SLC4A11 Revisited: Isoforms, Expression, Functions, and Unresolved Questions
Abstract
:1. Introduction
2. SLC4A11 Gene Expression, Resulting Protein Isoforms, and Cellular Localization
2.1. Transcript Variants and Isoforms of the Protein
Isoform Names [14,25] | Isoform Length (aar) | RefSeq Isoform Name and Protein ID in Consistence with Publications [14,25] | RefSeq mRNA Name and ID in Consistence with Publications [14,25] | Other RefSeq SLC4A11 Isoforms with 100% Amino Acid Sequence Identity (Isoform Name: Protein ID/mRNA ID) | Tissue, from Which the Corresponding Transcript Was Isolated | First Mention |
---|---|---|---|---|---|---|
SLC4A11-A, SLC4A11-v1 | 918 | isoform 1 (NP_ 001167561) | transcript variant 1 (NM_ 001174090) | - | brain | [25] |
SLC4A11-B, SLC4A11-v2-M1 | 891 | isoform 2 (NP_ 114423) | transcript variant 2 (NM_032034) | isoform X2: XP_047296496/ XM_047440540 | kidney | [1] |
SLC4A11-v2-M36 | 856 | - | transcript variant 2 (NM_032034) | isoform 5: NP_001387206/ NM_001400277, NP_001387207/ NM_001400278, NP_001387208/ NM_001400279, isoform X4: XP_016883585/ XM_017028096, XP_016883583/ XM_017028094 | corneal endothelial cells | [14] |
SLC4A11-C, SLC4A11-v3 | 875 | isoform 3 (NP_ 001167560) | transcript variant 3 (NM_ 001174089) | - | corneal endothelial cells | [25] |
2.2. SLC4A11 mRNA Detection
2.3. SLC4A11 Protein Detection
2.4. SLC4A11 Expression in Pathologies
2.5. Structural Characteristics of the SLC4A11 Protein
3. Functional Features of the SLC4A11 Protein
3.1. Transport Function
3.1.1. Initial Works
3.1.2. NH3- and pH-Regulated H+/OH− Transport
3.1.3. Water Transport
3.1.4. SLC4A11 and Its Function in Lactate-Mediated Corneal Endothelial Pump Activity
3.2. SLC4A11 and Oxidative Stress
3.3. Role in Cell Adhesion and Effects on Cell Proliferation and Viability
3.4. Association of SLC4A11 with Regulation of Cellular Processes
4. SLC4A11 Functions in Pathologies
4.1. SLC4A11 Variants in CHED
4.2. Limited Evidence for a Causal Role of SLC4A11 Variants in FECD
4.3. Mouse Models of CHED
4.4. Functional Impacts of SLC4A11 Gene Mutations
4.5. Role of SLC4A11 in Cancer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SLC4A11 | Solute carrier family 4 member 11 |
BTR1 | Bicarbonate transporter-related protein-1 |
NaBC1 | Na+-coupled borate cotransporter 1 |
CHED | Congenital hereditary endothelial dystrophy |
FECD | Fuchs corneal endothelial dystrophy |
RT-PCR | Reverse transcription polymerase chain reaction |
IHC | Immunohistochemistry |
AQP1 | Aquaporin 1 |
IF | Immunofluorescence |
SAGE | Serial Analysis of Gene Expression |
EST | Expressed Sequence Tag |
pHi | intracellular pH |
pHe | external pH |
NHE | Na+/H+ exchanger |
BCEC | Bovine corneal endothelial cells |
MCEC | Mouse corneal endothelial cell |
AGE | Advanced glycosylation end-products |
ARE | Antioxidant response element |
tBHQ | Tert-butylhydroquinone |
KO | Knockout |
ER | Endoplasmic reticulum |
ROS | Reactive oxygen species |
BafA1 | Bafilomycin A1 |
NTD | N-terminal cytoplasmic domain |
HCC | Hepatocellular carcinoma |
CSC | Cancer stem cells |
mHCC | mouse HCC |
References
- Parker, M.D.; Ourmozdi, E.P.; Tanner, M.J. Human BTR1, a New Bicarbonate Transporter Superfamily Member and Human AE4 from Kidney. Biochem. Biophys. Res. Commun. 2001, 282, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Li, Q.; Shcheynikov, N.; Zeng, W.; Muallem, S. NaBC1 Is a Ubiquitous Electrogenic Na+-Coupled Borate Transporter Essential for Cellular Boron Homeostasis and Cell Growth and Proliferation. Mol. Cell 2004, 16, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Vithana, E.N.; Morgan, P.; Sundaresan, P.; Ebenezer, N.D.; Tan, D.T.; Mohamed, M.D.; Anand, S.; Khine, K.O.; Venkataraman, D.; Yong, V.H.; et al. Mutations in Sodium-Borate Cotransporter SLC4A11 Cause Recessive Congenital Hereditary Endothelial Dystrophy (CHED2). Nat. Genet. 2006, 38, 755–757. [Google Scholar] [CrossRef]
- Jiao, X.; Sultana, A.; Garg, P.; Ramamurthy, B.; Vemuganti, G.K.; Gangopadhyay, N.; Hejtmancik, J.F.; Kannabiran, C. Autosomal Recessive Corneal Endothelial Dystrophy (CHED2) Is Associated with Mutations in SLC4A11. J. Med. Genet. 2007, 44, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Desir, J.; Moya, G.; Reish, O.; Van Regemorter, N.; Deconinck, H.; David, K.L.; Meire, F.M.; Abramowicz, M.J. Borate Transporter SLC4A11 Mutations Cause Both Harboyan Syndrome and Non-Syndromic Corneal Endothelial Dystrophy. J. Med. Genet. 2007, 44, 322–326. [Google Scholar] [CrossRef]
- Siddiqui, S.; Zenteno, J.C.; Rice, A.; Chacón-Camacho, O.; Naylor, S.G.; Rivera-de la Parra, D.; Spokes, D.M.; James, N.; Toomes, C.; Inglehearn, C.F.; et al. Congenital Hereditary Endothelial Dystrophy Caused by SLC4A11 Mutations Progresses to Harboyan Syndrome. Cornea 2014, 33, 247–251. [Google Scholar] [CrossRef]
- Firasat, S.; Khan, W.A.; Sughra, U.; Nousheen; Kaul, H.; Naz, S.; Noreen, B.; Gul, R.; Afshan, K. SLC4A11 Mutations Causative of Congenital Hereditary Endothelial Dystrophy (CHED) Progressing to Harboyan Syndrome in Consanguineous Pakistani Families. Mol. Biol. Rep. 2021, 48, 7467–7476. [Google Scholar] [CrossRef]
- Vithana, E.N.; Morgan, P.E.; Ramprasad, V.; Tan, D.T.; Yong, V.H.; Venkataraman, D.; Venkatraman, A.; Yam, G.H.; Nagasamy, S.; Law, R.W.; et al. SLC4A11 Mutations in Fuchs Endothelial Corneal Dystrophy. Hum. Mol. Genet. 2008, 17, 656–666. [Google Scholar] [CrossRef]
