Drug-Repurposing Screen Identifies Thiostrepton as a Novel Regulator of the Tumor Suppressor DAB2IP
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines, Transfections, and Drug Treatments
2.2. High-Throughput Screening
2.3. Genetic Modification by CRISPR/CAS9
2.4. Protein Expression Analysis
2.5. RNA Expression Analysis
2.6. Colony Formation Assay
2.7. Wound Healing Assay
2.8. Matrigel Drop Invasion Assay
2.9. Spheroid Assay
2.10. Analysis of Connectivity Map Datasets
2.11. Statistical Analysis
3. Results
3.1. Endogenous DAB2IP Tagging with HiBiT
3.2. High-Throughput Luminescence and Fluorescence-Based Screen Identifies Molecules Able to Modulate DAB2IP Expression Levels
3.3. Thio, Sal, and Ube Increase DAB2IP Levels Likely via Different Molecular Mechanisms
3.4. Thiostrepton Does Not Increase DAB2IP Levels by Inhibiting FOXM1
3.5. The Cancer-Inhibitory Effects of Thiostrepton Are Mediated in Part by DAB2IP Upregulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Bellazzo, A.; Di Minin, G.; Collavin, L. Block one, unleash a hundred. Mechanisms of DAB2IP inactivation in cancer. Cell Death Differ. 2017, 24, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, C.; Hsieh, J.-T.; Gong, J.; Xie, D. DAB2IP in cancer. Oncotarget 2016, 7, 3766–3776. [Google Scholar] [CrossRef] [PubMed]
- De Florian Fania, R.; Bellazzo, A.; Collavin, L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ. 2024, 31, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; He, X.; Liu, W.; Lu, M.; Hsieh, J.-T.; Min, W. AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J. Clin. Investig. 2003, 111, 1933–1943. [Google Scholar] [CrossRef]
- Bellazzo, A.; Collavin, L. Cutting the Brakes on Ras—Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers 2020, 12, 3066. [Google Scholar] [CrossRef]
- Olsen, S.N.; Wronski, A.; Castaño, Z.; Dake, B.; Malone, C.; Raedt, T.D.; Enos, M.; DeRose, Y.S.; Zhou, W.; Guerra, S.; et al. Loss of RasGAP Tumor Suppressors Underlies the Aggressive Nature of Luminal B Breast Cancers. Cancer Discov. 2017, 7, 202–217. [Google Scholar] [CrossRef]
- Bellazzo, A.; Di Minin, G.; Valentino, E.; Sicari, D.; Torre, D.; Marchionni, L.; Serpi, F.; Stadler, M.B.; Taverna, D.; Zuccolotto, G.; et al. Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells. Cell Death Differ. 2018, 25, 1224–1238. [Google Scholar] [CrossRef]
- Di Minin, G.; Bellazzo, A.; Dal Ferro, M.; Chiaruttini, G.; Nuzzo, S.; Bicciato, S.; Piazza, S.; Rami, D.; Bulla, R.; Sommaggio, R.; et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell 2014, 56, 617–629. [Google Scholar] [CrossRef]
- Valentino, E.; Bellazzo, A.; Di Minin, G.; Sicari, D.; Apollonio, M.; Scognamiglio, G.; Di Bonito, M.; Botti, G.; Del Sal, G.; Collavin, L. Mutant p53 potentiates the oncogenic effects of insulin by inhibiting the tumor suppressor DAB2IP. Proc. Natl. Acad. Sci. USA 2017, 114, 7623–7628. [Google Scholar] [CrossRef]
- Schwinn, M.K.; Steffen, L.S.; Zimmerman, K.; Wood, K.V.; Machleidt, T. A Simple and Scalable Strategy for Analysis of Endogenous Protein Dynamics. Sci. Rep. 2020, 10, 8953. [Google Scholar] [CrossRef] [PubMed]
- Lankford, K.P.; Hulleman, J.D. Protocol for HiBiT tagging endogenous proteins using CRISPR-Cas9 gene editing. STAR Protoc. 2024, 5, 103000. [Google Scholar] [CrossRef] [PubMed]
