Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Tissue Preparation
2.2. Protein Extraction and Filter-Aided Sample Preparation
2.3. LC-MS Analysis of Protein Samples
2.4. Transcriptome Assembly, Quantification, and Annotation
2.5. LC-MS/MS Data Processing and Protein Identification
2.6. Functional Annotation and Enrichment Analyses
2.7. Identification of Putative Toxins and Phylogenetic Analysis of Jellyfish Toxins (JFTs)
2.8. Peptide Characterization and Antimicrobial Peptide (AMP) Prediction
- A positive net charge;
- A GRAVY value between −1.5 and +1.5;
- An average AMP prediction probability ≥ 0.7.
3. Results
3.1. Quantitative Correlation Between Transcriptomic and Proteomic Data
3.2. Overview of Proteomic Data from P. punctata
3.3. Functional Annotation and Enrichment Analysis of Tissue-Specific Proteins Identified in P. punctata
3.4. Identification and Comparative Analysis of Venom Components Across P. punctata Tissues
3.5. Peptide Characterization and AMP Prediction
4. Discussion
4.1. Proteomic Analysis of P. punctata Tissues
4.2. Interpretation of Transcriptome–Proteome Correlation
4.3. Tissue-Specific Functional Enrichment Reveals Metabolic and Regulatory Specialization
4.4. P. punctata Venom Composition
4.5. Potential AMPs Identified in P. punctata
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, R.M.; Le Quéré, C.; Buitenhuis, E.; Pitois, S.; Gibbons, M.J. Role of Jellyfish in the Plankton Ecosystem Revealed Using a Global Ocean Biogeochemical Model. Biogeosciences 2021, 18, 1291–1320. [Google Scholar] [CrossRef]
- Schnedler-Meyer, N.A.; Kiørboe, T.; Mariani, P. Boom and Bust: Life History, Environmental Noise, and the (un)Predictability of Jellyfish Blooms. Front. Mar. Sci. 2018, 5, 257. [Google Scholar] [CrossRef]
- Fautin, D.G. Structural Diversity, Systematics, and Evolution of Cnidae. Toxicon 2009, 54, 1054–1064. [Google Scholar] [CrossRef]
- Bosch-Belmar, M.; Milisenda, G.; Basso, L.; Doyle, T.K.; Leone, A.; Piraino, S. Jellyfish Impacts on Marine Aquaculture and Fisheries. Rev. Fish. Sci. Aquac. 2020, 29, 242–259. [Google Scholar] [CrossRef]
- Fuentes, V.L.; Purcell, J.E.; Condon, R.H.; Lombard, F.; Lucas, C.H. Jellyfish Blooms: Advances and Challenges. Mar. Ecol. Prog. Ser. 2018, 591, 3–5. [Google Scholar] [CrossRef]
- Mills, C.E. Medusae, Siphonophores, and Ctenophores as Planktivorous Predators in Changing Global Ecosystems. ICES J. Mar. Sci. 1995, 52, 575–581. [Google Scholar] [CrossRef]
- Heaslip, S.G.; Iverson, S.J.; Bowen, W.D.; James, M.C. Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras. PLoS ONE 2012, 7, e33259. [Google Scholar] [CrossRef]
- Arai, M.N. Predation on Pelagic Coelenterates: A Review. J. Mar. Biol. Assoc. United Kingd. 2005, 85, 523–536. [Google Scholar] [CrossRef]
- Doyle, T.K.; Hays, G.C.; Harrod, C.; Houghton, J.D.R. Ecological and Societal Benefits of Jellyfish. In Jellyfish Blooms; Pitt, K.A., Lucas, C.H., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 9789400770, pp. 105–127. ISBN 978-94-007-7014-0. [Google Scholar]
- Hays, G.C.; Doyle, T.K.; Houghton, J.D.R. A Paradigm Shift in the Trophic Importance of Jellyfish? Trends Ecol. Evol. 2018, 33, 874–884. [Google Scholar] [CrossRef]
