Resistance in Older Patients: A Narrative Review. Nutrients 2023, 15, 2365. [Google Scholar] [CrossRef]
- Xiang, M.S.W.; Tan, J.K.; Macia, L. Fatty Acids, Gut Bacteria, and Immune Cell Function. In The Molecular Nutrition of Fats; Academic Press: Cambridge, MA, USA, 2019; pp. 151–164. [Google Scholar]
- Costa-Pérez, A.; Sánchez-Bravo, P.; Medina, S.; Domínguez-Perles, R.; García-Viguera, C. Bioaccessible Organosulfur Compounds in Broccoli Stalks Modulate the Inflammatory Mediators Involved in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 800. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bravo, P.; Costa-Pérez, A.; García-Viguera, C.; Domínguez-Perles, R.; Medina, S. Prevention of Inflammation and Oxidative Stress by New Ingredients Based on High (Poly) Phenols Winery by-Products. JSFA Rep. 2025, 5, 40–49. [Google Scholar] [CrossRef]
- Capasso, L.; De Masi, L.; Sirignano, C.; Maresca, V.; Basile, A.; Nebbioso, A.; Rigano, D.; Bontempo, P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025, 30, 654. [Google Scholar] [CrossRef]
- Benincasa, C.; La Torre, C.; Fazio, A.; Perri, E.; Caroleo, M.C.; Plastina, P.; Cione, E. Identification of Tyrosyl Oleate as a Novel Olive Oil Lipophenol with Proliferative and Antioxidant Properties in Human Keratinocytes. Antioxidants 2021, 10, 1051. [Google Scholar] [CrossRef]
- Crauste, C.; Rosell, M.; Durand, T.; Vercauteren, J. Omega-3 Polyunsaturated Lipophenols, How and Why? Biochimie 2016, 120, 62–74. [Google Scholar] [CrossRef]
- Arzola-Rodríguez, S.I.; Muñoz-Castellanos, L.N.; López-Camarillo, C.; Salas, E. Phenolipids, Amphipilic Phenolic Antioxidants with Modified Properties and Their Spectrum of Applications in Development: A Review. Biomolecules 2022, 12, 1897. [Google Scholar] [CrossRef]
- Meshginfar, N.; Tavakoli, H.; Dornan, K.; Hosseinian, F. Phenolic Lipids as Unique Bioactive Compounds: A Comprehensive Review on Their Multifunctional Activity toward the Prevention of Alzheimer’s Disease. Crit. Rev. Food Sci. Nutr. 2021, 61, 1394–1403. [Google Scholar] [CrossRef]
- Fernando, W.; Coombs, M.R.P.; Hoskin, D.W.; Rupasinghe, H.P.V. Docosahexaenoic Acid-Acylated Phloridzin, a Novel Polyphenol Fatty Acid Ester Derivative, Is Cytotoxic to Breast Cancer Cells. Carcinogenesis 2016, 37, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Luo, S.Z.; Zheng, Z.; Zhao, Y.Y.; Pang, M.; Jiang, S.T. Enzymatic Lipophilization of Epicatechin with Free Fatty Acids and Its Effect on Antioxidative Capacity in Crude Camellia Seed Oil. J. Sci. Food Agric. 2017, 97, 868–874. [Google Scholar] [CrossRef]
- Ramadan, M.F. Chemistry and Functionality of Lipo-Phenolics. In Pheno-Phospholipids and Lipo-Phenolics; Springer Nature: Cham, Switzerland, 2021; pp. 35–63. ISBN 978-3-030-67398-7. [Google Scholar] [CrossRef]
- Zhong, Y.; Chiou, Y.S.; Pan, M.H.; Shahidi, F. Anti-Inflammatory Activity of Lipophilic Epigallocatechin Gallate (EGCG) Derivatives in LPS-Stimulated Murine Macrophages. Food Chem. 2012, 134, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, L.M.; Jones, G.R.; Bain, C.C. Macrophages in Intestinal Homeostasis and Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, M.; Wang, L.; Chen, W. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, J.; Yan, W.; Xu, L. Macrophage Polarization in Inflammatory Bowel Disease. Cell Commun. Signal. 2023, 21, 367. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Almatroudi, A.; Alsahli, M.A.; Aljasir, M.A.; Syed, M.A.; Rahmani, A.H. Epigallocatechin-3-Gallate (EGCG), an Active Compound of Green Tea Attenuates Acute Lung Injury Regulating Macrophage Polarization and Krüpple-Like-Factor 4 (KLF4) Expression. Molecules 2020, 25, 2853. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Paglicawan, L.; Soomro, S.; Abunofal, O.; Baig, S.; Vanarsa, K.; Hicks, J.; Mohan, C. Epigallocatechin-3-Gallate Dampens Non-Alcoholic Fatty Liver by Modulating Liver Function, Lipid Profile and Macrophage Polarization. Nutrients 2021, 13, 599. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kang, Z.; Yan, W. Synthesis, Stability, and Antidiabetic Activity Evaluation of (−)-Epigallocatechin Gallate (EGCG) Palmitate Derived from Natural Tea Polyphenols. Molecules 2021, 26, 393. [Google Scholar] [CrossRef]
- Medrano-Padial, C.; Fuentes-Soriano, P.; Hernández-Prieto, D.; García-Viguera, C.; Domínguez-Perles, R.; Romero-Nieto, C.; Medina, S. Palmitoyl-Epigallocatechin Gallate Modulates COX-2-Based Production of Inflammation-Related Oxylipins: Synthesis, Characterisation, and Bioevaluation in Vitro and in Silico. ACS Omega 2025, 10, 34917–34929. [Google Scholar] [CrossRef]
- Medrano-Padial, C.; García-Viguera, C.; Domínguez-Perles, R.; Medina, S. Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol. Molecules 2025, 30, 2889. [Google Scholar] [CrossRef]
- Van De Walle, J.; Hendrickx, A.; Romier, B.; Larondelle, Y.; Schneider, Y.J. Inflammatory Parameters in Caco-2 Cells: Effect of Stimuli Nature, Concentration, Combination and Cell Differentiation. Toxicol. In Vitro 2010, 24, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Eyer, P.; Eddleston, M.; Thiermann, H.; Worek, F.; Buckley, N.A. Are We Using the Right Dose?—A Tale of Mole and Gram. Br. J. Clin. Pharmacol. 2008, 66, 451. [Google Scholar] [CrossRef]
- Singh, Y.; Salker, M.S.; Lang, F. Green Tea Polyphenol-Sensitive Calcium Signaling in Immune T Cell Function. Front. Nutr. 2021, 7, 616934. [Google Scholar] [CrossRef]
- Kucera, O.; Mezera, V.; Moravcova, A.; Endlicher, R.; Lotkova, H.; Drahota, Z.; Cervinkova, Z. In Vitro Toxicity of Epigallocatechin Gallate in Rat Liver Mitochondria and Hepatocytes. Oxidative Med. Cell. Longev. 2015, 2015, 476180. [Google Scholar] [CrossRef] [PubMed]
- De Luna, N.; Gallardo, E.; Sonnet, C.; Chazaud, B.; Dominguez-Perles, R.; Suarez-Calvet, X.; Gherardi, R.K.; Illa, I. Role of Thrombospondin 1 in Macrophage Inflammation in Dysferlin Myopathy. J. Neuropathol. Exp. Neurol. 2010, 69, 643–653. [Google Scholar] [CrossRef]
- Chathangad, S.N.; Vijayan, V.N.; Bovas, N.A.; Sahadevan, R.; Sadhukhan, S. Membrane-Active Amphiphilic EGCG Derivatives and Their Silver Nanoparticles-Formulation as Broad-Spectrum Antibacterial and Antibiofilm Agents. ACS Appl. Nano Mater. 2024, 7, 18920–18931. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Kalafateli, M.; Tsounis, E.P.; Triantos, C. Exploring the Role of IL-1β in Inflammatory Bowel Disease Pathogenesis. Front. Med. 2024, 11, 1307394. [Google Scholar] [CrossRef]
- Kuenzig, M.E.; Fung, S.G.; Marderfeld, L.; Mak, J.W.Y.; Kaplan, G.G.; Ng, S.C.; Wilson, D.C.; Cameron, F.; Henderson, P.; Kotze, P.G.; et al. Twenty-First Century Trends in the Global Epidemiology of Pediatric-Onset Inflammatory Bowel Disease: Systematic Review. Gastroenterology 2022, 162, 1147–1159. [Google Scholar] [CrossRef]
- Coccia, M.; Harrison, O.J.; Schiering, C.; Asquith, M.J.; Becher, B.; Powrie, F.; Maloy, K.J. IL-1β Mediates Chronic Intestinal Inflammation by Promoting the Accumulation of IL-17A Secreting Innate Lymphoid Cells and CD4+ Th17 Cells. J. Exp. Med. 2012, 209, 1595–1609. [Google Scholar] [CrossRef] [PubMed]