- Riazuddin, S.A.; Vithana, E.N.; Seet, L.-F.; Liu, Y.; Al-Saif, A.; Koh, L.W.; Heng, Y.M.; Aung, T.; Meadows, D.N.; Eghrari, A.O.; et al. Missense Mutations in the Sodium Borate Cotransporter SLC4A11 Cause Late-Onset Fuchs Corneal Dystrophy. Hum. Mutat. 2010, 31, 1261–1268. [Google Scholar] [CrossRef]
- Tsedilina, T.R.; Sharova, E.; Iakovets, V.; Skorodumova, L.O. Systematic Review of SLC4A11, ZEB1, LOXHD1, and AGBL1 Variants in the Development of Fuchs’ Endothelial Corneal Dystrophy. Front. Med. 2023, 10, 1153122. [Google Scholar] [CrossRef]
- Qin, L.; Li, T.; Liu, Y. High SLC4A11 Expression Is an Independent Predictor for Poor Overall Survival in Grade 3/4 Serous Ovarian Cancer. PLoS ONE 2017, 12, e0187385. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, J.A.; Shyam, R.; Choi, M.; Ogando, D.G. The h+ Transporter SLC4A11: Roles in Metabolism, Oxidative Stress and Mitochondrial Uncoupling. Cells 2022, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Damkier, H.H.; Nielsen, S.; Praetorius, J. Molecular Expression of SLC4-Derived Na+-Dependent Anion Transporters in Selected Human Tissues. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 293, R2136–R2146. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, D.; Loganathan, S.K.; Chiu, A.M.; Lukowski, C.M.; Casey, J.R. Human Corneal Expression of SLC4A11, a Gene Mutated in Endothelial Corneal Dystrophies. Sci. Rep. 2019, 9, 9681. [Google Scholar] [CrossRef]
- Kao, L.; Azimov, R.; Shao, X.M.; Frausto, R.F.; Abuladze, N.; Newman, D.; Aldave, A.J.; Kurtz, I. Multifunctional Ion Transport Properties of Human SLC4A11: Comparison of the SLC4A11-b and SLC4A11-c Variants. Am. J. Physiol.-Cell Physiol. 2016, 311, C820–C830. [Google Scholar] [CrossRef] [PubMed]
- Ogando, D.G.; Jalimarada, S.S.; Zhang, W.; Vithana, E.N.; Bonanno, J.A. SLC4A11 Is an EIPA-Sensitive Na+ Permeable pHi Regulator. Am. J. Physiol.-Cell Physiol. 2013, 305, C716–C727. [Google Scholar] [CrossRef]
- Jalimarada, S.S.; Ogando, D.G.; Vithana, E.N.; Bonanno, J.A. Ion Transport Function of SLC4A11 in Corneal Endothelium. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4330–4340. [Google Scholar] [CrossRef]
- Myers, E.J.; Marshall, A.; Jennings, M.L.; Parker, M.D. Mouse Slc4a11 Expressed in Xenopus Oocytes Is an Ideally Selective h+/OH- Conductance Pathway That Is Stimulated by Rises in Intracellular and Extracellular pH. Am. J. Physiol.-Cell Physiol. 2016, 311, C945–C959. [Google Scholar] [CrossRef]
- Loganathan, S.K.; Schneider, H.-P.; Morgan, P.E.; Deitmer, J.W.; Casey, J.R. Functional Assessment of SLC4A11, an Integral Membrane Protein Mutated in Corneal Dystrophies. Am. J. Physiol.-Cell Physiol. 2016, 311, C735–C748. [Google Scholar] [CrossRef]
- Zhang, W.; Ogando, D.G.; Bonanno, J.A.; Obukhov, A.G. Human SLC4A11 Is a Novel NH3/h+ Co-Transporter. J. Biol. Chem. 2015, 290, 16894–16905. [Google Scholar] [CrossRef]
- Kao, L.; Azimov, R.; Shao, X.M.; Abuladze, N.; Newman, D.; Zhekova, H.; Noskov, S.; Pushkin, A.; Kurtz, I. SLC4A11 Function: Evidence for h+ (OH-) and NH3-h+ Transport. Am. J. Physiol.-Cell Physiol. 2020, 318, C392–C405. [Google Scholar] [CrossRef] [PubMed]
- Ogando, D.G.; Choi, M.; Shyam, R.; Li, S.; Bonanno, J.A. Ammonia Sensitive SLC4A11 Mitochondrial Uncoupling Reduces Glutamine Induced Oxidative Stress. Redox Biol. 2019, 26, 101260. [Google Scholar] [CrossRef]
- Malhotra, D.; Jung, M.; Noskov, S.; Zimmermann, R.; Casey, J.R. SLC4A11 Extracellular Loop 3 in Corneal Endothelial Cell Adhesion, FECD Pathology and Therapeutics. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4433. [Google Scholar]
- Malhotra, D.; Jung, M.; Fecher-Trost, C.; Lovatt, M.; Peh, G.S.; Noskov, S.; Mehta, J.S.; Zimmermann, R.; Casey, J.R. Defective Cell Adhesion Function of Solute Transporter, SLC4A11, in Endothelial Corneal Dystrophies. Hum. Mol. Genet. 2020, 29, 97–116. [Google Scholar] [CrossRef]
- Kao, L.; Azimov, R.; Abuladze, N.; Newman, D.; Kurtz, I. Human SLC4A11-c Functions as a DIDS-Stimulatable h+ (OH-) Permeation Pathway: Partial Correction of R109H Mutant Transport. Am. J. Physiol.-Cell Physiol. 2015, 308, C176–C188. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Kotova, E.S.; Sharova, E.I.; Kovaleva, P.A.; Malyugin, B.E.; Antonova, O.P.; Belodedova, A.V.; Tkachenko, I.S.; Doludin, Y.V.; Garmanova, T.N.; Skorodumova, L.O. High Expression of the Underexplored SLC4A11 Protein-Coding Transcript Is Specific to the Corneal Endothelium. Sci. Rep. 2025. in review. [Google Scholar]
- Hemadevi, B.; Veitia, R.A.; Srinivasan, M.; Arunkumar, J.; Prajna, N.V.; Lesaffre, C.; Sundaresan, P. Identification of Mutations in the SLC4A11 Gene in Patients with Recessive Congenital Hereditary Endothelial Dystrophy. Arch. Ophthalmol. 2008, 126, 700–708. [Google Scholar] [CrossRef]
- Guha, S.; Roy, S. Enhanced Expression of SLC4A11 by Tert-Butylhydroquinone Is Mediated by Direct Binding of Nrf2 to the Promoter of SLC4A11. Free Radic. Biol. Med. 2021, 167, 299–306. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000088836-SLC4A11/tissue#rna_expression (accessed on 11 April 2025).
- Nakagawa, T.; Tokuda, Y.; Nakano, M.; Komori, Y.; Hanada, N.; Tourtas, T.; Schlötzer-Schrehardt, U.; Kruse, F.; Tashiro, K.; Koizumi, N.; et al. RNA-Seq–Based Transcriptome Analysis of Corneal Endothelial Cells Derived from Patients with Fuchs Endothelial Corneal Dystrophy. Sci. Rep. 2023, 13, 8647. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.G. The GTEx Portal. Available online: https://gtexportal.org/home/ (accessed on 7 May 2025).