- Raposo, A.; Alasqah, I.; Alfheeaid, H.A.; Alsharari, Z.D.; Alturki, H.A.; Raheem, D. Jellyfish as Food: A Narrative Review. Foods 2022, 11, 2773. [Google Scholar] [CrossRef]
- Duarte, I.M.; Marques, S.C.; Leandro, S.M.; Calado, R. An Overview of Jellyfish Aquaculture: For Food, Feed, Pharma and Fun. Rev. Aquac. 2021, 14, 265–287. [Google Scholar] [CrossRef]
- Gershwin, L. Jellyfish: A Natural History; University of Chicago Press: Chicago, IL, USA, 2016; ISBN 022628770X. [Google Scholar]
- Merquiol, L.; Romano, G.; Ianora, A.; D’Ambra, I. Biotechnological Applications of Scyphomedusae. Mar. Drugs 2019, 17, 604. [Google Scholar] [CrossRef]
- Karunarathne, K.D.; de Croos, M.D.S.T. First Record of Mastigias sidereus Chun, 1896 and Phyllorhiza punctata von Lendenfeld, 1884 (Cnidaria: Scyphozoa) from Sri Lanka. Thalass. An Int. J. Mar. Sci. 2022, 38, 213–225. [Google Scholar] [CrossRef]
- Morejón-Arrojo, R.D.; Sellares-Blasco, R.; Guendulain-García, S.D.; del Cid, M.; Rodríguez-Viera, L. First Occurrence of the Invasive Jellyfish Phyllorhiza punctata in the Dominican Republic: Seasonal Trend and Invasion in the Atlantic Ocean; University of Miami—Rosenstiel School of Marine, Atmospheric & Earth Science: Key Biscayne, FL, USA, 2024. [Google Scholar] [CrossRef]
- Graham, W.M.; Martin, D.L.; Felder, D.L.; Asper, V.L.; Perry, H.M. Ecological and Economic Implications of a Tropical Jellyfish Invader in the Gulf of Mexico. Biol. Invasions 2003, 5, 53–69. [Google Scholar] [CrossRef]
- González, R.; Catanese, G.; Vázquez-Luis, M. First Report of Phyllorhiza punctata von Lendenfeld, 1884 (Cnidaria: Scyphozoa, Mastigiidae) in the Balearic Islands (Western Mediterranean Sea). Mediterr. Mar. Sci. 2024, 25, 709–714. [Google Scholar] [CrossRef]
- Enrique-Navarro, A.; Prieto, L. First Record of Phyllorhiza punctata (Cnidaria: Rhizostomae: Mastigiidae) in the Northeast Atlantic Ocean. Cah. Biol. Mar. 2020, 61, 349–353. [Google Scholar] [CrossRef]
- Rato, L.D.; Pinto, C.; Duarte, I.M.; Leandro, S.M.; Marques, S.C. Euryhalinity and Thermal Tolerance of Phyllorhiza punctata (Scyphozoa) Scyphostomae: Life History and Physiological Trade-Offs. Mar. Biol. 2021, 168, 158. [Google Scholar] [CrossRef]
- Fernández-Alías, A.; Quispe-Becerra, J.I.; Conde-Caño, M.R.; Marcos, C.; Pérez-Ruzafa, A. Mediterranean Biogeography, Colonization, Expansion, Phenology, and Life Cycle of the Invasive Jellyfish Phyllorhiza punctata von Lendenfeld, 1884. Estuar. Coast. Shelf Sci. 2024, 299, 108699. [Google Scholar] [CrossRef]
- de Souza, L.M.; Iacomini, M.; Gorin, P.A.J.; Sari, R.S.; Haddad, M.A.; Sassaki, G.L. Glyco- and Sphingophosphonolipids from the Medusa Phyllorhiza punctata: NMR and ESI-MS/MS Fingerprints. Chem. Phys. Lipids 2007, 145, 85–96. [Google Scholar] [CrossRef]
- Carneiro, R.F.V.; Nascimento, N.R.F.; Costa, P.P.C.; Gomes, V.M.; Souza, A.J.F.; Oliveira, S.C.B.; Santos Diz Filho, E.B.; Zara, F.J.; Fonteles, M.C.; Oliveira Toyama, D.; et al. The Extract of the Jellyfish Phyllorhiza punctata Promotes Neurotoxic Effects. J. Appl. Toxicol. 2011, 31, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Gawde, U.; Chakraborty, S.; Waghu, F.H.; Barai, R.S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S. CAMPR4: A Database of Natural and Synthetic Antimicrobial Peptides. Nucleic Acids Res. 2023, 51, D377–D383. [Google Scholar] [CrossRef]