- Mortha, A.; Burrows, K. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells. Front. Immunol. 2018, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Barksby, H.E.; Lea, S.R.; Preshaw, P.M.; Taylor, J.J. The Expanding Family of Interleukin-1 Cytokines and Their Role in Destructive Inflammatory Disorders. Clin. Exp. Immunol. 2007, 149, 217–225. [Google Scholar] [CrossRef]
- Sun, M.; He, C.; Cong, Y.; Liu, Z. Regulatory Immune Cells in Regulation of Intestinal Inflammatory Response to Microbiota. Mucosal Immunol. 2015, 8, 969–978. [Google Scholar] [CrossRef]
- Sander, L.E.; Obermeier, F.; Dierssen, U.; Kroy, D.C.; Singh, A.K.; Seidler, U.; Streetz, K.L.; Lutz, H.H.; Muller, W.; Tacke, F.; et al. Gp130 Signaling Promotes Development of Acute Experimental Colitis by Facilitating Early Neutrophil/Macrophage Recruitment and Activation. J. Immunol. 2008, 181, 3586–3594. [Google Scholar] [CrossRef]
- Beagley, K.W.; Eldridge, J.H.; Lee, F.; Kiyono, H.; Everson, M.P.; Koopman, W.J.; Hirano, T.; Kishimoto, T.; Mcghee, J.R. Interleukins and IgA Synthesis. Human and Murine Interleukin 6 Induce High Rate IgA Secretion in IgA-Committed B Cells. J. Exp. Med. 1989, 169, 2133–2148. [Google Scholar] [CrossRef]
- Hansen, I.S.; Baeten, D.L.P.; den Dunnen, J. The Inflammatory Function of Human IgA. Cell. Mol. Life Sci. 2019, 76, 1041–1055. [Google Scholar] [CrossRef]
- Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017, 38, 310–322. [Google Scholar] [CrossRef]
- Lee, C.; Song, J.H.; Cha, Y.E.; Chang, D.K.; Kim, Y.H.; Hong, S.N. Intestinal Epithelial Responses to IL-17 in Adult Stem Cell-Derived Human Intestinal Organoids. J. Crohns Colitis 2022, 16, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased Expression of Interleukin 17 in Inflammatory Bowel Disease. Gut 2003, 52, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Landy, E.; Carol, H.; Ring, A.; Canna, S. Biological and Clinical Roles of IL-18 in Inflammatory Diseases. Nat. Rev. Rheumatol. 2023, 20, 33–47. [Google Scholar] [CrossRef]
- Wawrocki, S.; Druszczynska, M.; Kowalewicz-Kulbat, M.; Rudnicka, W. Interleukin 18 (IL-18) as a Target for Immune Intervention. Acta Biochim. Pol. 2016, 63, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Korta, A.; Kula, J.; Gomułka, K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 10172. [Google Scholar] [CrossRef]
- Moschen, A.R.; Tilg, H.; Raine, T. IL-12, IL-23 and IL-17 in IBD: Immunobiology and Therapeutic Targeting. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 185–196. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, J.; Wang, Y.; Lin, J.; Yu, H.; Yang, F.; Wu, S.; Yin, J.; Lv, H.; Ji, X.; et al. Promotion Effect of EGCG on the Raised Expression of IL-23 through the Signaling of STAT3-BATF2-c-JUN/ATF2. J. Agric. Food Chem. 2021, 69, 7898–7909. [Google Scholar] [CrossRef]
- Veltkamp, C.; Anstaett, M.; Wahl, K.; Möller, S.; Gangl, S.; Bachmann, O.; Hardtke-Wolenski, M.; Länger, F.; Stremmel, W.; Manns, M.P.; et al. Apoptosis of Regulatory T Lymphocytes Is Increased in Chronic Inflammatory Bowel Disease and Reversed by Anti-TNFα Treatment. Gut 2011, 60, 1345–1353. [Google Scholar] [CrossRef]
- Reyes, E.A.; Castillo-Azofeifa, D.; Rispal, J.; Wald, T.; Zwick, R.K.; Palikuqi, B.; Mujukian, A.; Rabizadeh, S.; Gupta, A.R.; Gardner, J.M.; et al. Epithelial TNF Controls Cell Differentiation and CFTR Activity to Maintain Intestinal Mucin Homeostasis. J. Clin. Investig. 2023, 133, e163591. [Google Scholar] [CrossRef]
