Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis
Abstract
:1. Introduction
1.1. UPS and Cancer
1.2. The PA28 Family of Proteasome Activators
1.3. Biological Functions of PA28 Activators
2. PA28αβ and Cancer
2.1. Role of PA28αβ in the Anti-Tumor Immune Response
2.2. Non-Immunological Role of PA28αβ in Neoplastic Transformation and Tumor Development
3. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Tundo, G.R.; Cascio, P.; Milardi, D.; Santoro, A.M.; Graziani, G.; Lacal, P.M.; Bocedi, A.; Oddone, F.; Parravano, M.; Coletta, A.; et al. Targeting Immunoproteasome in Neurodegeneration: A Glance to the Future. Pharmacol. Ther. 2023, 241, 108329. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y. Structure, Dynamics and Function of the 26S Proteasome. In Subcellular Biochemistry; Springer Science and Business Media B.V.: Dordrecht, The Netherlands, 2021; Volume 96, pp. 1–151. [Google Scholar]
- Bard, J.A.M.; Goodall, E.A.; Greene, E.R.; Jonsson, E.; Dong, K.C.; Martin, A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018, 87, 697–724. [Google Scholar] [CrossRef] [PubMed]
- Sakata, E.; Eisele, M.R.; Baumeister, W. Molecular and Cellular Dynamics of the 26S Proteasome. Biochim. Biophys. Acta—Proteins Proteom. 2021, 1869, 140583. [Google Scholar] [CrossRef] [PubMed]
- Greene, E.R.; Dong, K.C.; Martin, A. Understanding the 26S Proteasome Molecular Machine from a Structural and Conformational Dynamics Perspective. Curr. Opin. Struct. Biol. 2020, 61, 33–41. [Google Scholar] [CrossRef]
- Arkinson, C.; Dong, K.C.; Gee, C.L.; Martin, A. Mechanisms and Regulation of Substrate Degradation by the 26S Proteasome. Nat. Rev. Mol. Cell Biol. 2025, 26, 104–122. [Google Scholar] [CrossRef]
- Frayssinhes, J.-Y.A.; Cerruti, F.; Laulin, J.; Cattaneo, A.; Bachi, A.; Apcher, S.; Coux, O.; Cascio, P. PA28γ-20S Proteasome Is a Proteolytic Complex Committed to Degrade Unfolded Proteins. Cell Mol. Life Sci. 2021, 79, 45. [Google Scholar] [CrossRef]
- Makaros, Y.; Raiff, A.; Timms, R.T.; Wagh, A.R.; Gueta, M.I.; Bekturova, A.; Guez-Haddad, J.; Brodsky, S.; Opatowsky, Y.; Glickman, M.H.; et al. Ubiquitin-Independent Proteasomal Degradation Driven by C-Degron Pathways. Mol. Cell 2023, 83, 1921–1935.e7. [Google Scholar] [CrossRef]
- Sahu, I.; Mali, S.M.; Sulkshane, P.; Xu, C.; Rozenberg, A.; Morag, R.; Sahoo, M.P.; Singh, S.K.; Ding, Z.; Wang, Y.; et al. The 20S as a Stand-Alone Proteasome in Cells Can Degrade the Ubiquitin Tag. Nat. Commun. 2021, 12, 6173. [Google Scholar] [CrossRef]
- Myers, N.; Olender, T.; Savidor, A.; Levin, Y.; Reuven, N.; Shaul, Y. The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics 2018, 18, e1800076. [Google Scholar] [CrossRef]
- Baugh, J.M.; Viktorova, E.G.; Pilipenko, E.V. Proteasomes Can Degrade a Significant Proportion of Cellular Proteins Independent of Ubiquitination. J. Mol. Biol. 2009, 386, 814–827. [Google Scholar] [CrossRef]
- Suskiewicz, M.J.; Sussman, J.L.; Silman, I.; Shaul, Y. Context-Dependent Resistance to Proteolysis of Intrinsically Disordered Proteins. Protein Sci. 2011, 20, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Belogurov, A.; Kuzina, E.; Kudriaeva, A.; Kononikhin, A.; Kovalchuk, S.; Surina, Y.; Smirnov, I.; Lomakin, Y.; Bacheva, A.; Stepanov, A.; et al. Ubiquitin-Independent Proteosomal Degradation of Myelin Basic Protein Contributes to Development of Neurodegenerative Autoimmunity. FASEB J. 2015, 29, 1901–1913. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Myers, N.; Moscovitz, O.; Sharon, M.; Prilusky, J.; Shaul, Y. Thermo-Resistant Intrinsically Disordered Proteins Are Efficient 20S Proteasome Substrates. Mol. Biosyst. 2012, 8, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Kisselev, A.F.; Akopian, T.N.; Woo, K.M.; Goldberg, A.L. The Sizes of Peptides Generated from Protein by Mammalian 26 and 20 S Proteasomes. Implications for Understanding the Degradative Mechanism and Antigen Presentation. J. Biol. Chem. 1999, 274, 3363–3371. [Google Scholar] [CrossRef]
- Cascio, P.; Hilton, C.; Kisselev, A.F.; Rock, K.L.; Goldberg, A.L. 26S Proteasomes and Immunoproteasomes Produce Mainly N-Extended Versions of an Antigenic Peptide. EMBO J. 2001, 20, 2357–2366. [Google Scholar] [CrossRef]
- Raule, M.; Cerruti, F.; Cascio, P. Enhanced Rate of Degradation of Basic Proteins by 26S Immunoproteasomes. Biochim. Biophys. Acta—Mol. Cell Res. 2014, 1843, 1942–1947. [Google Scholar] [CrossRef]
- Raule, M.; Cerruti, F.; Benaroudj, N.; Migotti, R.; Kikuchi, J.; Bachi, A.; Navon, A.; Dittmar, G.; Cascio, P. PA28αβ Reduces Size and Increases Hydrophilicity of 20S Immunoproteasome Peptide Products. Chem. Biol. 2014, 21, 470–480. [Google Scholar] [CrossRef]
- Erales, J.; Coffino, P. Ubiquitin-Independent Proteasomal Degradation. Biochim. Biophys. Acta 2014, 1843, 216–221. [Google Scholar] [CrossRef]
- Jariel-Encontre, I.; Bossis, G.; Piechaczyk, M. Ubiquitin-Independent Degradation of Proteins by the Proteasome. Biochim. Biophys. Acta 2008, 1786, 153–177. [Google Scholar] [CrossRef]
- Kumar Deshmukh, F.; Yaffe, D.; Olshina, M.A.; Ben-Nissan, G.; Sharon, M. The Contribution of the 20S Proteasome to Proteostasis. Biomolecules 2019, 9, 190. [Google Scholar] [CrossRef]
- Ben-Nissan, G.; Sharon, M. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway. Biomolecules 2014, 4, 862–884. [Google Scholar] [CrossRef] [PubMed]
- Sahu, I.; Glickman, M.H. Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Cascio, P.; Dittmar, G. Regulating Proteasome Activity. Biomolecules 2022, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Bagde, P.H.; Kandpal, M.; Rani, A.; Kumar, S.; Mishra, A.; Jha, H.C. Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies. J. Cell Biochem. 2025, 126, e70000. [Google Scholar] [CrossRef]