- Lin, T.-T.; Yang, L.-Y.; Lu, I.-H.; Cheng, W.-C.; Hsu, Z.-R.; Chen, S.-H.; Lin, C.-Y. AI4AMP: An Antimicrobial Peptide Predictor Using Physicochemical Property-Based Encoding Method and Deep Learning. mSystems 2021, 6, e00299-21. [Google Scholar] [CrossRef]
- Veltri, D.; Kamath, U.; Shehu, A. Deep Learning Improves Antimicrobial Peptide Recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef]
- Liu, K.; Ye, Y.; Li, S.; Tang, H. Accurate de Novo Peptide Sequencing Using Fully Convolutional Neural Networks. Nat. Commun. 2023, 14, 7974. [Google Scholar] [CrossRef]
- Aronica, P.G.A.; Reid, L.M.; Desai, N.; Li, J.; Fox, S.J.; Yadahalli, S.; Essex, J.W.; Verma, C.S. Computational Methods and Tools in Antimicrobial Peptide Research. J. Chem. Inf. Model. 2021, 61, 3172–3196. [Google Scholar] [CrossRef] [PubMed]
- Ramazi, S.; Mohammadi, N.; Allahverdi, A.; Khalili, E.; Abdolmaleki, P. A Review on Antimicrobial Peptides Databases and the Computational Tools. Database 2022, 2022, baac011. [Google Scholar] [CrossRef] [PubMed]
- Association of Zoos and Aquariums (Ed.) AZA Aquatic Invertebrate TAG Jellyfish Care Manual; Association of Zoos and Aquariums: Silver Spring, MD, USA, 2013. [Google Scholar]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 24 January 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De Novo Transcript Sequence Reconstruction from RNA-Seq Using the Trinity Platform for Reference Generation and Analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Barroso, R.A.; Rodrigues, T.; Campos, A.; Almeida, D.; Guardiola, F.A.; Turkina, M.V.; Antunes, A. Proteomic Diversity of the Sea Anemone Actinia fragacea: Comparative Analysis of Nematocyst Venom, Mucus, and Tissue-Specific Profiles. Mar. Drugs 2025, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: Fast Selection of Best-Fit Models of Protein Evolution. Bioinformatics 2011, 27, 1164–1165. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. ISBN 978-1-58829-343-5. [Google Scholar]
- Sharma, R.; Shrivastava, S.; Kumar Singh, S.; Kumar, A.; Saxena, S.; Kumar Singh, R. AniAMPpred: Artificial Intelligence Guided Discovery of Novel Antimicrobial Peptides in Animal Kingdom. Brief. Bioinform. 2021, 22, bbab242. [Google Scholar] [CrossRef]
- Han, J.; Kong, T.; Liu, J. PepNet: An Interpretable Neural Network for Anti-Inflammatory and Antimicrobial Peptides Prediction Using a Pre-Trained Protein Language Model. Commun. Biol. 2024, 7, 1198. [Google Scholar] [CrossRef]
- Chen, Z.; Ji, C.; Xu, W.; Gao, J.; Huang, J.; Xu, H.; Qian, G.; Huang, J. UniAMP: Enhancing AMP Prediction Using Deep Neural Networks with Inferred Information of Peptides. BMC Bioinform. 2025, 26, 10. [Google Scholar] [CrossRef]
- Rodrigues, T.; Guardiola, F.A.; Almeida, D.; Antunes, A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025, 13, 156. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tufféry, P.; Derreumaux, P. A Refined PH-Dependent Coarse-Grained Model for Peptide Structure Prediction in Aqueous Solution. Front. Bioinform. 2023, 3, 432–437. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Neil, T.R.; Askew, G.N. Jet-Paddling Jellies: Swimming Performance in the Rhizostomeae Jellyfish Catostylus mosaicus. J. Exp. Biol. 2018, 221, jeb191148. [Google Scholar] [CrossRef]