- Ghetti, S.; Burigotto, M.; Mattivi, A.; Magnani, G.; Casini, A.; Bianchi, A.; Cereseto, A.; Fava, L.L. CRISPR/Cas9 ribonucleoprotein-mediated knockin generation in hTERT-RPE1 cells. STAR Protoc. 2021, 2, 100407. [Google Scholar] [CrossRef]
- Mittler, F.; Obeid, P.; Rulina, A.V.; Haguet, V.; Gidrol, X.; Balakirev, M.Y. High-Content Monitoring of Drug Effects in a 3D Spheroid Model. Front. Oncol. 2017, 7, 293. [Google Scholar] [CrossRef]
- Min, J.; Zaslavsky, A.; Fedele, G.; McLaughlin, S.K.; Reczek, E.E.; Raedt, T.D.; Guney, I.; Strochlic, D.E.; Macconaill, L.E.; Beroukhim, R.; et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat. Med. 2010, 16, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Xie, D.; Zou, Y.; Zhang, T.; Pong, R.-C.; Xiao, G.; Fazli, L.; Gleave, M.; He, D.; Boothman, D.A.; et al. The mechanism of DAB2IP in chemoresistance of prostate cancer cells. Clin. Cancer Res. 2013, 19, 4740–4749. [Google Scholar] [CrossRef]
- Bailly, C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur. J. Pharmacol. 2022, 914, 174661. [Google Scholar] [CrossRef]
- Chen, L.; Teng, Y.; Xu, W. Progress in the development of bestatin analogues as aminopeptidases inhibitors. Curr. Med. Chem. 2011, 18, 964–976. [Google Scholar] [CrossRef]
- Barnieh, F.M.; Loadman, P.M.; Falconer, R.A. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188641. [Google Scholar] [CrossRef]
- Cazzola, M.; Testi, R.; Matera, M.G. Clinical pharmacokinetics of salmeterol. Clin. Pharmacokinet. 2002, 41, 19–30. [Google Scholar] [CrossRef]
- Szczuka, A.; Wennerberg, M.; Packeu, A.; Vauquelin, G. Molecular mechanisms for the persistent bronchodilatory effect of the beta 2-adrenoceptor agonist salmeterol. Br. J. Pharmacol. 2009, 158, 183–194. [Google Scholar] [CrossRef]
- Liu, S.X.; Zhou, Y.; Zhao, L.; Zhou, L.S.; Sun, J.; Liu, G.J.; Du, Y.S.; Zhou, Y.N. Thiostrepton confers protection against reactive oxygen species-related apoptosis by restraining FOXM1-triggerred development of gastric cancer. Free Radic. Biol. Med. 2022, 193, 385–404. [Google Scholar] [CrossRef]
- Kwok, J.M.; Myatt, S.S.; Marson, C.M.; Coombes, R.C.; Constantinidou, D.; Lam, E.W. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol. Cancer Ther. 2008, 7, 2022–2032. [Google Scholar] [CrossRef]
- Kalathil, D.; John, S.; Nair, A.S. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front. Oncol. 2020, 10, 626836. [Google Scholar] [CrossRef]
- Halasi, M.; Hitchinson, B.; Shah, B.N.; Váraljai, R.; Khan, I.; Benevolenskaya, E.V.; Gaponenko, V.; Arbiser, J.L.; Gartel, A.L. Honokiol is a FOXM1 antagonist. Cell Death Dis. 2018, 9, 84. [Google Scholar] [CrossRef]
- Gormally, M.V.; Dexheimer, T.S.; Marsico, G.; Sanders, D.A.; Lowe, C.; Matak-Vinković, D.; Michael, S.; Jadhav, A.; Rai, G.; Maloney, D.J.; et al. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition. Nat. Commun. 2014, 5, 5165. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Kuljanin, M.; Li, J.; Van Vranken, J.G.; Bulloch, N.; Schweppe, D.K.; Huttlin, E.L.; Gygi, S.P. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 2023, 41, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-S.; Lai, C.-L.; Lai, C.-H.; Chang, K.-H.; Wu, K.; Tseng, S.-F.; Fazli, L.; Gleave, M.; Xiao, G.; Gandee, L.; et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget 2014, 5, 6425–6436. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, X.; Wan, L.; Inuzuka, H.; Sun, L.; North, B.J. Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget 2016, 7, 26057–26069. [Google Scholar] [CrossRef]