- Gee, M.T.; Kurtz, I.; Pannabecker, T.L. Expression of SLC4A11 protein in mouse and rat medulla: A candidate transporter involved in outer medullary ammonia recycling. Physiol. Rep. 2019, 7, e14089. [Google Scholar] [CrossRef] [PubMed]
- Vilas, G.L.; Loganathan, S.K.; Liu, J.; Riau, A.K.; Young, J.D.; Mehta, J.S.; Vithana, E.N.; Casey, J.R. Transmembrane Water-Flux Through SLC4A11: A Route Defective in Genetic Corneal Diseases. Hum. Mol. Genet. 2013, 22, 4579–4590. [Google Scholar] [CrossRef]
- Chung, D.D.; Chen, A.C.; Choo, C.H.; Zhang, W.; Williams, D.; Griffis, C.G.; Bonezzi, P.; Jatavallabhula, K.; Sampath, A.P.; Aldave, A.J. Investigation of the Functional Impact of CHED-and FECD4-Associated SLC4A11 Mutations in Human Corneal Endothelial Cells. PLoS ONE 2024, 19, e0296928. [Google Scholar] [CrossRef]
- Lopez, I.A.; Rosenblatt, M.I.; Kim, C.; Galbraith, G.C.; Jones, S.M.; Kao, L.; Newman, D.; Liu, W.; Yeh, S.; Pushkin, A.; et al. Slc4a11 Gene Disruption in Mice: Cellular Targets of Sensorineuronal Abnormalities. J. Biol. Chem. 2009, 284, 26882–26896. [Google Scholar] [CrossRef]
- Gröger, N.; Fröhlich, H.; Maier, H.; Olbrich, A.; Kostin, S.; Braun, T.; Boettger, T. SLC4A11 Prevents Osmotic Imbalance Leading to Corneal Endothelial Dystrophy, Deafness, and Polyuria. J. Biol. Chem. 2010, 285, 14467–14474. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.-Y.; Mukaibo, T.; Gao, X.; Kurtz, I.; Melvin, J.E. Slc4a11 Disruption Causes Duct Cell Loss and Impairs NaCl Reabsorption in Female Mouse Submandibular Glands. Physiol. Rep. 2019, 7, e14232. [Google Scholar] [CrossRef]
- Gottsch, J.D.; Bowers, A.L.; Margulies, E.H.; Seitzman, G.D.; Kim, S.W.; Saha, S.; Jun, A.S.; Stark, W.J.; Liu, S.H. Serial Analysis of Gene Expression in the Corneal Endothelium of Fuchs’ Dystrophy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 594–599. [Google Scholar] [CrossRef]
- Wieben, E.D.; Baratz, K.H.; Aleff, R.A.; Kalari, K.R.; Tang, X.; Maguire, L.J.; Patel, S.V.; Fautsch, M.P. Gene Expression and Missplicing in the Corneal Endothelium of Patients with a TCF4 Trinucleotide Repeat Expansion Without Fuchs’ Endothelial Corneal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- De Roo, A.-K.; Wouters, J.; Govaere, O.; Foets, B.; Oord, J.J. van den Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients with Fuchs’ Dystrophy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 670–681. [Google Scholar] [CrossRef]
- Alka, K.; Casey, J.R. Molecular Phenotype of SLC4A11 Missense Mutants: Setting the Stage for Personalized Medicine in Corneal Dystrophies. Hum. Mutat. 2018, 39, 676–690. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, C.; Lu, Y.; Lian, Z.; Liu, Q.; Xu, Y.; Li, Y.; Li, H.; Zhang, L.; Jiang, X.; et al. β-Catenin Activation Reprograms Ammonia Metabolism to Promote Senescence Resistance in Hepatocellular Carcinoma. Cancer Res. 2024, 84, 1643–1658. [Google Scholar] [CrossRef]
- Sun, M.; Qi, Y.; Jin, Q.; Zhu, H.; Wang, Y.; Jiang, X. Increased SLC4A11 Expression Is Associated with Poor Prognosis of Gastric Cancer. Blood Genom. 2020, 4, 61–70. [Google Scholar] [CrossRef]
- Shinto, E.; Yoshida, Y.; Kajiwara, Y.; Okamoto, K.; Mochizuki, S.; Yamadera, M.; Shiraishi, T.; Nagata, K.; Tsuda, H.; Hase, K.; et al. Clinical Significance of a Gene Signature Generated from Tumor Budding Grade in Colon Cancer. Ann. Surg. Oncol. 2020, 27, 4044–4054. [Google Scholar] [CrossRef] [PubMed]
- Yamadera, M.; Shinto, E.; Nagata, K.; Shiraishi, T.; Kajiwara, Y.; Mochizuki, S.; Okamoto, K.; Kishi, Y.; Ueno, H. Proposal for a Tumor Budding Predictive Score Derived from Endoscopic Biopsy Samples in Colorectal Cancer. Int. J. Clin. Oncol. 2022, 27, 756–764. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Chen, L.-M. Structure and Function of SLC4 Family HCO 3-Transporters. Front. Physiol. 2015, 6, 355. [Google Scholar] [CrossRef] [PubMed]
- Vilas, G.L.; Morgan, P.E.; Loganathan, S.K.; Quon, A.; Casey, J.R. A Biochemical Framework for SLC4A11, the Plasma Membrane Protein Defective in Corneal Dystrophies. Biochemistry 2011, 50, 2157–2169. [Google Scholar] [CrossRef]
- Vilas, G.L.; Loganathan, S.K.; Quon, A.; Sundaresan, P.; Vithana, E.N.; Casey, J. Oligomerization of SLC4A11 Protein and the Severity of FECD and CHED2 Corneal Dystrophies Caused by SLC4A11 Mutations. Hum. Mutat. 2012, 33, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, S.K.; Lukowski, C.M.; Casey, J.R. The Cytoplasmic Domain Is Essential for Transport Function of the Integral Membrane Transport Protein SLC4A11. Am. J. Physiol.-Cell Physiol. 2016, 310, C161–C174. [Google Scholar] [CrossRef]
- Romero, M.F.; Fulton, C.M.; Boron, W.F. The SLC4 Family of HCO 3- Transporters. Pflügers Arch. 2004, 447, 495–509. [Google Scholar] [CrossRef]
- Zhang, W.; Ogando, D.G.; Kim, E.T.; Choi, M.-J.; Li, H.; Tenessen, J.M.; Bonanno, J.A. Conditionally Immortal Slc4a11-/- Mouse Corneal Endothelial Cell Line Recapitulates Disrupted Glutaminolysis Seen in Slc4a11-/- Mouse Model. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3723–3731. [Google Scholar] [CrossRef]
- Quade, B.N.; Marshall, A.; Parker, M.D. pH Dependence of the Slc4a11-Mediated h+ Conductance Is Influenced by Intracellular Lysine Residues and Modified by Disease-Linked Mutations. Am. J. Physiol.-Cell Physiol. 2020, 319, C359–C370. [Google Scholar] [CrossRef] [PubMed]