- Dominguez, R.; Holmes, K.C. Actin Structure and Function. Annu. Rev. Biophys. 2011, 40, 169–186. [Google Scholar] [CrossRef]
- Tanaka, H.; Ishimaru, S.; Nagatsuka, Y.; Ohashi, K. Smooth Muscle-like Ca2+-Regulation of Actin-Myosin Interaction in Adult Jellyfish Striated Muscle. Sci. Rep. 2018, 8, 7776. [Google Scholar] [CrossRef] [PubMed]
- Neupane, P.; Bhuju, S.; Thapa, N.; Bhattarai, H.K. ATP Synthase: Structure, Function and Inhibition. Biomol. Concepts 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat Shock Proteins: Biological Functions, Pathological Roles, and Therapeutic Opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef]
- Brodsky, F.M. Diversity of Clathrin Function: New Tricks for an Old Protein. Annu. Rev. Cell Dev. Biol. 2012, 28, 309–336. [Google Scholar] [CrossRef]
- Flanagan, J.U.; Smythe, M.L. Sigma-Class Glutathione Transferases. Drug Metab. Rev. 2011, 43, 194–214. [Google Scholar] [CrossRef] [PubMed]
- Hibbetts, K.; Hines, B.; Williams, D. An Overview of Proteinase Inhibitors. J. Vet. Intern. Med. 1999, 13, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, P.G.; Suh, J.H.; Pegg, R.B.; Chen, J.; Mis Solval, K. The Emergence of Jellyfish Collagen: A Comprehensive Review on Research Progress, Industrial Applications, and Future Opportunities. Trends Food Sci. Technol. 2023, 141, 104206. [Google Scholar] [CrossRef]
- Rastian, Z.; Pütz, S.; Wang, Y.J.; Kumar, S.; Fleissner, F.; Weidner, T.; Parekh, S.H. Type I Collagen from Jellyfish Catostylus mosaicus for Biomaterial Applications. ACS Biomater. Sci. Eng. 2018, 4, 2115–2125. [Google Scholar] [CrossRef]
- Nie, L.; Wu, G.; Culley, D.E.; Scholten, J.C.M.; Zhang, W. Integrative Analysis of Transcriptomic and Proteomic Data: Challenges, Solutions and Applications. Crit. Rev. Biotechnol. 2007, 27, 63–75. [Google Scholar] [CrossRef]
- Bicskei, B.; Bron, J.E.; Glover, K.A.; Taggart, J.B. A Comparison of Gene Transcription Profiles of Domesticated and Wild Atlantic Salmon (Salmo salar L.) at Early Life Stages, Reared under Controlled Conditions. BMC Genom. 2014, 15, 884. [Google Scholar] [CrossRef]
- Morin, M.; Jönsson, M.; Wang, C.K.; Craik, D.J.; Degnan, S.M.; Degnan, B.M. Captivity Induces a Sweeping and Sustained Genomic Response in a Starfish. Mol. Ecol. 2023, 32, 3541–3556. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, G.; Chen, L.; Zhang, W. Integrated Analysis of Transcriptomic and Proteomic Datasets Reveals Information on Protein Expressivity and Factors Affecting Translational Efficiency. Methods Mol. Biol. 2015, 1375, 123–136. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Jia, Y.; Liu, X. Integrated Genomic and Transcriptomic Analysis Reveals a Transcription Factor Gene Set Facilitating Gonadal Differentiation in the Pacific Oyster Crassostrea gigas. Genes 2025, 16, 513. [Google Scholar] [CrossRef]
- Wahl, M.C.; Will, C.L.; Lührmann, R. The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell 2009, 136, 701–718. [Google Scholar] [CrossRef]