- Zaky, W.; Manton, C.; Miller, C.P.; Khatua, S.; Gopalakrishnan, V.; Chandra, J. The Ubiquitin-Proteasome Pathway in Adult and Pediatric Brain Tumors: Biological Insights and Therapeutic Opportunities. Cancer Metastasis Rev. 2017, 36, 617–633. [Google Scholar] [CrossRef]
- Jang, H.H. Regulation of Protein Degradation by Proteasomes in Cancer. J. Cancer Prev. 2018, 23, 153–161. [Google Scholar] [CrossRef]
- Han, D.; Wang, L.; Jiang, S.; Yang, Q. The Ubiquitin-Proteasome System in Breast Cancer. Trends Mol. Med. 2023, 29, 599–621. [Google Scholar] [CrossRef]
- Cui, Z.; Cong, M.; Yin, S.; Li, Y.; Ye, Y.; Liu, X.; Tang, J. Role of Protein Degradation Systems in Colorectal Cancer. Cell Death Discov. 2024, 10, 141. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, R.; Wu, Y.; Zhou, L.; Xiang, T. The Role of Proteasomes in Tumorigenesis. Genes. Dis. 2024, 11, 101070. [Google Scholar] [CrossRef]
- Orlowski, R.Z.; Kuhn, D.J. Proteasome Inhibitors in Cancer Therapy: Lessons from the First Decade. Clin. Cancer Res. 2008, 14, 1649–1657. [Google Scholar] [CrossRef]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Palombella, V.J.; Sausville, E.A.; Johnson, J.; Destree, A.; Lazarus, D.D.; Maas, J.; Pien, C.S.; Prakash, S.; Elliott, P.J. Proteasome Inhibitors: A Novel Class of Potent and Effective Antitumor Agents. Cancer Res. 1999, 59, 2615–2622. [Google Scholar] [PubMed]
- Adams, J. The Development of Proteasome Inhibitors as Anticancer Drugs. Cancer Cell 2004, 5, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Adams, J. The Proteasome: Structure, Function, and Role in the Cell. Cancer Treat. Rev. 2003, 29, 3–9. [Google Scholar] [CrossRef]
- Goldberg, A.L. Development of Proteasome Inhibitors as Research Tools and Cancer Drugs. J. Cell Biol. 2012, 199, 583–588. [Google Scholar] [CrossRef]
- Grigoreva, T.A.; Tribulovich, V.G.; Garabadzhiu, A.V.; Melino, G.; Barlev, N.A. The 26S Proteasome Is a Multifaceted Target for Anti-Cancer Therapies. Oncotarget 2015, 6, 24733–24749. [Google Scholar] [CrossRef]
- Saavedra-García, P.; Martini, F.; Auner, H.W. Proteasome Inhibition in Multiple Myeloma: Lessons for Other Cancers. Am. J. Physiol.-Cell Physiol. 2020, 318, C451–C462. [Google Scholar] [CrossRef]
- Fhu, C.W.; Ali, A. Dysregulation of the Ubiquitin Proteasome System in Human Malignancies: A Window for Therapeutic Intervention. Cancers 2021, 13, 1513. [Google Scholar] [CrossRef]
- Sogbein, O.; Paul, P.; Umar, M.; Chaari, A.; Batuman, V.; Upadhyay, R. Bortezomib in Cancer Therapy: Mechanisms, Side Effects, and Future Proteasome Inhibitors. Life Sci. 2024, 358, 123125. [Google Scholar] [CrossRef]
- Aliabadi, F.; Sohrabi, B.; Mostafavi, E.; Pazoki-Toroudi, H.; Webster, T.J. Ubiquitin-Proteasome System and the Role of Its Inhibitors in Cancer Therapy. Open Biol. 2021, 11, 200390. [Google Scholar] [CrossRef]
- Kisselev, A.F. Site-Specific Proteasome Inhibitors. Biomolecules 2021, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Dubiel, W.; Pratt, G.; Ferrell, K.; Rechsteiner, M. Purification of an 11 S Regulator of the Multicatalytic Protease. J. Biol. Chem. 1992, 267, 22369–22377. [Google Scholar] [CrossRef] [PubMed]
- Chu-Ping, M.; Slaughter, C.A.; DeMartino, G.N. Identification, Purification, and Characterization of a Protein Activator (PA28) of the 20 S Proteasome (Macropain). J. Biol. Chem. 1992, 267, 10515–10523. [Google Scholar]
- Ahn, J.Y.; Tanahashi, N.; Akiyama, K.; Hisamatsu, H.; Noda, C.; Tanaka, K.; Chung, C.H.; Shibmara, N.; Willy, P.J.; Mott, J.D.; et al. Primary Structures of Two Homologous Subunits of PA28, a γ-Interferon-Inducible Protein Activator of the 20S Proteasome. FEBS Lett. 1995, 366, 37–42. [Google Scholar] [CrossRef]
- Ahn, K.; Erlander, M.; Leturcq, D.; Peterson, P.A.; Früh, K.; Yang, Y. In Vivo Characterization of the Proteasome Regulator PA28 *. J. Biol. Chem. 1996, 271, 18237–18242. [Google Scholar] [CrossRef]
- Honoré, B.; Leffers, H.; Madsen, P.; Celis, J.E. Interferon-Gamma up-Regulates a Unique Set of Proteins in Human Keratinocytes. Molecular Cloning and Expression of the cDNA Encoding the RGD-Sequence-Containing Protein IGUP I-5111. Eur. J. Biochem. 1993, 218, 421–430. [Google Scholar] [CrossRef]
- Jiang, H.; Monaco, J.J. Sequence and Expression of Mouse Proteasome Activator PA28 and the Related Autoantigen Ki. Immunogenetics 1997, 46, 93–98. [Google Scholar] [CrossRef]
- Realini, C.; Dubiel, W.; Pratt, G.; Ferrell, K.; Rechsteiner, M. Molecular Cloning and Expression of a Gamma-Interferon-Inducible Activator of the Multicatalytic Protease. J. Biol. Chem. 1994, 269, 20727–20732. [Google Scholar] [CrossRef]
- Tanahashi, N.; Yokota, K.Y.; Ahn, J.Y.; Chung, C.H.; Fujiwara, T.; Takahashi, E.I.; DeMartino, G.N.; Slaughter, C.A.; Toyonaga, T.; Yamamura, K.I.; et al. Molecular Properties of the Proteasome Activator PA28 Family Proteins and γ-Interferon Regulation. Genes. Cells 1997, 2, 195–211. [Google Scholar] [CrossRef]
- Masson, P.; Andersson, O.; Petersen, U.M.; Young, P. Identification and Characterization of a Drosophila Nuclear Proteasome Regulator. A Homolog of Human 11 S REGγ (PA28γ). J. Biol. Chem. 2001, 276, 1383–1390. [Google Scholar] [CrossRef]