- Quade, B.N.; Marshall, A.; Parker, M.D. Corneal Dystrophy Mutations R125H and R804H Disable SLC4A11 by Altering the Extracellular pH Dependence of the Intracellular pK That Governs h+ (OH-) Transport. Am. J. Physiol.-Cell Physiol. 2022, 323, C990–C1002. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zuo, P.; Chen, H.; Shan, H.; Wang, W.; Dai, Z.; Xu, H.; Chen, Y.; Liang, L.; Ding, D.; et al. Structural Insights into the Conformational Changes of BTR1/SLC4A11 in Complex with PIP2. Nat. Commun. 2023, 14, 6157. [Google Scholar] [CrossRef]
- Pasternack, R.A.; Quade, B.N.; Marshall, A.; Parker, M.D. NH3/NH4+ Allosterically Activates SLC4A11 by Causing an Acidic Shift in the Intracellular pK That Governs h+ (OH-) Conductance. Front. Physiol. 2024, 15, 1440720. [Google Scholar] [CrossRef]
- Soumittra, N.; Loganathan, S.K.; Madhavan, D.; Ramprasad, V.L.; Arokiasamy, T.; Sumathi, S.; Karthiyayini, T.; Rachapalli, S.R.; Kumaramanickavel, G.; Casey, J.R.; et al. Biosynthetic and Functional Defects in Newly Identified SLC4A11 Mutants and Absence of COL8A2 Mutations in Fuchs Endothelial Corneal Dystrophy. J. Hum. Genet. 2014, 59, 444–453. [Google Scholar] [CrossRef]
- Riley, M.V.; Winkler, B.S.; Peters, M.I.; Czajkowski, C.A. Relationship Between Fluid Transport and in Situ Inhibition of Na (+)-k+ Adenosine Triphosphatase in Corneal Endothelium. Investig. Ophthalmol. Vis. Sci. 1994, 35, 560–567. [Google Scholar]
- Riley, M. Glucose and Oxygen Utilization by the Rabbit Cornea. Exp. Eye Res. 1969, 8, 193–200. [Google Scholar] [CrossRef]
- Hogan, M.J. Histology of the Human Eye: An Atlas and Textbook; W.B. Saunders Company: Philadelphia, PA, USA, 1971; p. 187. [Google Scholar]
- Leung, B.K.; Bonanno, J.A.; Radke, C.J. Oxygen-Deficient Metabolism and Corneal Edema. Prog. Retin. Eye Res. 2011, 30, 471–492. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Prausnitz, J.M.; Radke, C.J. Modeling Corneal Metabolism and Oxygen Transport During Contact Lens Wear. Optom. Vis. Sci. 2009, 86, 454–466. [Google Scholar] [CrossRef]
- Bonanno, J.; Polse, K. Corneal Acidosis During Contact Lens Wear: Effects of Hypoxia and CO2. Investig. Ophthalmol. Vis. Sci. 1987, 28, 1514–1520. [Google Scholar]
- Pang, K.; Lennikov, A.; Yang, M. Hypoxia Adaptation in the Cornea: Current Animal Models and Underlying Mechanisms. Anim. Models Exp. Med. 2021, 4, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Klyce, S. Stromal Lactate Accumulation Can Account for Corneal Oedema Osmotically Following Epithelial Hypoxia in the Rabbit. J. Physiol. 1981, 321, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Bonanno, J.A. Lactate-h+ Transport Is a Significant Component of the in Vivo Corneal Endothelial Pump. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2020–2029. [Google Scholar] [CrossRef]
- Li, S.; Kim, E.; Ogando, D.G.; Bonanno, J.A. Corneal Endothelial Pump Coupling to Lactic Acid Efflux in the Rabbit and Mouse. Investig. Ophthalmol. Vis. Sci. 2020, 61, 7. [Google Scholar] [CrossRef]
- Li, S.; Kim, E.; Bonanno, J.A. Fluid Transport by the Cornea Endothelium Is Dependent on Buffering Lactic Acid Efflux. Am. J. Physiol. -Cell Physiol. 2016, 311, C116–C126. [Google Scholar] [CrossRef] [PubMed]
- Kirk, Á.P.; Wilson, M.; Heddle, C.; Brown, M.; Barclay, A.; Halestrap, A. CD147 Is Tightly Associated with Lactate Transporters MCT1 and MCT4 and Facilitates Their Cell Surface Expression. EMBO J. 2000, 19, 3896–3904. [Google Scholar] [CrossRef]
- Li, S.; Nguyen, T.T.; Bonanno, J.A. CD147 Required for Corneal Endothelial Lactate Transport. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4673–4681. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bonanno, J.A. Bicarbonate, NBCe1, NHE, and Carbonic Anhydrase Activity Enhance Lactate-h+ Transport in Bovine Corneal Endothelium. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8086–8093. [Google Scholar] [CrossRef]
- Ogando, D.G.; Bonanno, J.A. RNA Sequencing Uncovers Alterations in Corneal Endothelial Metabolism, Pump and Barrier Functions of Slc4a11 KO Mice. Exp. Eye Res. 2022, 214, 108884. [Google Scholar] [CrossRef]
- Ogando, D.G.; Shyam, R.; Kim, E.T.; Wang, Y.-C.; Liu, C.-Y.; Bonanno, J.A. Inducible Slc4a11 Knockout Triggers Corneal Edema Through Perturbation of Corneal Endothelial Pump. Investig. Ophthalmol. Vis. Sci. 2021, 62, 28. [Google Scholar] [CrossRef]
- Ogando, D.G.; Kim, E.T.; Li, S.; Bonanno, J.A. Corneal Edema in Inducible Slc4a11 Knockout Is Initiated by Mitochondrial Superoxide Induced Src Kinase Activation. Cells 2023, 12, 1528. [Google Scholar] [CrossRef]
- Shyam, R.; Ogando, D.G.; Kim, E.T.; Murugan, S.; Choi, M.; Bonanno, J.A. Rescue of the Congenital Hereditary Endothelial Dystrophy Mouse Model by Adeno-Associated Virus–Mediated Slc4a11 Replacement. Ophthalmol. Sci. 2022, 2, 100084. [Google Scholar] [CrossRef]
- Nehrke, K. H (OH), h (OH), h (OH): A Holiday Perspective. Focus on “Mouse Slc4a11 Expressed in Xenopus Oocytes Is an Ideally Selective h+/OH- Conductance Pathway That Is Stimulated by Rises in Intracellular and Extracellular pH”. Am. J. Physiol.-Cell Physiol. 2016, 311, C942–C944. [Google Scholar] [CrossRef]
- Buddi, R.; Lin, B.; Atilano, S.R.; Zorapapel, N.C.; Kenney, M.C.; Brown, D.J. Evidence of Oxidative Stress in Human Corneal Diseases. J. Histochem. Cytochem. 2002, 50, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Handa, J.T.; Green, W.R.; Stark, W.J.; Weinberg, R.S.; Jun, A.S. Advanced Glycation End Products and Receptors in Fuchs’ Dystrophy Corneas Undergoing Descemet’s Stripping with Endothelial Keratoplasty. Ophthalmology 2007, 114, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Czarny, P.; Seda, A.; Wielgorski, M.; Binczyk, E.; Markiewicz, B.; Kasprzak, E.; Jimenez-Garcia, M.; Grabska-Liberek, I.; Pawlowska, E.; Blasiak, J.; et al. Mutagenesis of Mitochondrial DNA in Fuchs Endothelial Corneal Dystrophy. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2014, 760, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Bitar, M.S.; Liu, C.; Ziaei, A.; Chen, Y.; Schmedt, T.; Jurkunas, U.V. Decline in DJ-1 and Decreased Nuclear Translocation of Nrf2 in Fuchs Endothelial Corneal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5806–5813. [Google Scholar] [CrossRef]