- Twan, W.-H.; Hwang, J.-S.; Chang, C.-F. Sex Steroids in Scleractinian Coral, Euphyllia ancora: Implication in Mass Spawning1. Biol. Reprod. 2003, 68, 2255–2260. [Google Scholar] [CrossRef]
- Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Metal Induced Oxidative Damage. Curr. Top. Med. Chem. 2001, 1, 529–539. [Google Scholar] [CrossRef]
- Weir, K.; Dupre, C.; van Giesen, L.; Lee, A.S.Y.; Bellono, N.W. A Molecular Filter for the Cnidarian Stinging Response. Elife 2020, 9, e57578. [Google Scholar] [CrossRef] [PubMed]
- Jing, G.; Li, Y.; Xie, L.; Zhang, R. Different Effects of Pb2+ and Cu2+ on Immune and Antioxidant Enzyme Activities in the Mantle of Pinctada fucata. Environ. Toxicol. Pharmacol. 2007, 24, 122–128. [Google Scholar] [CrossRef]
- Ames, C.L.; Klompen, A.M.L.; Badhiwala, K.; Muffett, K.; Reft, A.J.; Kumar, M.; Janssen, J.D.; Schultzhaus, J.N.; Field, L.D.; Muroski, M.E.; et al. Cassiosomes Are Stinging-Cell Structures in the Mucus of the Upside-down Jellyfish Cassiopea xamachana. Commun. Biol. 2020, 3, 67. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Konstantakopoulos, N.; McInerney, B.V.; Mulvenna, J.; Seymour, J.E.; Isbister, G.K.; Hodgson, W.C. Chironex fleckeri (Box Jellyfish) Venom Proteins: Expansion of a Cnidarian Toxin Family That Elicits Variable Cytolytic and Cardiovascular Effects. J. Biol. Chem. 2014, 289, 4798–4812. [Google Scholar] [CrossRef]
- Ponce, D.; Brinkman, D.L.; Potriquet, J.; Mulvenna, J. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins 2016, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Klompen, A.M.L.L.; Kayal, E.; Collins, A.G.; Cartwright, P. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa). Genome Biol. Evol. 2021, 13, evab081. [Google Scholar] [CrossRef] [PubMed]
- Klompen, A.M.L.; Travert, M.K.; Cartwright, P. Localization of Multiple Jellyfish Toxins Shows Specificity for Functionally Distinct Polyps and Nematocyst Types in a Colonial Hydrozoan. Toxins 2023, 15, 149. [Google Scholar] [CrossRef]
- Klompen, A.M.L.; Macrander, J.; Reitzel, A.M.; Stampar, S.N. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms. Mar. Drugs 2020, 18, 413. [Google Scholar] [CrossRef]
- Möller, C.; Clay Davis, W.; Clark, E.; DeCaprio, A.; Marí, F. Conodipine-P1-3, the First Phospholipases A2 Characterized from Injected Cone Snail Venom. Mol. Cell. Proteom. 2019, 18, 876–891. [Google Scholar] [CrossRef]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The Toxicogenomic Multiverse: Convergent Recruitment of Proteins into Animal Venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef]
- Nevalainen, T.J.; Peuravuori, H.J.; Quinn, R.J.; Llewellyn, L.E.; Benzie, J.A.H.; Fenner, P.J.; Winkel, K.D. Phospholipase A2 in Cnidaria. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Epand, R.M.; Vogel, H.J. Diversity of Antimicrobial Peptides and Their Mechanisms of Action. Biochim. Biophys. Acta Biomembr. 1999, 1462, 11–28. [Google Scholar] [CrossRef]