- Paesen, G.C.; Nuttall, P.A. A Tick Homologue of the Human Ki Nuclear Autoantigen. Biochim. Biophys. Acta 1996, 1309, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.S.; Morais, E.R.; Magalhães, L.G.; Machado, C.B.; de Moreira, É.B.C.; Teixeira, F.R.; Rodrigues, V.; Yoshino, T.P. Molecular and Functional Characterization of a Putative PA28γ Proteasome Activator Orthologue in Schistosoma Mansoni. Mol. Biochem. Parasitol. 2013, 189, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Lundin, D.; Söderbom, F.; Young, P. Characterization of a REG/PA28 Proteasome Activator Homolog in Dictyostelium Discoideum Indicates That the Ubiquitin- and ATP-Independent REGgamma Proteasome Is an Ancient Nuclear Protease. Eukaryot. Cell 2009, 8, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.C.; Metcalfe, R.D.; Hanssen, E.; Yang, T.; Gillett, D.L.; Leis, A.P.; Morton, C.J.; Kuiper, M.J.; Parker, M.W.; Spillman, N.J.; et al. The Structure of the PA28–20S Proteasome Complex from Plasmodium Falciparum and Implications for Proteostasis. Nat. Microbiol. 2019, 4, 1990–2000. [Google Scholar] [CrossRef]
- Fort, P.; Kajava, A.V.; Delsuc, F.; Coux, O. Evolution of Proteasome Regulators in Eukaryotes. Genome Biol. Evol. 2015, 7, 1363–1379. [Google Scholar] [CrossRef]
- Realini, C.; Jensen, C.C.; Zhang, Z.G.; Johnston, S.C.; Knowlton, J.R.; Hill, C.P.; Rechsteiner, M. Characterization of Recombinant REGα, REGβ, and REGγ Proteasome Activators. J. Biol. Chem. 1997, 272, 25483–25492. [Google Scholar] [CrossRef]
- Sugiyama, M.; Sahashi, H.; Kurimoto, E.; Takata, S.I.; Yagi, H.; Kanai, K.; Sakata, E.; Minami, Y.; Tanaka, K.; Kato, K. Spatial Arrangement and Functional Role of α Subunits of Proteasome Activator PA28 in Hetero-Oligomeric Form. Biochem. Biophys. Res. Commun. 2013, 432, 141–145. [Google Scholar] [CrossRef]
- Li, X.; Lonard, D.M.; Jung, S.Y.; Malovannaya, A.; Feng, Q.; Qin, J.; Tsai, S.Y.; Tsai, M.J.; O’Malley, B.W. The SRC-3/AIB1 Coactivator Is Degraded in a Ubiquitin- and ATP-Independent Manner by the REGγ Proteasome. Cell 2006, 124, 381–392. [Google Scholar] [CrossRef]
- Li, X.; Amazit, L.; Long, W.; Lonard, D.M.; Monaco, J.J.; O’Malley, B.W. Ubiquitin- and ATP-Independent Proteolytic Turnover of P21 by the REGγ-Proteasome Pathway. Mol. Cell 2007, 26, 831–842. [Google Scholar] [CrossRef]
- Li, L.; Dang, Y.; Zhang, J.; Yan, W.; Zhai, W.; Chen, H.; Li, K.; Tong, L.; Gao, X.; Amjad, A.; et al. REGγ 3 Is Critical for Skin Carcinogenesis by Modulating the Wnt/β 2-Catenin Pathway. Nat. Commun. 2015, 6, 6875. [Google Scholar] [CrossRef]
- Moriishi, K.; Mochizuki, R.; Moriya, K.; Miyamoto, H.; Mori, Y.; Abe, T.; Myrata, S.; Tanaka, K.; Miyamura, T.; Suzuki, T.; et al. Critical Role of PA28γ in Hepatitis C Virus-Associated Steatogenesis and Hepatocarcinogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Furuya, F.; Zhao, L.; Araki, O.; West, B.L.; Hanover, J.A.; Willingham, M.C.; Cheng, S.Y. Aberrant Accumulation of PTTG1 Induced by a Mutated Thyroid Hormone β Receptor Inhibits Mitotic Progression. J. Clin. Investig. 2006, 116, 2972–2984. [Google Scholar] [CrossRef] [PubMed]
- Cascio, P. PA28γ: New Insights on an Ancient Proteasome Activator. Biomolecules 2021, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, J.R.; Johnston, S.C.; Whitby, F.G.; Realini, C.; Zhang, Z.; Rechsteiner, M.; Hill, C.P. Structure of the Proteasome Activator REGα (PA28α). Nature 1997, 390, 639–643. [Google Scholar] [CrossRef]
- Huber, E.M.; Groll, M. The Mammalian Proteasome Activator PA28 Forms an Asymmetric A4β3 Complex. Structure 2017, 25, 1473–1480.e3. [Google Scholar] [CrossRef]
- Zhang, Z.; Krutchinsky, A.; Endicott, S.; Realini, C.; Rechsteiner, M.; Standing, K.G. Proteasome Activator 11S REG or PA28: Recombinant REG Alpha/REG Beta Hetero-Oligomers Are Heptamers. Biochemistry 1999, 38, 5651–5658. [Google Scholar] [CrossRef]
- Zhao, J.; Makhija, S.; Zhou, C.; Zhang, H.; Wang, Y.; Muralidharan, M.; Huang, B.; Cheng, Y. Structural Insights into the Human PA28-20S Proteasome Enabled by Efficient Tagging and Purification of Endogenous Proteins. Proc. Natl. Acad. Sci. USA 2022, 119, e2207200119. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Xu, C.; Chen, K.; Zhao, Q.; Wang, S.; Yin, Y.; Peng, C.; Ding, Z.; Cong, Y. Cryo-EM of Mammalian PA28αβ-iCP Immunoproteasome Reveals a Distinct Mechanism of Proteasome Activation by PA28αβ. Nat. Commun. 2021, 12, 739. [Google Scholar] [CrossRef]
- Wilk, S.; Chen, W.E.; Magnusson, R.P. Properties of the Nuclear Proteasome Activator PA28γ (REGγ). Arch. Biochem. Biophys. 2000, 383, 265–271. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Ortega, J.; Nazif, T.; Joss, L.; Bogyo, M.; Steven, A.C.; Rechsteiner, M. Lysine 188 Substitutions Convert the Pattern of Proteasome Activation by REGγ to That of REGs α and β. EMBO J. 2001, 20, 3359–3369. [Google Scholar] [CrossRef]
- Thomas, T.A.; Smith, D.M. Proteasome Activator 28γ (PA28γ) Allosterically Activates Trypsin-like Proteolysis by Binding to the α-Ring of the 20S Proteasome. J. Biol. Chem. 2022, 298, 102140. [Google Scholar] [CrossRef]
- Chen, D.-D.; Hao, J.; Shen, C.-H.; Deng, X.-M.; Yun, C.-H. Atomic Resolution Cryo-EM Structure of Human Proteasome Activator PA28γ. Int. J. Biol. Macromol. 2022, 219, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Cascio, P. PA28αβ: The Enigmatic Magic Ring of the Proteasome? Biomolecules 2014, 4, 566–584. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.W.; Slaughter, C.A.; DeMartino, G.N. PA28 Activator Protein Forms Regulatory Caps on Proteasome Stacked Rings. J. Mol. Biol. 1994, 236, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Clawson, A.; Realini, C.; Jensen, C.C.; Knowlton, J.R.; Hill, C.P.; Rechsteiner, M. Identification of an Activation Region in the Proteasome Activator REGα. Proc. Natl. Acad. Sci. USA 1998, 95, 2807–2811. [Google Scholar] [CrossRef]
- Li, J.; Gao, X.; Joss, L.; Rechsteiner, M. The Proteasome Activator 11 S REG or PA28: Chimeras Implicate Carboxyl-Terminal Sequences in Oligomerization and Proteasome Binding but Not in the Activation of Specific Proteasome Catalytic Subunits. J. Mol. Biol. 2000, 299, 641–654. [Google Scholar] [CrossRef]