- Roy, S.; Praneetha, D.; Vendra, V.P.R. Mutations in the Corneal Endothelial Dystrophy–Associated Gene SLC4A11 Render the Cells More Vulnerable to Oxidative Insults. Cornea 2015, 34, 668–674. [Google Scholar] [CrossRef]
- Guha, S.; Chaurasia, S.; Ramachandran, C.; Roy, S. SLC4A11 Depletion Impairs NRF2 Mediated Antioxidant Signaling and Increases Reactive Oxygen Species in Human Corneal Endothelial Cells During Oxidative Stress. Sci. Rep. 2017, 7, 4074. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Ogando, D.G.; Li, S.; Feng, M.; Price, F.W.; Tennessen, J.M.; Bonanno, J.A. Glutaminolysis Is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. EBioMedicine 2017, 16, 292–301. [Google Scholar] [CrossRef]
- Zhong, J.; Dong, J.; Ruan, W.; Duan, X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int. J. Mol. Sci. 2023, 24, 15166. [Google Scholar] [CrossRef] [PubMed]
- Shyam, R.; Ogando, D.G.; Choi, M.; Liton, P.B.; Bonanno, J.A. Mitochondrial ROS Induced Lysosomal Dysfunction and Autophagy Impairment in an Animal Model of Congenital Hereditary Endothelial Dystrophy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 15. [Google Scholar] [CrossRef]
- Shyam, R.; Ogando, D.G.; Bonanno, J.A. Mitochondrial ROS in Slc4a11 KO Corneal Endothelial Cells Lead to ER Stress. Front. Cell Dev. Biol. 2022, 10, 878395. [Google Scholar] [CrossRef]
- Choi, M.; Bonanno, J.A. Mitochondrial Targeting of the Ammonia-Sensitive Uncoupler SLC4A11 by the Chaperone-Mediated Carrier Pathway in Corneal Endothelium. Investig. Ophthalmol. Vis. Sci. 2021, 62, 4. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, N.; Módis, L.; Møller-Pedersen, T. A Morphological and Functional Study of Congenital Hereditary Endothelial Dystrophy. Acta Ophthalmol. Scand. 1998, 76, 314–318. [Google Scholar] [CrossRef]
- Han, S.B.; Ang, H.-P.; Poh, R.; Chaurasia, S.S.; Peh, G.; Liu, J.; Tan, D.T.; Vithana, E.N.; Mehta, J.S. Mice with a Targeted Disruption of Slc4a11 Model the Progressive Corneal Changes of Congenital Hereditary Endothelial Dystrophy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6179–6189. [Google Scholar] [CrossRef]
- Charpentier, P.; Santerre, K.; Proulx, S. Role of SLC4A11 and Its Third Extracellular Loop in the Adhesion of Corneal Endothelial Cells to Descemet Membrane. Investig. Ophthalmol. Vis. Sci. 2023, 64, 626. [Google Scholar]
- Hirokawa, N.; Heuser, J.E. Quick-Freeze, Deep-Etch Visualization of the Cytoskeleton Beneath Surface Differentiations of Intestinal Epithelial Cells. J. Cell Biol. 1981, 91, 399–409. [Google Scholar] [CrossRef]
- Yonemura, S. Cadherin–Actin Interactions at Adherens Junctions. Curr. Opin. Cell Biol. 2011, 23, 515–522. [Google Scholar] [CrossRef]
- Takeichi, M. Dynamic Contacts: Rearranging Adherens Junctions to Drive Epithelial Remodelling. Nat. Rev. Mol. Cell Biol. 2014, 15, 397–410. [Google Scholar] [CrossRef]
- Alvarez, B.V.; Piché, M.; Aizouki, C.; Rahman, F.; Derry, J.M.; Brunette, I.; Casey, J.R. Altered Gene Expression in Slc4a11-/- Mouse Cornea Highlights SLC4A11 Roles. Sci. Rep. 2021, 11, 20885. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Frausto, R.; Chung, D.D.; Griffis, C.G.; Kao, L.; Chen, A.; Azimov, R.; Sampath, A.P.; Kurtz, I.; Aldave, A.J. Energy Shortage in Human and Mouse Models of SLC4A11-Associated Corneal Endothelial Dystrophies. Investig. Ophthalmol. Vis. Sci. 2020, 61, 39. [Google Scholar] [CrossRef]
- Roblek, M.; Bicher, J.; van Gogh, M.; György, A.; Seeböck, R.; Szulc, B.; Damme, M.; Olczak, M.; Borsig, L.; Siekhaus, D.E. The Solute Carrier MFSD1 Decreases the Activation Status of β1 Integrin and Thus Tumor Metastasis. Front. Oncol. 2022, 12, 777634. [Google Scholar] [CrossRef]
- Ye, J.; DeBose-Boyd, R.A. Regulation of Cholesterol and Fatty Acid Synthesis. Cold Spring Harb. Perspect. Biol. 2011, 3, a004754. [Google Scholar] [CrossRef]
- Agostini, F.; Pereyra, L.; Dale, J.; Yambire, K.F.; Maglioni, S.; Schiavi, A.; Ventura, N.; Milosevic, I.; Raimundo, N. Upregulation of Cholesterol Synthesis by Lysosomal Defects Requires a Functional Mitochondrial Respiratory Chain. J. Biol. Chem. 2024, 300, 107403. [Google Scholar] [CrossRef]
- Desir, J.; Abramowicz, M. Congenital Hereditary Endothelial Dystrophy with Progressive Sensorineural Deafness (Harboyan Syndrome). Orphanet J. Rare Dis. 2008, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Verma, A.; Achanta, D.S.; Kannabiran, C.; Roy, S.; Mishra, D.K.; Chaurasia, S.; Edward, D.P.; Ramappa, M. Updates on Congenital Hereditary Endothelial Dystrophy. Taiwan J. Ophthalmol. 2023, 13, 405–416. [Google Scholar] [CrossRef]
- Magan, T.; Hammersmith, K.M.; Viaene, A.N.; Kumar, P.; Eagle, R.C., Jr.; Milman, T. Harboyan Syndrome: A Novel SLC4A11 Variant with Unique Genotype–Phenotype Correlation. Cornea 2022, 41, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.S.; Hemadevi, B.; Vithana, E.N.; Arunkumar, J.; Srinivasan, M.; Prajna, V.; Tan, D.T.; Aung, T.; Sundaresan, P. Absence of Phenotype-Genotype Correlation of Patients Expressing Mutations in the SLC4A11 Gene. Cornea 2010, 29, 302–306. [Google Scholar] [CrossRef]