- Ovchinnikova, T.V.; Balandin, S.V.; Aleshina, G.M.; Tagaev, A.A.; Leonova, Y.F.; Krasnodembsky, E.D.; Men’shenin, A.V.; Kokryakov, V.N. Aurelin, a Novel Antimicrobial Peptide from Jellyfish Aurelia aurita with Structural Features of Defensins and Channel-Blocking Toxins. Biochem. Biophys. Res. Commun. 2006, 348, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Augustin, R.; Anton-Erxleben, F.; Jungnickel, S.; Hemmrich, G.; Spudy, B.; Podschun, R.; Bosch, T.C.G. Activity of the Novel Peptide Arminin against Multiresistant Human Pathogens Shows the Considerable Potential of Phylogenetically Ancient Organisms as Drug Sources. Antimicrob. Agents Chemother. 2009, 53, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Dupiol, J.; Ladrière, O.; Destoumieux-Garzón, D.; Sautière, P.-E.; Meistertzheim, A.-L.; Tambutté, E.; Tambutté, S.; Duval, D.; Fouré, L.; Adjeroud, M.; et al. Innate Immune Responses of a Scleractinian Coral to Vibriosis. J. Biol. Chem. 2011, 286, 22688–22698. [Google Scholar] [CrossRef]
- Mason, B.; Cooke, I.; Moya, A.; Augustin, R.; Lin, M.-F.; Satoh, N.; Bosch, T.C.G.; Bourne, D.G.; Hayward, D.C.; Andrade, N.; et al. AmAMP1 from Acropora millepora and Damicornin Define a Family of Coral-Specific Antimicrobial Peptides Related to the Shk Toxins of Sea Anemones. Dev. Comp. Immunol. 2021, 114, 103866. [Google Scholar] [CrossRef]
- Driscoll, P.C.; Gronenborn, A.M.; Beress, L.; Clore, G.M.; Clare, G.M. Determination of the Three-Dimensional Solution Structure of the Antihypertensive and Antiviral Protein BDS-I from the Sea Anemone Anemonia sulcata: A Study Using Nuclear Magnetic Resonance and Hybrid Distance Geometry–Dynamical Simulated Annealing. Biochemistry 1989, 28, 2188–2198. [Google Scholar] [CrossRef]
- Lima, L.; Migliolo, L.; Castro, C.; Pires, D.; Lopez-Abarrategui, C.; Goncalves, E.; Vasconcelos, I.; Oliveira, J.; Otero-Gonzalez, A.; Franco, O.; et al. Identification of a Novel Antimicrobial Peptide from Brazilian Coast Coral Phyllogorgia dilatata. Protein Pept. Lett. 2013, 20, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
Accession | Protein Name | G | M | O | T |
---|---|---|---|---|---|
XP_065065861.1 | myosin heavy chain, striated muscle-like | 623 | 1724 | 706 | 3053 |
XP_065067169.1 | filamin-A-like isoform X5 | 432 | 871 | 436 | 1739 |
ADR10434.1 | non-muscle actin II | 461 | 621 | 410 | 1492 |
XP_065065923.1 | myosin-10-like isoform X1 | 367 | 272 | 400 | 1039 |
XP_065676232.1 | tubulin beta chain | 221 | 259 | 254 | 734 |
CAH3037106.1 | unnamed protein product (actin) | 190 | 323 | 170 | 683 |
XP_065054978.1 | clathrin heavy chain 1-like | 226 | 152 | 259 | 637 |
XP_065051959.1 | probable glutathione S-transferase 8 | 235 | 193 | 202 | 630 |
XP_065060176.1 | alpha-1-macroglobulin-like isoform X4 | 179 | 265 | 169 | 613 |
ACT_HYDVU | Actin, non-muscle 6.2 | 185 | 239 | 186 | 610 |
XP_065052735.1 | uncharacterized protein LOC135681977 | 170 | 258 | 134 | 562 |
XP_065052612.1 | ATP synthase subunit beta | 146 | 282 | 131 | 559 |
XP_065065546.1 | alpha-actinin-like | 168 | 145 | 233 | 546 |
CAH3152489.1 | unnamed protein product | 193 | 80 | 248 | 521 |
XP_065065852.1 | myosin heavy chain-like isoform X1 | 262 | 44 | 195 | 501 |
XP_065054022.1 | collagen alpha-1(I) chain-like isoform X1 | 178 | 129 | 191 | 498 |
XP_065063720.1 | heat shock protein HSP 90-alpha-like | 184 | 150 | 154 | 488 |