- Xu, Y.; He, J.; Wang, Y.; Zhu, X.; Pan, Q.; Xie, Q.; Sun, F. miR-889 promotes proliferation of esophageal squamous cell carcinomas through DAB2IP. FEBS Lett. 2015, 589, 1127–1135. [Google Scholar] [CrossRef]
- Ni, Q.F.; Zhang, Y.; Yu, J.W.; Hua, R.H.; Wang, Q.H.; Zhu, J.W. miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway. Cell Prolif. 2020, 53, e12630. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Zhang, Q.; Lin, R. miR-182 contributes to cell proliferation, invasion and tumor growth in colorectal cancer by targeting DAB2IP. Int. J. Biochem. Cell Biol. 2019, 111, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gartel, A.L. Micelle-encapsulated thiostrepton as an effective nanomedicine for inhibiting tumor growth and for suppressing FOXM1 in human xenografts. Mol. Cancer Ther. 2011, 10, 2287–2297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gong, M.; Zhang, W.; Mo, J.; Zhang, S.; Zhu, Z.; Wang, X.; Zhang, B.; Qian, W.; Wu, Z.; et al. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis. 2022, 13, 630. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.Y.; Huang, C.Y.; Huang, W.C.; Su, Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis. 2015, 6, e1801. [Google Scholar] [CrossRef]
- Hansen, M.B.; Postol, M.; Tvingsholm, S.; Nielsen, I.O.; Dietrich, T.N.; Puustinen, P.; Maeda, K.; Dinant, C.; Strauss, R.; Egan, D.; et al. Identification of lysosome-targeting drugs with anti-inflammatory activity as potential invasion inhibitors of treatment resistant HER2 positive cancers. Cell. Oncol. 2021, 44, 805–820. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, X.; Wang, P.; Wen, T.; Yu, C.; Wei, L.; Chen, H. Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J. Cancer. Res. Clin. Oncol. 2015, 141, 971–981. [Google Scholar] [CrossRef]
- Qiao, S.; Lamore, S.D.; Cabello, C.M.; Lesson, J.L.; Munoz-Rodriguez, J.L.; Wondrak, G.T. Thiostrepton is an inducer of oxidative and proteotoxic stress that impairs viability of human melanoma cells but not primary melanocytes. Biochem. Pharmacol. 2012, 83, 1229–1240. [Google Scholar] [CrossRef]
- Ismail, T.; Kim, Y.; Lee, H.; Lee, D.-S.; Lee, H.-S. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int. J. Mol. Sci. 2019, 20, 4407. [Google Scholar] [CrossRef]
- Nelson, K.J.; Messier, T.; Milczarek, S.; Saaman, A.; Beuschel, S.; Gandhi, U.; Heintz, N.; Smalley, T.L.; Lowther, W.T.; Cunniff, B. Unique Cellular and Biochemical Features of Human Mitochondrial Peroxiredoxin 3 Establish the Molecular Basis for Its Specific Reaction with Thiostrepton. Antioxidants 2021, 10, 150. [Google Scholar] [CrossRef]
- Cunniff, B.; Newick, K.; Nelson, K.J.; Wozniak, A.N.; Beuschel, S.; Leavitt, B.; Bhave, A.; Butnor, K.; Koenig, A.; Chouchani, E.T.; et al. Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. PLoS ONE 2015, 10, e0127310. [Google Scholar] [CrossRef]
siRNA/miRNA | Sequence 5′→3′ | Purchased From |
---|---|---|