- Ma, C.P.; Willy, P.J.; Slaughter, C.A.; DeMartino, G.N. PA28, an Activator of the 20 S Proteasome, Is Inactivated by Proteolytic Modification at Its Carboxyl Terminus. J. Biol. Chem. 1993, 268, 22514–22519. [Google Scholar] [CrossRef]
- Song, X.; Mott, J.D.; von Kampen, J.; Pramanik, B.; Tanaka, K.; Slaughter, C.A.; DeMartino, G.N. A Model for the Quaternary Structure of the Proteasome Activator PA28*. J. Biol. Chem. 1996, 271, 26410–26417. [Google Scholar] [CrossRef]
- Stadtmueller, B.M.; Hill, C.P. Proteasome Activators. Mol. Cell 2011, 41, 8–19. [Google Scholar] [CrossRef]
- Whitby, F.G.; Masters, E.I.; Kramer, L.; Knowlton, J.R.; Yao, Y.; Wang, C.C.; Hill, C.P. Structural Basis for the Activation of 20S Proteasomes by 11S Regulators. Nature 2000, 408, 115–120. [Google Scholar] [CrossRef]
- Löwe, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W.; Huber, R. Crystal Structure of the 20S Proteasome from the Archaeon T. Acidophilum at 3.4 A Resolution. Science 1995, 268, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Groll, M.; Ditzel, L.; Löwe, J.; Stock, D.; Bochtler, M.; Bartunik, H.D.; Huber, R. Structure of 20S Proteasome from Yeast at 2.4 A Resolution. Nature 1997, 386, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Cascio, P.; Leggett, D.S.; Woo, K.M.; Goldberg, A.L.; Finley, D. The Axial Channel of the Proteasome Core Particle Is Gated by the Rpt2 ATPase and Controls Both Substrate Entry and Product Release. Mol. Cell 2001, 7, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Groll, M.; Bajorek, M.; Köhler, A.; Moroder, L.; Rubin, D.M.; Huber, R.; Glickman, M.H.; Finley, D. A Gated Channel into the Proteasome Core Particle. Nat. Struct. Biol. 2000, 7, 1062–1067. [Google Scholar] [CrossRef]
- Lesne, J.; Locard-Paulet, M.; Parra, J.; Zivković, D.; Menneteau, T.; Bousquet, M.-P.; Burlet-Schiltz, O.; Marcoux, J. Conformational Maps of Human 20S Proteasomes Reveal PA28- and Immuno-Dependent Inter-Ring Crosstalks. Nat. Commun. 2020, 11, 6140. [Google Scholar] [CrossRef]
- Ruschak, A.M.; Kay, L.E. Proteasome Allostery as a Population Shift between Interchanging Conformers. Proc. Natl. Acad. Sci. USA 2012, 109, E3454–E3462. [Google Scholar] [CrossRef]
- Rennella, E.; Huang, R.; Yu, Z.; Kay, L.E. Exploring Long-Range Cooperativity in the 20S Proteasome Core Particle from Thermoplasma Acidophilum Using Methyl-TROSY–Based NMR. Proc. Natl. Acad. Sci. USA 2020, 117, 5298–5309. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, Y.; Wang, F.; Myasnikov, A.G.; Coffino, P.; Cheng, Y. Allosteric Coupling between α-Rings of the 20S Proteasome. Nat. Commun. 2020, 11, 4580. [Google Scholar] [CrossRef]
- Thomas, T.; Salcedo-Tacuma, D.; Smith, D.M. Structure, Function, and Allosteric Regulation of the 20S Proteasome by the 11S/PA28 Family of Proteasome Activators. Biomolecules 2023, 13, 1326. [Google Scholar] [CrossRef]
- Noda, C.; Tanahashi, N.; Shimbara, N.; Hendil, K.B.; Tanaka, K. Tissue Distribution of Constitutive Proteasomes, Immunoproteasomes, and PA28 in Rats. Biochem. Biophys. Res. Commun. 2000, 277, 348–354. [Google Scholar] [CrossRef]
- Nikaido, T.; Shimada, K.; Shibata, M.; Hata, M.; Sakamoto, M.; Takasaki, Y.; Sato, C.; Takahashi, T.; Nishida, Y. Cloning and Nucleotide Sequence of cDNA for Ki Antigen, a Highly Conserved Nuclear Protein Detected with Sera from Patients with Systemic Lupus Erythematosus. Clin. Exp. Immunol. 1990, 79, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Kawahara, H.; Tohma, S.; Yamamoto, K.; Kasahara, M.; Nabeshima, Y.I.; Tanaka, K.; Chiba, T. Growth Retardation in Mice Lacking the Proteasome Activator PA28γ. J. Biol. Chem. 1999, 274, 38211–38215. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.F.; Runnels, H.A.; Schell, T.D.; Cho, Y.; Gibbons, R.; Tevethia, S.S.; Deepe, G.S.; Monaco, J.J. Immune Defects in 28-kDa Proteasome Activator γ-Deficient Mice. J. Immunol. 2004, 172, 3948–3954. [Google Scholar] [CrossRef] [PubMed]
- Cioce, M.; Boulon, S.; Matera, A.G.; Lamond, A.I. UV-Induced Fragmentation of Cajal Bodies. J. Cell Biol. 2006, 175, 401–413. [Google Scholar] [CrossRef]
- Jonik-Nowak, B.; Menneteau, T.; Fesquet, D.; Baldin, V.; Bonne-Andrea, C.; Méchali, F.; Fabre, B.; Boisguerin, P.; De Rossi, S.; Henriquet, C.; et al. PIP30/FAM192A Is a Novel Regulator of the Nuclear Proteasome Activator PA28γ. Proc. Natl. Acad. Sci. USA 2018, 115, E6477–E6486. [Google Scholar] [CrossRef]
- Baldin, V.; Militello, M.; Thomas, Y.; Doucet, C.; Fic, W.; Boireau, S.; Jariel-Encontre, I.; Piechaczyk, M.; Bertrand, E.; Tazi, J.; et al. A Novel Role for PA28γ-Proteasome in Nuclear Speckle Organization and SR Protein Trafficking. Mol. Biol. Cell 2008, 19, 1706–1716. [Google Scholar] [CrossRef]
- Zannini, L.; Lecis, D.; Buscemi, G.; Carlessi, L.; Gasparini, P.; Fontanella, E.; Lisanti, S.; Barton, L.; Delia, D. REGγ Proteasome Activator Is Involved in the Maintenance of Chromosomal Stability. Cell Cycle 2008, 7, 504–512. [Google Scholar] [CrossRef]
- Levy-Barda, A.; Lerenthal, Y.; Davis, A.J.; Chung, Y.M.; Essers, J.; Shao, Z.; Van Vliet, N.; Chen, D.J.; Hu, M.C.T.; Kanaar, R.; et al. Involvement of the Nuclear Proteasome Activator PA28γ in the Cellular Response to DNA Double-Strand Breaks. Cell Cycle 2011, 10, 4300–4310. [Google Scholar] [CrossRef]
- Dong, S.; Jia, C.; Zhang, S.; Fan, G.; Li, Y.; Shan, P.; Sun, L.; Xiao, W.; Li, L.; Zheng, Y.; et al. The REGγ Proteasome Regulates Hepatic Lipid Metabolism through Inhibition of Autophagy. Cell Metab. 2013, 18, 380–391. [Google Scholar] [CrossRef]
- Gao, X.; Chen, H.; Liu, J.; Shen, S.; Wang, Q.; Clement, T.M.; Deskin, B.J.; Chen, C.; Zhao, D.; Wang, L.; et al. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Rep. 2019, 13, 559–571. [Google Scholar] [CrossRef]