XP_065051708.1 | myosin light chain kinase, smooth muscle-like isoform X2 | 103 | 273 | 106 | 482 |
XP_065059929.1 | ATP synthase subunit alpha, mitochondrial-like | 120 | 250 | 108 | 478 |
Accession | Toxin Protein Name | G | M | O | T |
---|---|---|---|---|---|
DAC80636 | TPA_exp: toxin a | 121 | 23 | 200 | 344 |
XP_065065639 | ras-related C3 botulinum toxin substrate 1 | 84 | 84 | 112 | 280 |
XP_065067572 | venom factor-like | 50 | 45 | 24 | 119 |
XP_065064594 | conodipine-P3-like | 34 | 25 | 45 | 104 |
XP_065067570 | LOW-QUALITY PROTEIN: venom factor-like | 37 | 18 | 19 | 74 |
XP_065054632 | aflatoxin B1 aldehyde reductase member 2-like | 22 | 30 | 10 | 62 |
CAB3985090 | agrin-like | 33 | 15 | 6 | 54 |
A0A7M5UUY9 | BPTI/Kunitz inhibitor domain-containing protein | 19 | 28 | 7 | 54 |
XP_065070484 | toxin CfTX-A-like | 18 | 2 | 28 | 48 |
XP_065055594 | plancitoxin-1-like | 10 | 11 | 13 | 34 |
QNH72454 | toxin candidate | 19 | 7 | 7 | 33 |
AFK76348 | toxin TX1 | 5 | 12 | 15 | 32 |
XP_065063396 | ADAM 17-like protease | 10 | 9 | 13 | 32 |
XP_065065308 | snake venom 5′-nucleotidase-like | 4 | 7 | 10 | 21 |
XP_065071254 | zinc metalloproteinase-disintegrin-like MTP8 | 3 | 3 |
Structure | No. Peptides (AlphaFold2) | No. Peptides (PEP-FOLD4) | Consistent Predictions (Both Tools) |
---|---|---|---|
α-helix | 140 | 203 | 113 |
β-sheet | 4 | 23 | 1 |
αβ-motifs | 0 | 3 | 0 |
Random coil | 130 | 45 | 28 |
Protein Accession | Sequence | Predicted Structure (Alphafold2) | C Score | Avg Pred. | O | M | G |
---|---|---|---|---|---|---|---|
XP_065064294 | QLGWCSTVKQAMKALCEK | 0.47 | 0.95 | X | |||
XP_065069205 | VCLIGAGNWGSAIAK | 0.40 | 0.92 | X | X | ||
XP_065058610 | IGTKVLLKIYK | 0.55 | 0.91 | X | |||
XP_065058870 | IPTHAPYVIIGGGTASHAACR | 0.53 | 0.90 | X | |||
XP_065062238 | LPSSVIGSLIGK | 0.57 | 0.89 | X | |||
XP_065055185 | GIRPAINVGLSVSR | 0.52 | 0.89 | X | |||
XP_065059349 | KPIGLCCIAPVLAAK | 0.47 | 0.88 | X | X | X | |
XP_065062330 | LPVVTNQICSILNR | 0.46 | 0.88 | X | X | ||
XP_065055150 | GIQCLISVGLGTR | 0.51 | 0.88 | X | |||
XP_065051697 | DVMIIGPATVGGIKPGCFK | 0.56 | 0.86 | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, T.; Barroso, R.A.; Campos, A.; Almeida, D.; Guardiola, F.A.; Turkina, M.V.; Antunes, A. Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses. Biomolecules 2025, 15, 1121. https://doi.org/10.3390/biom15081121
Rodrigues T, Barroso RA, Campos A, Almeida D, Guardiola FA, Turkina MV, Antunes A. Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses. Biomolecules. 2025; 15(8):1121. https://doi.org/10.3390/biom15081121
Chicago/Turabian StyleRodrigues, Tomás, Ricardo Alexandre Barroso, Alexandre Campos, Daniela Almeida, Francisco A. Guardiola, Maria V. Turkina, and Agostinho Antunes. 2025. "Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses" Biomolecules 15, no. 8: 1121. https://doi.org/10.3390/biom15081121
APA StyleRodrigues, T., Barroso, R. A., Campos, A., Almeida, D., Guardiola, F. A., Turkina, M. V., & Antunes, A. (2025). Unveiling the Bioactive Potential of the Invasive Jellyfish Phyllorhiza punctata Through Integrative Transcriptomic and Proteomic Analyses. Biomolecules, 15(8), 1121. https://doi.org/10.3390/biom15081121