Control siRNA | Not available | All-Star negative control (1027281, Qiagen, Milano, Italy) |
siDAB2IP A | GGAGCGCAACAGUUACCUG | Eurofins MWG |
siDAB2IP B | GGUGAAGGACUUCCUGACA | Eurofins MWG |
hsa-miR-149-3p | AGGGAGGGACGGGGGCUGUGC | Dharmacon |
siFOXM1 #1 | GGACCACUUUCCCUACUUU | Integrated DNA Technology (IDT) |
siFOXM1 #2 | Not available (pool of three siRNAs) | sc-43769, Santa Cruz Biotechnology, Heidelberg, Germany |
Purpose | crRNA Sequences 5′→3′ | PAM |
---|---|---|
HiBiT KI | CCCTGACCCAGCTGAAAGAG | AGG |
DAB2IP KO1 | TGTGCTCTATGCCCGCACCA | CGG |
DAB2IP KO2 | CGGTCACTGTCCACCTGTAC | CGG |
Purpose | ssDNA Sequence 5′→3′ | |
HiBiT KI | CGTTGGATGCCGCCAATGCCCGCCTCATGAGTGCCCTGACCCAGCTGAAAGGCAGCAGCGGCGTGAGCGGCTGGCGGCTGTTCAAGAAGATTAGCTAGTAGGAGAGGTACAGCATGCAAGCCCGTAACGGCATCTCCCCCACCAACCCCAC |
Antigen | Species | Company | Dilution |
---|---|---|---|
DAB2IP | Rabbit (polyclonal) | Bethyl A302-440A, Aurogene, Roma, Italy | 1:4000 |
Myc-tag | Mouse (monoclonal) | 9E10 hybridoma supernatant | 1:100 |
HSP90 | Mouse (monoclonal) | sc-13119, Santa Cruz Biotechnology, Heidelberg, Germany | 1:8000 |
Actin | Rabbit (polyclonal) | A2066, Merck Life Science, Milano, Italy | 1:8000 |
Tubulin | Mouse (monoclonal) | T5168, Merck Life Science, Milano, Italy | 1:8000 |
Target | Sequences 5′→3′ |
---|---|
hDAB2IP C-terminal unspliced isoform | Fw: ATCAGCAGGTTGATGTCCGT Rev: TGCAATTTGGTGGGGTTGGT |
hDAB2IP C-terminal spliced isoform | Fw: TCAGCAGGTTGATGTCCGTG Rev: TGCGCACGCTCAACTTAAAA |
hDAB2IP all isoforms | Fw: CACATCACCAACCACTAC Rev: TCCACCTCTGACATCATC |
FOXM1 | Fw: ATGCCCAACACGCAAGTAGT Rev: TAGCTGCAGGTTTTGGTCCC |
H3 | Fw: GTGAAGAAACCTCATCGTTACAGGCCTGGT Rev: CTGCAAAGCACCAATAGCTGCACTCTGGAA |
HiBiT KI | Fw: TACCTTCTCTTGCCAGCTGC Rev: GGTAGCTTCCTCCCTCCTCA |
DAB2IP KO1 | Fw: GGAGCACATCCTGAAGCTGT Rev: CCTTGATGCGGATCATGGGT |
DAB2IP KO2 | Fw: CCCGTGCACATACAGGACAA Rev: TACCACTTCTCCACGAACTGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Florian Fania, R.; Maiocchi, S.; Klima, R.; Rossin, M.; Pellegrini, V.; Ghetti, S.; Selvestrel, D.; Mattevi, M.C.; Fava, L.L.; Braga, L.; et al. Drug-Repurposing Screen Identifies Thiostrepton as a Novel Regulator of the Tumor Suppressor DAB2IP. Biomolecules 2025, 15, 1147. https://doi.org/10.3390/biom15081147
De Florian Fania R, Maiocchi S, Klima R, Rossin M, Pellegrini V, Ghetti S, Selvestrel D, Mattevi MC, Fava LL, Braga L, et al. Drug-Repurposing Screen Identifies Thiostrepton as a Novel Regulator of the Tumor Suppressor DAB2IP. Biomolecules. 2025; 15(8):1147. https://doi.org/10.3390/biom15081147
Chicago/Turabian StyleDe Florian Fania, Rossella, Serena Maiocchi, Raffaella Klima, Monica Rossin, Valeria Pellegrini, Sabrina Ghetti, Davide Selvestrel, Maria Chiara Mattevi, Luca L. Fava, Luca Braga, and et al. 2025. "Drug-Repurposing Screen Identifies Thiostrepton as a Novel Regulator of the Tumor Suppressor DAB2IP" Biomolecules 15, no. 8: 1147. https://doi.org/10.3390/biom15081147
APA StyleDe Florian Fania, R., Maiocchi, S., Klima, R., Rossin, M., Pellegrini, V., Ghetti, S., Selvestrel, D., Mattevi, M. C., Fava, L. L., Braga, L., & Collavin, L. (2025). Drug-Repurposing Screen Identifies Thiostrepton as a Novel Regulator of the Tumor Suppressor DAB2IP. Biomolecules, 15(8), 1147. https://doi.org/10.3390/biom15081147