- Huang, L.; Haratake, K.; Miyahara, H.; Chiba, T. Proteasome Activators, PA28γ and PA200, Play Indispensable Roles in Male Fertility. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhou, L.; Xuan, Y.; Zhang, P.; Wang, X.; Wang, T.; Meng, T.; Xue, Y.; Ma, X.; Shah, A.S.; et al. The Proteasome Activator REGγ Counteracts Immunoproteasome Expression and Autoimmunity. J. Autoimmun. 2019, 103. [Google Scholar] [CrossRef] [PubMed]
- Boulpicante, M.; Darrigrand, R.; Pierson, A.; Salgues, V.; Rouillon, M.; Gaudineau, B.; Khaled, M.; Cattaneo, A.; Bachi, A.; Cascio, P.; et al. Tumors Escape Immunosurveillance by Overexpressing the Proteasome Activator PSME3. OncoImmunology 2020, 9, 1761205. [Google Scholar] [CrossRef] [PubMed]
- Cascio, P. PA28γ, the Ring That Makes Tumors Invisible to the Immune System? Biochimie 2024, 226, 136–147. [Google Scholar] [CrossRef]
- Fabre, B.; Lambour, T.; Garrigues, L.; Ducoux-Petit, M.; Amalric, F.; Monsarrat, B.; Burlet-Schiltz, O.; Bousquet-Dubouch, M.P. Label-Free Quantitative Proteomics Reveals the Dynamics of Proteasome Complexes Composition and Stoichiometry in a Wide Range of Human Cell Lines. J. Proteome Res. 2014, 13, 3027–3037. [Google Scholar] [CrossRef]
- Lei, K.; Bai, H.; Sun, S.; Xin, C.; Li, J.; Chen, Q. PA28γ, an Accomplice to Malignant Cancer. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef]
- Shen, M.; Wang, Q.; Xu, S.; Chen, G.; Xu, H.; Li, X.; Zhao, S. Role of Oncogenic REGγ in Cancer. Biomed. Pharmacother. 2020, 130, 110614. [Google Scholar] [CrossRef]
- Funderburk, K.E.; Kang, J.; Li, H.J. Regulation of Life & Death by REGγ. Cells 2022, 11, 2281. [Google Scholar] [CrossRef]
- Rechsteiner, M.; Realini, C.; Ustrell, V. The Proteasome Activator 11 S REG (PA28) and Class I Antigen Presentation. Biochem. J. 2000, 345, 1–15. [Google Scholar] [CrossRef]
- Li, J.; Powell, S.R.; Wang, X. Enhancement of Proteasome Function by PA28α Overexpression Protects against Oxidative Stress. FASEB J. 2011, 25, 883–893. [Google Scholar] [CrossRef]
- Pickering, A.M.; Davies, K.J.A. Differential Roles of Proteasome and Immunoproteasome Regulators Pa28αβ, Pa28γ and Pa200 in the Degradation of Oxidized Proteins. Arch. Biochem. Biophys. 2012, 523, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Pickering, A.M.; Koop, A.L.; Teoh, C.Y.; Ermak, G.; Grune, T.; Davies, K.J.A. The Immunoproteasome, the 20S Proteasome and the PA28αβ Proteasome Regulator Are Oxidative-Stress-Adaptive Proteolytic Complexes. Biochem. J. 2010, 432, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Adelöf, J.; Wiseman, J.; Zetterberg, M.; Hernebring, M. PA28α Overexpressing Female Mice Maintain Exploratory Behavior and Capacity to Prevent Protein Aggregation in Hippocampus as They Age. Aging Cell 2021, 20, e13336. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.L.; Cascio, P.; Saric, T.; Rock, K.L. The Importance of the Proteasome and Subsequent Proteolytic Steps in the Generation of Antigenic Peptides. Mol. Immunol. 2002, 39, 147–164. [Google Scholar] [CrossRef]
- Macagno, A.; Gilliet, M.; Sallusto, F.; Lanzavecchia, A.; Nestle, F.O.; Groettrup, M. Dendritic Cells Up-Regulate Immunoproteasomes and the Proteasome Regulator PA28 during Maturation. Eur. J. Immunol. 1999, 29, 4037–4042. [Google Scholar] [CrossRef]
- Ossendorp, F.; Fu, N.; Camps, M.; Granucci, F.; Gobin, S.J.P.; van den Elsen, P.J.; Schuurhuis, D.; Adema, G.J.; Lipford, G.B.; Chiba, T.; et al. Differential Expression Regulation of the Alpha and Beta Subunits of the PA28 Proteasome Activator in Mature Dendritic Cells. J. Immunol. 2005, 174, 7815–7822. [Google Scholar] [CrossRef]
- Suzuki, Y.; Lutshumba, J.; Chen, K.C.; Abdelaziz, M.H.; Sa, Q.; Ochiai, E. IFN-γ Production by Brain-Resident Cells Activates Cerebral mRNA Expression of a Wide Spectrum of Molecules Critical for Both Innate and T Cell-Mediated Protective Immunity to Control Reactivation of Chronic Infection with Toxoplasma Gondii. Front. Cell Infect. Microbiol. 2023, 13, 1110508. [Google Scholar] [CrossRef]
- Nil, A.; Firat, E.; Sobek, V.; Eichmann, K.; Niedermann, G. Expression of Housekeeping and Immunoproteasome Subunit Genes Is Differentially Regulated in Positively and Negatively Selecting Thymic Stroma Subsets. Eur. J. Immunol. 2004, 34, 2681–2689. [Google Scholar] [CrossRef]
- Yamano, T.; Murata, S.; Shimbara, N.; Tanaka, N.; Chiba, T.; Tanaka, K.; Yui, K.; Udono, H. Two Distinct Pathways Mediated by PA28 and Hsp90 in Major Histocompatibility Complex Class I Antigen Processing. J. Exp. Med. 2002, 196, 185–196. [Google Scholar] [CrossRef]
- Sun, Y.; Sijts, A.J.A.M.; Song, M.; Janek, K.; Nussbaum, A.K.; Kral, S.; Schirle, M.; Stevanovic, S.; Paschen, A.; Schild, H.; et al. Expression of the Proteasome Activator PA28 Rescues the Presentation of a Cytotoxic T Lymphocyte Epitope on Melanoma Cells. Cancer Res. 2002, 62, 2875–2882. [Google Scholar]
- van Hall, T.; Sijts, A.; Camps, M.; Offringa, R.; Melief, C.; Kloetzel, P.M.; Ossendorp, F. Differential Influence on Cytotoxic T Lymphocyte Epitope Presentation by Controlled Expression of Either Proteasome Immunosubunits or PA28. J. Exp. Med. 2000, 192, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Murata, S.; Udono, H.; Tanahashi, N.; Hamada, N.; Watanabe, K.; Adachi, K.; Yamano, T.; Yui, K.; Kobayashi, N.; Kasahara, M.; et al. Immunoproteasome Assembly and Antigen Presentation in Mice Lacking Both PA28alpha and PA28beta. EMBO J. 2001, 20, 5898–5907. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, N.; van Helden, M.J.G.; Textoris-Taube, K.; Chiba, T.; Topham, D.J.; Kloetzel, P.-M.; Zaiss, D.M.W.; Sijts, A.J.A.M. PA28 and the Proteasome Immunosubunits Play a Central and Independent Role in the Production of MHC Class I-Binding Peptides in Vivo. Eur. J. Immunol. 2011, 41, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Groettrup, M.; Soza, A.; Eggers, M.; Kuehn, L.; Dick, T.P.; Schild, H.; Rammensee, H.G.; Koszinowski, U.H.; Kloetzel, P.M. A Role for the Proteasome Regulator PA28alpha in Antigen Presentation. Nature 1996, 381, 166–168. [Google Scholar] [CrossRef]