- Hand, C.K.; Harmon, D.L.; Kennedy, S.M.; FitzSimon, J.S.; Collum, L.M.; Parfrey, N.A. Localization of the Gene for Autosomal Recessive Congenital Hereditary Endothelial Dystrophy (CHED2) to Chromosome 20 by Homozygosity Mapping. Genomics 1999, 61, 1–4. [Google Scholar] [CrossRef]
- Abramowicz, M.; Albuquerque-Silva, J.; Zanen, A. Corneal Dystrophy and Perceptive Deafness (Harboyan Syndrome): CDPD1 Maps to 20p13. J. Med. Genet. 2002, 39, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.S.; Rapuano, C.J.; Seitz, B.; Busin, M.; Kivelä, T.T.; Bouheraoua, N.; Bredrup, C.; Nischal, K.K.; Chawla, H.; Borderie, V.; et al. IC3D Classification of Corneal Dystrophies—Edition 3. Cornea 2024, 43, 466–527. [Google Scholar] [CrossRef] [PubMed]
- Aldahmesh, M.A.; Khan, A.O.; Meyer, B.F.; Alkuraya, F.S. Mutational Spectrum of SLC4A11 in Autosomal Recessive CHED in Saudi Arabia. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4142–4145. [Google Scholar] [CrossRef]
- Aldave, A.J.; Yellore, V.S.; Bourla, N.; Momi, R.S.; Khan, M.A.; Salem, A.K.; Rayner, S.A.; Glasgow, B.J.; Kurtz, I. Autosomal Recessive CHED Associated with Novel Compound Heterozygous Mutations in SLC4A11. Cornea 2007, 26, 896–900. [Google Scholar] [CrossRef]
- Brejchova, K.; Dudakova, L.; Skalicka, P.; Dobrovolny, R.; Masek, P.; Putzova, M.; Moosajee, M.; Tuft, S.J.; Davidson, A.E.; Liskova, P. IPSC-Derived Corneal Endothelial-Like Cells Act as an Appropriate Model System to Assess the Impact of SLC4A11 Variants on Pre-mRNA Splicing. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3084–3090. [Google Scholar] [CrossRef]
- Chaurasia, S.; Ramappa, M.; Annapurna, M.; Kannabiran, C. Coexistence of Congenital Hereditary Endothelial Dystrophy and Fuchs Endothelial Corneal Dystrophy Associated with SLC4A11 Mutations in Affected Families. Cornea 2020, 39, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Chibani, Z.; Abid, I.Z.; Söderkvist, P.; Feki, J.; Aifa, M.H. Autosomal Recessive Congenital Hereditary Corneal Dystrophy Associated with a Novel SLC4A11 Mutation in Two Consanguineous Tunisian Families. Br. J. Ophthalmol. 2022, 106, 281–287. [Google Scholar] [CrossRef]
- Cunnusamy, K.; Bowman, C.B.; Beebe, W.; Gong, X.; Hogan, R.N.; Mootha, V.V. Congenital Corneal Endothelial Dystrophies Resulting from Novel de Novo Mutations. Cornea 2016, 35, 281–285. [Google Scholar] [CrossRef]
- Gusina, A.; Ivanova, V.; Krynitskaya, K.; Gusina, N. SLC4A11-Associated Hereditary Corneal Endothelial Dystrophies: Literature Review and Case Report. Ophthalmol. East. Eur. 2020, 10, 555–567. [Google Scholar]
- Hand, C.K.; McGuire, M.; Parfrey, N.A.; Murphy, C.C. Homozygous SLC4A11 Mutation in a Large Irish CHED2 Pedigree. Ophthalmic Genet. 2017, 38, 148–151. [Google Scholar] [CrossRef]
- Iqbal, A.; Naz, S.; Kaul, H.; Sharif, S.; Khushbakht, A.; Naeem, M.A.; Iqtedar, M.; Kaleem, A.; Firasat, S.; Manzoor, F. Mutational Analysis in Sodium-Borate Cotransporter SLC4A11 in Consanguineous Families from Punjab, Pakistan. PLoS ONE 2022, 17, e0273685. [Google Scholar] [CrossRef] [PubMed]
- Karataş, E.; Utine, C.A. Congenital Hereditary Endothelial Dystrophy with Progressive Sensorineural Deafness: A Case Report of Harboyan Syndrome. Arq. Bras. Oftalmol. 2024, 88, e2023-0078. [Google Scholar] [CrossRef]
- Kaul, H.; Suman, M.; Khan, Z.; Ullah, M.I.; Ashfaq, U.A.; Idrees, S. Missense Mutation in SLC4A11 in Two Pakistani Families Affected with Congenital Hereditary Endothelial Dystrophy (CHED2). Clin. Exp. Optom. 2016, 99, 73–77. [Google Scholar] [CrossRef]
- Kim, J.; Ko, J.M.; Tchah, H. Fuchs Endothelial Corneal Dystrophy in a Heterozygous Carrier of Congenital Hereditary Endothelial Dystrophy Type 2 with a Novel Mutation in SLC4A11. Ophthalmic Genet. 2015, 36, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Kodaganur, S.G.; Kapoor, S.; Veerappa, A.M.; Tontanahal, S.J.; Sarda, A.; Yathish, S.; Prakash, D.R.; Kumar, A. Mutation Analysis of the SLC4A11 Gene in Indian Families with Congenital Hereditary Endothelial Dystrophy 2 and a Review of the Literature. Mol. Vis. 2013, 19, 1694. [Google Scholar]
- Kumar, A.; Bhattacharjee, S.; Prakash, D.R.; Sadanand, C.S. Genetic Analysis of Two Indian Families Affected with Congenital Hereditary Endothelial Dystrophy: Two Novel Mutations in SLC4A11. Mol. Vis. 2007, 13, 39. [Google Scholar]
- Kumawat, B.L.; Gupta, R.; Sharma, A.; Sen, S.; Gupta, S.; Tandon, R. Delayed Onset of Congenital Hereditary Endothelial Dystrophy Due to Compound Heterozygous SLC4A11 Mutations. Indian J. Ophthalmol. 2016, 64, 492–495. [Google Scholar]
- Li, W.; Qu, N.; Li, J.-K.; Li, Y.-X.; Han, D.-M.; Chen, Y.-X.; Tian, L.; Shao, K.; Yang, W.; Wang, Z.-S.; et al. Evaluation of the Genetic Variation Spectrum Related to Corneal Dystrophy in a Large Cohort. Front. Cell Dev. Biol. 2021, 9, 632946. [Google Scholar] [CrossRef] [PubMed]
- Liskova, P.; Dudakova, L.; Tesar, V.; Bednarova, V.; Kidorova, J.; Jirsova, K.; Davidson, A.E.; Hardcastle, A.J. Detailed Assessment of Renal Function in a Proband with Harboyan Syndrome Caused by a Novel Homozygous SLC4A11 Nonsense Mutation. Ophthalmic Res. 2015, 53, 30–35. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Xu, J. Identification of Novel Mutations of SLC4A11 Gene in Patients with Congenital Hereditary Endothelial Dystrophy. [Zhonghua Yan Ke Za Zhi] Chin. J. Ophthalmol. 2021, 57, 133–138. [Google Scholar]
- Liu, M.; Xia, J.-L.; Yang, H.; Yu, L. Compound Heterozygous Mutations in the SLC4A11 Gene Associated with Congenital Hereditary Endothelial Dystrophy in a Chinese Family. Ophthalmic Genet. 2022, 43, 538–542. [Google Scholar] [CrossRef]