- Dosh, R.H.; Jordan-Mahy, N.; Sammon, C.; Le Maitre, C. Interleukin 1 Is a Key Driver of Inflammatory Bowel Disease-Demonstration in a Murine IL-1Ra Knockout Model. Oncotarget 2019, 10, 3559–3575. [Google Scholar] [CrossRef]
- Sims, J.E.; Smith, D.E. The IL-1 Family: Regulators of Immunity. Nat. Rev. Immunol. 2010, 10, 89–102. [Google Scholar] [CrossRef]
- Hamza, T.; Barnett, J.B.; Li, B. Interleukin 12 a Key Immunoregulatory Cytokine in Infection Applications. Int. J. Mol. Sci. 2010, 11, 789. [Google Scholar] [CrossRef]
- Xu, X.; Li, K.; Liu, Q.; Zhang, H.; Li, L. Epigallocatechin Gallate Alleviates Lipopolysaccharide-Induced Intestinal Inflammation in Wenchang Chicken by Inhibiting the TLR4/MyD88/NF-ΚB Signaling Pathway. Vet. Sci. 2025, 12, 225. [Google Scholar] [CrossRef]
- Heller, F.; Florian, P.; Bojarski, C.; Richter, J.; Christ, M.; Hillenbrand, B.; Mankertz, J.; Gitter, A.H.; Bürgel, N.; Fromm, M.; et al. Interleukin-13 Is the Key Effector Th2 Cytokine in Ulcerative Colitis That Affects Epithelial Tight Junctions, Apoptosis, and Cell Restitution. Gastroenterology 2005, 129, 550–564. [Google Scholar] [CrossRef] [PubMed]
- Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Hossen, I.; Zhang, K.; Wu, H.; Xiao, J.; Huang, M.; Cao, Y. Epigallocatechin Gallate (EGCG) Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage Cells via Modulating Nuclear Factor Kappa-Light-Chain Enhancer of Activated B Cells (NF-ΚB) Signaling Pathway. Food Sci. Nutr. 2023, 11, 4634–4650. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Abe, R.; Makino, T.; Norisugi, O.; Fujita, Y.; Watanabe, H.; Nishihira, J.; Iwakura, Y.; Yamagishi, S.-i.; Shimizu, H.; et al. Interleukin-1β and Macrophage Migration Inhibitory Factor (MIF) in Dermal Fibroblasts Mediate UVA-Induced Matrix Metalloproteinase-1 Expression. J. Dermatol. Sci. 2008, 49, 63–72. [Google Scholar] [CrossRef]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage Migration Inhibitory Factor (MIF): A Multifaceted Cytokine Regulated by Genetic and Physiological Strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.U.; Park, Y.M. The Effect of Green Tea Polyphenols on Macrophage Migration Inhibitory Factor-associated Steroid Resistance. Br. J. Dermatol. 2012, 166, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, H.; Lötvall, J.; Skoogh, B.E.; Lindén, A. Neutrophil Recruitment by Interleukin-17 into Rat Airways in Vivo: Role of Tachykinins. Am. J. Respir. Crit. Care Med. 1999, 159, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ge, D.; Ma, L.; Mei, J.; Liu, S.; Zhang, Q.; Ren, F.; Liao, H.; Pu, Q.; Wang, T.; et al. Interleukin-17 and Prostaglandin E2 Are Involved in Formation of an M2 Macrophage-Dominant Microenvironment in Lung Cancer. J. Thorac. Oncol. 2012, 7, 1091–1100. [Google Scholar] [CrossRef]
- Lapointe, T.K.; Buret, A.G. Interleukin-18 Facilitates Neutrophil Transmigration via Myosin Light Chain Kinase-Dependent Disruption of Occludin, without Altering Epithelial Permeability. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, 302. [Google Scholar] [CrossRef]
- Vera, M.J.; Guajardo, F.; Urra, F.A.; Tobar, N.; Martínez, J. TNF-Alpha Promotes an Inflammatory Mammary Microenvironment That Favors Macrophage and Epithelial Migration in a CCL2- and Mitochondrial-ROS-Dependent Manner. Antioxidants 2023, 12, 813. [Google Scholar] [CrossRef]