- Schwarz, K.; van Den Broek, M.; Kostka, S.; Kraft, R.; Soza, A.; Schmidtke, G.; Kloetzel, P.M.; Groettrup, M. Overexpression of the Proteasome Subunits LMP2, LMP7, and MECL-1, but Not PA28 Alpha/Beta, Enhances the Presentation of an Immunodominant Lymphocytic Choriomeningitis Virus T Cell Epitope. J. Immunol. 2000, 165, 768–778. [Google Scholar] [CrossRef]
- Sijts, A.; Sun, Y.; Janek, K.; Kral, S.; Paschen, A.; Schadendorf, D.; Kloetzel, P.-M. The Role of the Proteasome Activator PA28 in MHC Class I Antigen Processing. Mol. Immunol. 2002, 39, 165–169. [Google Scholar] [CrossRef]
- Respondek, D.; Voss, M.; Kühlewindt, I.; Klingel, K.; Krüger, E.; Beling, A. PA28 Modulates Antigen Processing and Viral Replication during Coxsackievirus B3 Infection. PLoS ONE 2017, 12, e0173259. [Google Scholar] [CrossRef]
- Yamano, T.; Sugahara, H.; Mizukami, S.; Murata, S.; Chiba, T.; Tanaka, K.; Yui, K.; Udono, H. Allele-Selective Effect of PA28 in MHC Class I Antigen Processing. J. Immunol. 2008, 181, 1655–1664. [Google Scholar] [CrossRef]
- Seliger, B. Molecular Mechanisms of MHC Class I Abnormalities and APM Components in Human Tumors. Cancer Immunol. Immunother. 2008, 57, 1719–1726. [Google Scholar] [CrossRef]
- Campoli, M.; Ferrone, S. HLA Antigen Changes in Malignant Cells: Epigenetic Mechanisms and Biologic Significance. Oncogene 2008, 27, 5869–5885. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef]
- Marincola, F.M.; Jaffee, E.M.; Hicklin, D.J.; Ferrone, S. Escape of Human Solid Tumors from T-Cell Recognition: Molecular Mechanisms and Functional Significance. Adv. Immunol. 2000, 74, 181–273. [Google Scholar] [CrossRef] [PubMed]
- Ritz, U.; Momburg, F.; Pilch, H.; Huber, C.; Maeurer, M.J.; Seliger, B. Deficient Expression of Components of the MHC Class I Antigen Processing Machinery in Human Cervical Carcinoma. Int. J. Oncol. 2001, 19, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Cerruti, F.; Martano, M.; Petterino, C.; Bollo, E.; Morello, E.; Bruno, R.; Buracco, P.; Cascio, P. Enhanced Expression of Interferon-Gamma-Induced Antigen-Processing Machinery Components in a Spontaneously Occurring Cancer. Neoplasia 2007, 9, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Spirina, L.V.; Kondakova, I.V.; Koval’, V.D.; Kolomiets, L.A.; Chernyshova, A.L.; Choinzonov, E.L.; Sharova, N.P. Proteasome Activity and Their Subunit Composition in Endometrial Cancer Tissue: Correlations with Clinical Morphological Parameters. Bull. Exp. Biol. Med. 2012, 153, 501–504. [Google Scholar] [CrossRef]
- Hirata, T.; Yamamoto, H.; Taniguchi, H.; Horiuchi, S.; Oki, M.; Adachi, Y.; Imai, K.; Shinomura, Y. Characterization of the Immune Escape Phenotype of Human Gastric Cancers with and without High-Frequency Microsatellite Instability. J. Pathol. 2007, 211, 516–523. [Google Scholar] [CrossRef]
- Sánchez-Martín, D.; Martínez-Torrecuadrada, J.; Teesalu, T.; Sugahara, K.N.; Alvarez-Cienfuegos, A.; Ximénez-Embún, P.; Fernández-Periáñez, R.; Martín, M.T.; Molina-Privado, I.; Ruppen-Cañás, I.; et al. Proteasome Activator Complex PA28 Identified as an Accessible Target in Prostate Cancer by in Vivo Selection of Human Antibodies. Proc. Natl. Acad. Sci. USA 2013, 110, 13791–13796. [Google Scholar] [CrossRef]
- Erokhov, P.A.; Kulikov, A.M.; Karpova, Y.D.; Rodoman, G.V.; Sumedi, I.R.; Goncharov, A.L.; Razbirin, D.V.; Gorelova, V.S.; Sharova, N.P.; Astakhova, T.M. Proteasomes in Patient Rectal Cancer and Different Intestine Locations: Where Does Proteasome Pool Change? Cancers 2021, 13, 1108. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, J.; Qi, B.; Shen, C.; Xie, W. Downregulation of HLA Class I Molecules in Primary Oral Squamous Cell Carcinomas and Cell Lines. Arch. Med. Res. 2009, 40, 256–263. [Google Scholar] [CrossRef]
- Matsui, M.; Ikeda, M.; Akatsuka, T. High Expression of HLA-A2 on an Oral Squamous Cell Carcinoma with down-Regulated Transporter for Antigen Presentation. Biochem. Biophys. Res. Commun. 2001, 280, 1008–1014. [Google Scholar] [CrossRef]
- Seliger, B.; Wollscheid, U.; Momburg, F.; Blankenstein, T.; Huber, C. Characterization of the Major Histocompatibility Complex Class I Deficiencies in B16 Melanoma Cells. Cancer Res. 2001, 61, 1095–1099. [Google Scholar] [PubMed]
- Vertegaal, A.C.O.; Kuiperij, H.B.; Houweling, A.; Verlaan, M.; van der Eb, A.J.; Zantema, A. Differential Expression of Tapasin and Immunoproteasome Subunits in Adenovirus Type 5- versus Type 12-Transformed Cells. J. Biol. Chem. 2003, 278, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, T.; Tatsumi, T.; Takehara, T.; Kanto, T.; Kuzushita, N.; Sugimoto, Y.; Jinushi, M.; Kasahara, A.; Sasaki, Y.; Hori, M.; et al. Impaired Expression of Proteasome Subunits and Human Leukocyte Antigens Class I in Human Colon Cancer Cells. J. Gastroenterol. Hepatol. 2003, 18, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Seliger, B.; Wollscheid, U.; Momburg, F.; Blankenstein, T.; Huber, C. Coordinate Downregulation of Multiple MHC Class I Antigen Processing Genes in Chemical-Induced Murine Tumor Cell Lines of Distinct Origin. Tissue Antigens 2000, 56, 327–336. [Google Scholar] [CrossRef]
- Johnsen, A.; France, J.; Sy, M.S.; Harding, C.V. Down-Regulation of the Transporter for Antigen Presentation, Proteasome Subunits, and Class I Major Histocompatibility Complex in Tumor Cell Lines. Cancer Res. 1998, 58, 3660–3667. [Google Scholar]