- Loveridge-Easther, C.; Kiray, G.; Hull, S.; Vincent, A.L. Harboyan Syndrome with Biallelic SLC4A11 Pathogenic Variants Misdiagnosed as Congenital CMV Infection. Ophthalmic Genet. 2022, 43, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Moazzeni, H.; Javadi, M.A.; Asgari, D.; Khani, M.; Emami, M.; Moghadam, A.; Panahi-Bazaz, M.-R.; Tehrani, M.H.; Karimian, F.; Hosseini, B.; et al. Observation of Nine Previously Reported and 10 Non-Reported SLC4A11 Mutations Among 20 Iranian CHED Probands and Identification of an MPDZ Mutation as Possible Cause of CHED and FECD in One Family. Br. J. Ophthalmol. 2020, 104, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, P.; Sharma, A.; Tandon, R.; Sharma, N.; Titiyal, J.S.; Sen, S.; Nag, T.C.; Vajpayee, R.B. Congenital Hereditary Endothelial Dystrophy-Mutation Analysis of SLC4A11 and Genotype-Phenotype Correlation in a North Indian Patient Cohort. Mol. Vis. 2010, 16, 2955. [Google Scholar]
- Park, S.H.; Jeong, H.J.; Kim, M.; Kim, M.S. A Novel Nonsense Mutation of the SLC4A11 Gene in a Korean Patient with Autosomal Recessive Congenital Hereditary Endothelial Dystrophy. Cornea 2013, 32, e181–e182. [Google Scholar] [CrossRef]
- Puangsricharern, V.; Yeetong, P.; Charumalai, C.; Suphapeetiporn, K.; Shotelersuk, V. Two Novel Mutations Including a Large Deletion of the SLC4A11 Gene Causing Autosomal Recessive Hereditary Endothelial Dystrophy. Br. J. Ophthalmol. 2014, 98, 1460–1462. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, V.L.; Ebenezer, N.D.; Aung, T.; Rajagopal, R.; Yong, V.H.; Tuft, S.J.; Viswanathan, D.; El-Ashry, M.F.; Liskova, P.; Tan, D.T.; et al. Novel SLC4A11 Mutations in Patients with Recessive Congenital Hereditary Endothelial Dystrophy (CHED2). Hum. Mutat. 2007, 28, 522–523. [Google Scholar] [CrossRef]
- Romero, P.T.; Donoso, R.; López, P.; Miranda, A.; Rodríguez, L.; Chrzanowsky, D.; Asenjo, M.S.; Burgos, G.; Villegas, P.; Desir, J.; et al. Clinical Features and Possible Founder Mutation of the 8bp Duplication Mutation in the SLC4A11 Gene Causing Corneal Dystrophy and Perceptive Deafness in Three South American Families. Ophthalmic Genet. 2019, 40, 91–98. [Google Scholar] [CrossRef]
- Salman, M.; Verma, A.; Chaurasia, S.; Prasad, D.; Kannabiran, C.; Singh, V.; Ramappa, M. Identification and in Silico Analysis of a Spectrum of SLC4A11 Variations in Indian Familial and Sporadic Cases of Congenital Hereditary Endothelial Dystrophy. Orphanet. J. Rare Dis. 2022, 17, 361. [Google Scholar] [CrossRef]
- Shah, S.S.; Al-Rajhi, A.; Brandt, J.D.; Mannis, M.J.; Roos, B.; Sheffield, V.C.; Syed, N.A.; Stone, E.M.; Fingert, J.H. Mutation in the SLC4A11 Gene Associated with Autosomal Recessive Congenital Hereditary Endothelial Dystrophy in a Large Saudi Family. Ophthalmic Genet. 2008, 29, 41–45. [Google Scholar] [CrossRef]
- Souzeau, E.; Siggs, O.M.; Mullany, S.; Schmidt, J.M.; Hassall, M.M.; Dubowsky, A.; Chappell, A.; Breen, J.; Bae, H.; Nicholl, J.; et al. Diagnostic Yield of Candidate Genes in an Australian Corneal Dystrophy Cohort. Mol. Genet. Genom. Med. 2022, 10, e2023. [Google Scholar] [CrossRef] [PubMed]
- Sultana, A.; Garg, P.; Ramamurthy, B.; Vemuganti, G.K.; Kannabiran, C. Mutational Spectrum of the SLC4A11 Gene in Autosomal Recessive Congenital Hereditary Endothelial Dystrophy. Mol. Vis. 2007, 13, 1327–1332. [Google Scholar] [PubMed]
- Tananuvat, N.; Tananuvat, R.; Chartapisak, W.; Mahanupab, P.; Hokierti, C.; Srikummool, M.; Kampuansai, J.; Intachai, W.; Olsen, B.; Ketudat Cairns, J.R.; et al. Harboyan Syndrome: Novel SLC4A11 Mutation, Clinical Manifestations, and Outcome of Corneal Transplantation. J. Hum. Genet. 2021, 66, 193–203. [Google Scholar] [CrossRef]
- Yousaf, K.; Naz, S.; Mushtaq, A.; Wohler, E.; Sobreira, N.; Ho, B.-M.; Chen, L.-J.; Chu, W.-K.; Bashir, R. Exome Sequencing Reveals SLC4A11 Variant Underlying Congenital Hereditary Endothelial Dystrophy (CHED2) Misdiagnosed as Congenital Glaucoma. Genes 2023, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, D.; Li, Y.; Fan, Y.; Chen, H.; Hong, J.; Xu, J. Novel Mutations Associated with Various Types of Corneal Dystrophies in a Han Chinese Population. Front. Genet. 2019, 10, 881. [Google Scholar] [CrossRef]
- Zhen, T.; Li, Y.; Guo, Q.; Yao, S.; You, Y.; Lei, B. Pathogenicity and Function Analysis of Two Novel SLC4A11 Variants in Patients with Congenital Hereditary Endothelial Dystrophy. Transl. Vis. Sci. Technol. 2023, 12, 1. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, J.; Wang, Y.; Jiang, Y.; Li, S.; Xiao, X.; Wang, P.; Zhang, Q. Variant Landscape of 15 Genes Involved in Corneal Dystrophies: Report of 30 Families and Comprehensive Analysis of the Literature. Int. J. Mol. Sci. 2023, 24, 5012. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Adesina, A.; Ahmad, S.; Bowler-Barnett, E.H.; Bye-A-Jee, H.; Carpentier, D.; Denny, P.; et al. UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2024, 52, D609–D617. [Google Scholar]
- Cabahug, V.L.O.; Llido, J.P.S.; Cabral, L.K.D.; Maynes, T.L.; Pinuela, C.L.; Tayengco-Tiu, T.L.; Lim Bon Siong, R.; Enriquez, M.L.D. Mutational Analysis of the SLC4A11 Gene in a (Filipino) Family with Congenital Hereditary Endothelial Dystrophy. J. Clin. Transl. Ophthalmol. 2024, 2, 34–46. [Google Scholar] [CrossRef]