- Genin, M.; Clement, F.; Fattaccioli, A.; Raes, M.; Michiels, C. M1 and M2 Macrophages Derived from THP-1 Cells Differentially Modulate the Response of Cancer Cells to Etoposide. BMC Cancer 2015, 15, 577. [Google Scholar] [CrossRef]
- Han, X.; Ding, S.; Jiang, H.; Liu, G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front. Cell Dev. Biol. 2021, 9, 625423. [Google Scholar] [CrossRef]
- Wang, T.; Xiang, Z.; Wang, Y.; Li, X.; Fang, C.; Song, S.; Li, C.; Yu, H.; Wang, H.; Yan, L.; et al. (-)-Epigallocatechin Gallate Targets Notch to Attenuate the Inflammatory Response in the Immediate Early Stage in Human Macrophages. Front. Immunol. 2017, 8, 256861. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, J.; Lin, J.; Wang, Y.; Yang, F.; Yin, J.; Yu, Z.; Wu, S.; Lv, H.; Ji, X.; et al. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates Polarized Macrophages to Suppress M1 Phenotype and Promote M2 Polarization in Vitro and in Vivo. J. Funct. Foods 2021, 87, 104743. [Google Scholar] [CrossRef]
- Zhuang, Y.; Quan, W.; Wang, X.; Cheng, Y.; Jiao, Y. Comprehensive Review of EGCG Modification: Esterification Methods and Their Impacts on Biological Activities. Foods 2024, 13, 1232. [Google Scholar] [CrossRef]
- Luo, M.; Zhao, F.; Cheng, H.; Su, M.; Wang, Y. Macrophage Polarization: An Important Role in Inflammatory Diseases. Front. Immunol. 2024, 15, 1352946. [Google Scholar] [CrossRef]
- Friedrich, M.; Pohin, M.; Powrie, F. Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity 2019, 50, 992–1006. [Google Scholar] [CrossRef]
- Aebisher, D.; Bartusik-Aebisher, D.; Przygórzewska, A.; Oleś, P.; Woźnicki, P.; Kawczyk-Krupka, A. Key Interleukins in Inflammatory Bowel Disease—A Review of Recent Studies. Int. J. Mol. Sci. 2024, 26, 121. [Google Scholar] [CrossRef] [PubMed]
- Zegarra Ruiz, D.F.; Kim, D.V.; Norwood, K.; Saldana-Morales, F.B.; Kim, M.; Ng, C.; Callaghan, R.; Uddin, M.; Chang, L.C.; Longman, R.S.; et al. Microbiota Manipulation to Increase Macrophage IL-10 Improves Colitis and Limits Colitis-Associated Colorectal Cancer. Gut Microbes 2022, 14, 2119054. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Heinig, T.; Thiele, H.G.; Raedler, A. Immunoregulatory Role of Interleukin 10 in Patients with Inflammatory Bowel Disease. Gastroenterology 1995, 108, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Ip, W.K.E.; Hoshi, N.; Shouval, D.S.; Snapper, S.; Medzhitov, R. Anti-Inflammatory Effect of IL-10 Mediated by Metabolic Reprogramming of Macrophages. Science 2017, 356, 513–519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Perles, R.; Medrano-Padial, C.; García-Viguera, C.; Medina, S. Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation. Biomolecules 2025, 15, 1208. https://doi.org/10.3390/biom15081208
Domínguez-Perles R, Medrano-Padial C, García-Viguera C, Medina S. Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation. Biomolecules. 2025; 15(8):1208. https://doi.org/10.3390/biom15081208
Chicago/Turabian StyleDomínguez-Perles, Raúl, Concepción Medrano-Padial, Cristina García-Viguera, and Sonia Medina. 2025. "Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation" Biomolecules 15, no. 8: 1208. https://doi.org/10.3390/biom15081208
APA StyleDomínguez-Perles, R., Medrano-Padial, C., García-Viguera, C., & Medina, S. (2025). Palmitic Acid Esterification Boosts Epigallocatechin Gallate’s Immunomodulatory Effects in Intestinal Inflammation. Biomolecules, 15(8), 1208. https://doi.org/10.3390/biom15081208