- Delp, K.; Momburg, F.; Hilmes, C.; Huber, C.; Seliger, B. Functional Deficiencies of Components of the MHC Class I Antigen Pathway in Human Tumors of Epithelial Origin. Bone Marrow Transplant. 2000, 25 (Suppl. S2), S88–S95. [Google Scholar] [CrossRef]
- Frisan, T.; Levitsky, V.; Masucci, M.G. Variations in Proteasome Subunit Composition and Enzymatic Activity in B-Lymphoma Lines and Normal B Cells. Int. J. Cancer 2000, 88, 881–888. [Google Scholar] [CrossRef]
- Nagaraja, G.M.; Kaur, P.; Neumann, W.; Asea, E.E.; Bausero, M.A.; Multhoff, G.; Asea, A. Silencing Hsp25/Hsp27 Gene Expression Augments Proteasome Activity and Increases CD8+ T-Cell-Mediated Tumor Killing and Memory Responses. Cancer Prev. Res. 2012, 5, 122–137. [Google Scholar] [CrossRef]
- Herrmann, F.; Lehr, H.-A.; Drexler, I.; Sutter, G.; Hengstler, J.; Wollscheid, U.; Seliger, B. HER-2/Neu-Mediated Regulation of Components of the MHC Class I Antigen-Processing Pathway. Cancer Res. 2004, 64, 215–220. [Google Scholar] [CrossRef]
- Duan, X.; Hisaeda, H.; Shen, J.; Tu, L.; Imai, T.; Chou, B.; Murata, S.; Chiba, T.; Tanaka, K.; Fehling, H.J.; et al. The Ubiquitin-Proteasome System Plays Essential Roles in Presenting an 8-Mer CTL Epitope Expressed in APC to Corresponding CD8+ T Cells. Int. Immunol. 2006, 18, 679–687. [Google Scholar] [CrossRef]
- Zhang, M.; Obata, C.; Hisaeda, H.; Ishii, K.; Murata, S.; Chiba, T.; Tanaka, K.; Li, Y.; Furue, M.; Chou, B.; et al. A Novel DNA Vaccine Based on Ubiquitin–Proteasome Pathway Targeting ‘Self’-Antigens Expressed in Melanoma/Melanocyte. Gene Ther. 2005, 12, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ishii, K.; Hisaeda, H.; Murata, S.; Chiba, T.; Tanaka, K.; Li, Y.; Obata, C.; Furue, M.; Himeno, K. Ubiquitin-fusion Degradation Pathway Plays an Indispensable Role in Naked DNA Vaccination with a Chimeric Gene Encoding a Syngeneic Cytotoxic T Lymphocyte Epitope of Melanocyte and Green Fluorescent Protein. Immunology 2004, 112, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Obata, C.; Zhang, M.; Moroi, Y.; Hisaeda, H.; Tanaka, K.; Murata, S.; Furue, M.; Himeno, K. Formalin-Fixed Tumor Cells Effectively Induce Antitumor Immunity Both in Prophylactic and Therapeutic Conditions. J. Dermatol. Sci. 2004, 34, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lora, A.; Martinez, M.; Algarra, I.; Gaforio, J.J.; Garrido, F. MHC Class I-Deficient Metastatic Tumor Variants Immunoselected by T Lymphocytes Originate from the Coordinated Downregulation of APM Components. Int. J. Cancer 2003, 106, 521–527. [Google Scholar] [CrossRef]
- Kuckelkorn, U.; Ferreira, E.A.; Drung, I.; Liewer, U.; Kloetzel, P.-M.; Theobald, M. The Effect of the Interferon-Gamma-Inducible Processing Machinery on the Generation of a Naturally Tumor-Associated Human Cytotoxic T Lymphocyte Epitope within a Wild-Type and Mutant P53 Sequence Context. Eur. J. Immunol. 2002, 32, 1368–1375. [Google Scholar] [CrossRef]
- Dick, T.P.; Ruppert, T.; Groettrup, M.; Kloetzel, P.M.; Kuehn, L.; Koszinowski, U.H.; Stevanović, S.; Schild, H.; Rammensee, H.G. Coordinated Dual Cleavages Induced by the Proteasome Regulator PA28 Lead to Dominant MHC Ligands. Cell 1996, 86, 253–262. [Google Scholar] [CrossRef]
- Keller, M.; Ebstein, F.; Bürger, E.; Textoris-Taube, K.; Gorny, X.; Urban, S.; Zhao, F.; Dannenberg, T.; Sucker, A.; Keller, C.; et al. The Proteasome Immunosubunits, PA28 and ER-Aminopeptidase 1 Protect Melanoma Cells from Efficient MART-126-35 -Specific T-Cell Recognition. Eur. J. Immunol. 2015, 45, 3257–3268. [Google Scholar] [CrossRef]
- Morel, S.; Lévy, F.; Burlet-Schiltz, O.; Brasseur, F.; Probst-Kepper, M.; Peitrequin, A.L.; Monsarrat, B.; Van Velthoven, R.; Cerottini, J.C.; Boon, T.; et al. Processing of Some Antigens by the Standard Proteasome but Not by the Immunoproteasome Results in Poor Presentation by Dendritic Cells. Immunity 2000, 12, 107–117. [Google Scholar] [CrossRef]
- Rana, P.S.; Ignatz-Hoover, J.J.; Guo, C.; Mosley, A.L.; Malek, E.; Federov, Y.; Adams, D.J.; Driscoll, J.J. Immunoproteasome Activation Expands the MHC Class I Immunopeptidome, Unmasks Neoantigens, and Enhances T-Cell Anti-Myeloma Activity. Mol. Cancer Ther. 2024, 23, 1743–1760. [Google Scholar] [CrossRef]
- Inholz, K.; Bader, U.; Mundt, S.; Basler, M. The Significant Role of PA28αβ in CD8+ T Cell-Mediated Graft Rejection Contrasts with Its Negligible Impact on the Generation of MHC-I Ligands. Int. J. Mol. Sci. 2024, 25, 5649. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Y.; Xie, L.; Jiang, L.; Li, J.; Sun, C.; Xu, H.; Wang, R.; Zhou, M.; Zhou, Y.; et al. Overexpression of Proteasomal Activator PA28α Serves as a Prognostic Factor in Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2016, 35, 35. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Barwick, B.G.; Shanmugam, M.; Hofmeister, C.C.; Kaufman, J.; Nooka, A.; Gupta, V.; Dhodapkar, M.; Boise, L.H.; Lonial, S. Downregulation of PA28α Induces Proteasome Remodeling and Results in Resistance to Proteasome Inhibitors in Multiple Myeloma. Blood Cancer J. 2020, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Horak, K.M.; Su, H.; Sanbe, A.; Robbins, J.; Wang, X. Enhancement of Proteasomal Function Protects against Cardiac Proteinopathy and Ischemia/Reperfusion Injury in Mice. J. Clin. Investig. 2011, 121, 3689–3700. [Google Scholar] [CrossRef] [PubMed]
- Lobanova, E.S.; Finkelstein, S.; Li, J.; Travis, A.M.; Hao, Y.; Klingeborn, M.; Skiba, N.P.; Deshaies, R.J.; Arshavsky, V.Y. Increased Proteasomal Activity Supports Photoreceptor Survival in Inherited Retinal Degeneration. Nat. Commun. 2018, 9, 1738. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Yue, G.; Tang, Y.; Kim, I.-M.; Weintraub, N.L.; Wang, X.; Su, H. Cardiac Proteasome Functional Insufficiency Plays a Pathogenic Role in Diabetic Cardiomyopathy. J. Mol. Cell Cardiol. 2017, 102, 53–60. [Google Scholar] [CrossRef]