- Minear, M.A.; Li, Y.-J.; Rimmler, J.; Balajonda, E.; Watson, S.; Allingham, R.R.; Hauser, M.A.; Klintworth, G.K.; Afshari, N.A.; Gregory, S.G. Genetic Screen of African Americans with Fuchs Endothelial Corneal Dystrophy. Mol. Vis. 2013, 19, 2508. [Google Scholar]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Fautsch, M.P.; Wieben, E.D.; Baratz, K.H.; Bhattacharyya, N.; Sadan, A.N.; Hafford-Tear, N.J.; Tuft, S.J.; Davidson, A.E. TCF4-Mediated Fuchs Endothelial Corneal Dystrophy: Insights into a Common Trinucleotide Repeat-Associated Disease. Prog. Retin. Eye Res. 2021, 81, 100883. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sadan, A.N.; Bhattacharyya, N.; Zarouchlioti, C.; Szabo, A.; Abreu Costa, M.; Hafford-Tear, N.J.; Kladny, A.-M.S.; Dudakova, L.; Ciosi, M.; et al. Genetic and Demographic Determinants of Fuchs Endothelial Corneal Dystrophy Risk and Severity. JAMA Ophthalmol. 2025, 143, 338–347. [Google Scholar] [CrossRef]
- Weiss, J.S.; Afshari, N.A. Corneal Guttae Alone Do Not Make a Diagnosis of Fuchs’ Endothelial Corneal Dystrophy. Am. J. Ophthalmol. 2024, 264, x–xii. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.V.; Baratz, K.H. Comment on: Corneal Guttae Alone Do Not Make a Diagnosis of Fuchs’ Endothelial Corneal Dystrophy. Am. J. Ophthalmol. 2024, 267, 304–305. [Google Scholar] [CrossRef]
- Weiss, J.S.; Afshari, N. Reply to Comment on: Corneal Guttae Alone Do Not Make a Diagnosis of Fuchs’ Endothelial Corneal Dystrophy. Am. J. Ophthalmol. 2024, 267, 306–307. [Google Scholar] [CrossRef]
- Goar, E.L. Dystrophy of the Corneal Endothelium (Cornea Guttata), with Report of a Histologic Examination. Trans. Am. Ophthalmol. Soc. 1933, 31, 48. [Google Scholar]
- Lorenzetti, D.; Uotila, M.; Parikh, N.; Kaufman, H. Central Cornea Guttata: Incidence in the General Population. Am. J. Ophthalmol. 1967, 64, 1155–1158. [Google Scholar] [CrossRef]
- Krachmer, J.H.; Purcell, J.J.; Young, C.W.; Bucher, K.D. Corneal Endothelial Dystrophy: A Study of 64 Families. Arch. Ophthalmol. 1978, 96, 2036–2039. [Google Scholar] [CrossRef]
- Li, S.; Hundal, K.S.; Chen, X.; Choi, M.; Ogando, D.G.; Obukhov, A.G.; Bonanno, J.A. R125H, W240S, C386R, and V507I SLC4A11 Mutations Associated with Corneal Endothelial Dystrophy Affect the Transporter Function but Not Trafficking in PS120 Cells. Exp. Eye Res. 2019, 180, 86–91. [Google Scholar] [CrossRef]
- Zahra, A.; Hall, M.; Chatterjee, J.; Sisu, C.; Karteris, E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. Int. J. Mol. Sci. 2022, 23, 1725. [Google Scholar] [CrossRef] [PubMed]
- QI, Y.; Liu, S.; Sun, M.; LI, P.; Zhu, H.; Kuai, X. Correlation Between the Expression of Sodium Borate Transporter Member 11 of Solute Carrier Family 4 Protein and Tumor Protein P53 Protein and Clinicopathological Features and Prognosis in Gastric Carcinoma. Chin. J. Dig. 2018, 38, 811–817. [Google Scholar] [CrossRef]
- Elaimy, A.L.; El-Derany, M.O.; James, J.; Wang, Z.; Pearson, A.N.; Holcomb, E.A.; Huber, A.K.; Gijón, M.; Bell, H.N.; Sanghvi, V.R.; et al. SLC4A11 Mediates Ammonia Import and Promotes Cancer Stemness in Hepatocellular Carcinoma. JCI Insight 2024, 9, e184826. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yu, B.; Wang, H.; Yi, F. Glutamine Metabolic Reprogramming in Hepatocellular Carcinoma. Front. Mol. Biosci. 2023, 10, 1242059. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519. [Google Scholar] [CrossRef]
- Andersen, A.P.; Samsøe-Petersen, J.; Oernbo, E.K.; Boedtkjer, E.; Moreira, J.M.; Kveiborg, M.; Pedersen, S.F. The Net Acid Extruders NHE1, NBCn1 and MCT4 Promote Mammary Tumor Growth Through Distinct but Overlapping Mechanisms. Int. J. Cancer 2018, 142, 2529–2542. [Google Scholar] [CrossRef]
- Michl, J.; Monterisi, S.; White, B.; Blaszczak, W.; Hulikova, A.; Abdullayeva, G.; Bridges, E.; Yin, Z.; Bodmer, W.F.; Swietach, P. Acid-Adapted Cancer Cells Alkalinize Their Cytoplasm by Degrading the Acid-Loading Membrane Transporter Anion Exchanger 2, SLC4A2. Cell Rep. 2023, 42, 112601. [Google Scholar] [CrossRef]
- Gorbatenko, A.; Olesen, C.W.; Boedtkjer, E.; Pedersen, S.F. Regulation and Roles of Bicarbonate Transporters in Cancer. Front. Physiol. 2014, 5, 130. [Google Scholar] [CrossRef]
NH3/NH4+ Transport | H+/OH−/H2O Transport | Reference |
---|---|---|
mediates NH4+ transport into the cell | Na⁺ enters the cell, H⁺ leaves the cell, or cotransport of Na⁺ and OH⁻ into the cell together | [16,17] |
carries out cotransport of NH3 and 2H+ (possibly in both directions) | [20] [53] | |
mediates NH3 transport into the cell | does not carry out additional transport of any ions | [19,25] |
transport of H+/OH− regardless of the presence of NH3/NH4+ | [18] | |
carries out electrogenic NH3 -H+ cotransport | transport of H+ in both Na+-independent and Na+-bound modes; water transport in the presence of an osmotic gradient | [15] |
two competing membrane processes: H+/OH− conductance and cotransport of H+ with NH3 or as part of NH4+ ions | [21] | |
extracellular pHₑ-dependent H⁺/OH− transport | [54,55,56] | |
NH3/NH4+ act as allosteric activators of SLC4A11, influencing H+/OH− conductance | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovaleva, P.A.; Kotova, E.S.; Sharova, E.I.; Skorodumova, L.O. SLC4A11 Revisited: Isoforms, Expression, Functions, and Unresolved Questions. Biomolecules 2025, 15, 875. https://doi.org/10.3390/biom15060875
Kovaleva PA, Kotova ES, Sharova EI, Skorodumova LO. SLC4A11 Revisited: Isoforms, Expression, Functions, and Unresolved Questions. Biomolecules. 2025; 15(6):875. https://doi.org/10.3390/biom15060875
Chicago/Turabian StyleKovaleva, Polina Alekseevna, Elena Sergeevna Kotova, Elena Ivanovna Sharova, and Liubov Olegovna Skorodumova. 2025. "SLC4A11 Revisited: Isoforms, Expression, Functions, and Unresolved Questions" Biomolecules 15, no. 6: 875. https://doi.org/10.3390/biom15060875
APA StyleKovaleva, P. A., Kotova, E. S., Sharova, E. I., & Skorodumova, L. O. (2025). SLC4A11 Revisited: Isoforms, Expression, Functions, and Unresolved Questions. Biomolecules, 15(6), 875. https://doi.org/10.3390/biom15060875