- Pickering, A.M.; Linder, R.A.; Zhang, H.; Forman, H.J.; Davies, K.J.A. Nrf2-Dependent Induction of Proteasome and Pa28αβ Regulator Are Required for Adaptation to Oxidative Stress. J. Biol. Chem. 2012, 287, 10021–10031. [Google Scholar] [CrossRef]
- Rajagopalan, V.; Zhao, M.; Reddy, S.; Fajardo, G.; Wang, X.; Dewey, S.; Gomes, A.V.; Bernstein, D. Altered Ubiquitin-Proteasome Signaling in Right Ventricular Hypertrophy and Failure. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H551–H562. [Google Scholar] [CrossRef]
- El-Khodor, B.F.; Kholodilov, N.G.; Yarygina, O.; Burke, R.E. The Expression of mRNAs for the Proteasome Complex Is Developmentally Regulated in the Rat Mesencephalon. Brain Res. Dev. Brain Res. 2001, 129, 47–56. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Q.; Lin, W.; Lin, J.; Lin, X. Potential Roles for PA28beta in Gastric Adenocarcinoma Development and Diagnosis. J. Cancer Res. Clin. Oncol. 2010, 136, 1275–1282. [Google Scholar] [CrossRef]
- Zheng, D.-L.; Huang, Q.-L.; Zhou, F.; Huang, Q.-J.; Lin, J.-Y.; Lin, X. PA28β Regulates Cell Invasion of Gastric Cancer via Modulating the Expression of Chloride Intracellular Channel 1. J. Cell Biochem. 2012, 113, 1537–1546. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Xu, L.; Fang, W.-M.; Han, J.-Y.; Wang, K.; Zhu, K.-S. Identification of PA28β as a Potential Novel Biomarker in Human Esophageal Squamous Cell Carcinoma. Tumour Biol. 2017, 39, 1010428317719780. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dai, X.; Gong, K.; Song, K.; Tai, F.; Shi, J. PA28α/β Promote Breast Cancer Cell Invasion and Metastasis via Down-Regulation of CDK15. Front. Oncol. 2019, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Xu, H.; Wang, J.; Qu, L.; Jiang, B.; Zeng, Y.; Meng, L.; Jin, H.; Shou, C. N-α-Acetyltransferase 10 Protein Is a Negative Regulator of 28S Proteasome through Interaction with PA28β. FEBS Lett. 2013, 587, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, L.; Dahlmann, B. Proteasome Activator PA28 and Its Interaction with 20 S Proteasomes. Arch. Biochem. Biophys. 1996, 329, 87–96. [Google Scholar] [CrossRef]
- Hernebring, M.; Fredriksson, Å.; Liljevald, M.; Cvijovic, M.; Norrman, K.; Wiseman, J.; Semb, H.; Nyström, T. Removal of Damaged Proteins during ES Cell Fate Specification Requires the Proteasome Activator PA28. Sci. Rep. 2013, 3, 1381. [Google Scholar] [CrossRef]
- Cascio, P.; Goldberg, A.L. Preparation of Hybrid (19S-20S-PA28) Proteasome Complexes and Analysis of Peptides Generated during Protein Degradation. Methods Enzymol. 2005, 398, 336–352. [Google Scholar] [CrossRef]
- Cascio, P.; Call, M.; Petre, B.M.; Walz, T.; Goldberg, A.L. Properties of the Hybrid Form of the 26S Proteasome Containing Both 19S and PA28 Complexes. EMBO J. 2002, 21, 2636–2645. [Google Scholar] [CrossRef]
- Hendil, K.B.; Khan, S.; Tanaka, K. Simultaneous Binding of PA28 and PA700 Activators to 20 S Proteasomes. Biochem. J. 1998, 332, 749–754. [Google Scholar] [CrossRef]
- Tanahashi, N.; Murakami, Y.; Minami, Y.; Shimbara, N.; Hendil, K.B.; Tanaka, K. Hybrid Proteasomes. Induction by Interferon-γ and Contribution to ATP- Dependent Proteolysis. J. Biol. Chem. 2000, 275, 14336–14345. [Google Scholar] [CrossRef]
- Kojima, R.; Takai, S.; Osada, H.; Yamamoto, L.; Furukawa, M.; Gullans, S.R. Novel Function of the C-Terminal Region of the Hsp110 Family Member Osp94 in Unfolded Protein Refolding. J Cell Sci 2022, 135, jcs258542. [Google Scholar] [CrossRef]
- Minami, Y.; Kawasaki, H.; Minami, M.; Tanahashi, N.; Tanaka, K.; Yahara, I. A Critical Role for the Proteasome Activator PA28 in the Hsp90-Dependent Protein Refolding. J. Biol. Chem. 2000, 275, 9055–9061. [Google Scholar] [CrossRef]
- Minami, M.; Shinozaki, F.; Suzuki, M.; Yoshimatsu, K.; Ichikawa, Y.; Minami, Y. The Proteasome Activator PA28 Functions in Collaboration with Hsp90 in Vivo. Biochem. Biophys. Res. Commun. 2006, 344, 1315–1319. [Google Scholar] [CrossRef]
PA28αβ | PA28γ | |
---|---|---|
Subunit stoichiometry | 3α4β or 4α3β | 7γ |
Central channel diameter (top-base) | 20 Å–30 Å | 22 Å–32 Å |
Homolog specific insert (i.e., loop between α-helices 1 and 2 that constitute the most divergent portion between α, β, and γ monomers) [58] | Shorter | Longer |
Subcellular localization | Cytoplasmic and nuclear | Predominantly nuclear (not in nucleolus) |
Constitutive expression | Lymphoid cells and immunological organs | Every organ (high levels in brain and spleen) |
Effect of interferon-γ and other pro-inflammatory cytokines on protein levels | Up-regulation | None |
Evolutionary distribution | Jawed vertebrates (no birds) [56] | Jawless and jawed vertebrates (orthologs in invertebrates and unicellular eukaryotes) |
Effect on the enzymatic properties of the 20S proteasome | Stimulation of short peptides hydrolysis | Stimulation of peptides and unfolded proteins hydrolysis |
Effect on sizes distribution of peptide products released by 20S | Reduced | Unaffected or only marginally affected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascio, P. Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis. Biomolecules 2025, 15, 880. https://doi.org/10.3390/biom15060880
Cascio P. Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis. Biomolecules. 2025; 15(6):880. https://doi.org/10.3390/biom15060880
Chicago/Turabian StyleCascio, Paolo. 2025. "Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis" Biomolecules 15, no. 6: 880. https://doi.org/10.3390/biom15060880
APA StyleCascio, P. (2025). Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis. Biomolecules, 15(6), 880. https://doi.org/10.3390/biom15060880