Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression
Abstract
1. Introduction
2. Ferroptosis of Immune Cells
2.1. Neutrophils
2.2. Macrophages
2.3. T Lymphocytes
2.3.1. CD8+ T Cells
2.3.2. CD4+ T Cells
2.3.3. Regulatory T Cells
2.4. B Lymphocytes
2.5. Natural Killer Cells
2.6. Dendritic Cells
2.7. MDSCs
3. Ferroptosis-Based Interventions
3.1. Small-Molecule Ferroptosis Inducers
3.2. Small-Molecule Ferroptosis Inhibitors
3.3. Nanomaterials
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acod1 | aconitate decarboxylase 1 |
ACSL4 | acyl-coenzyme A synthetase long-chain family member 4 |
AHR | aryl hydrocarbon receptor |
AIFM2 | apoptosis-inducing factor mitochondria-associated 2 |
ALOX15 | arachidonic acid 15-lipoxygenase-1 |
APOC1 | apolipoprotein C1 |
AS | atherosclerosis |
ASAH2 | N-acylsphingosine amidohydrolase |
BH4 | tetrahydrobiopterin |
C/EBPβ | CCAAT/enhancer binding protein-β |
CaCO3 | calcium-carbonate |
CAFs | cancer-associated fibroblasts |
CaMKIV | calcium/calmodulin kinase IV |
CARD9 | Caspase Recruitment Domain-containing Protein 9 |
CaSR | calcium-sensing receptor |
CHAC1 | cation transport regulator homolog 1 |
CHOP | C/EBP homologous protein |
CoQ10 | Coenzyme Q10 |
CPT1A | carnitine palmitoyltransferase I |
CPX | ciclopirox |
CREMα | cAMP-responsive element modulator α |
DCs | dendritic cells |
DFO | deferoxamine |
DFP | deferiprone |
DFX | deferasirox |
DHA | dihydroartemisinin |
DHODH | dihydroorotate dehydrogenase |
DIP2A | disco interacting protein 2 homolog A |
EAE | experimental autoimmune encephalomyelitis |
Fer-1 | ferrostatin-1 |
FPN | ferroportin |
FSP1 | ferroptosis suppressor protein 1 |
FSTL1 | follistatin like protein 1 |
GCH1 | GTP cyclohydrolase-1 |
GM-CSF | granulocyte-macrophage colony stimulating factor |
GPX4 | glutathione peroxidase 4 |
GSH | glutathione |
GSK3β | glycogen synthase kinase 3β |
HK2 | hexokinase 2 |
hmox-1 | heme oxygenase 1 |
ICD | immunogenic cell death |
IDH1 | isocitrate dehydrogenase 1 |
IDO | indoleamine 2,3-dioxygenase |
IFN | interferon |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
KEAP1 | Kelch-like ECH-associated protein 1 |
Lip-1 | liproxstatin-1 |
L-KYN | L-kynurenine |
LPCAT3 | lysophosphatidylcholine acyltransferase 3 |
LPS | lipopolysaccharide |
MDSCs | myeloid-derived suppressor cells |
MHC | major histocompatibility complex |
MS | multiple sclerosis |
mTORC2 | mammalian target of rapamycin complex 2 |
NCOA4 | nuclear receptor coactivator 4 |
NEAT1 | nuclear paraspeckle assembly transcript 1 |
NETs | neutrophil extracellular traps |
NK | natural killer |
NO• | nitric oxide free radical |
NRF2 | nuclear factor erythroid 2-related factor 2 |
ox-LDL | oxidized low-density lipoprotein |
PDT | photodynamic therapy |
PGE2 | prostaglandin E2 |
PKCδ | protein kinase C-δ |
PMN-MDSCs | polymorphonuclear myeloid-derived suppressor cells |
PPARγ | peroxisome proliferator-activated receptor gamma |
PUFAs | polyunsaturated fatty acids |
ROS | reactive oxygen species |
SLC7A11 | solute carrier family 7 member 11 |
SLE | systemic lupus erythematosus |
STING | stimulator of interferon genes |
Syk | spleen tyrosine kinase |
TAMs | tumor-associated macrophages |
Tc | cytotoxic T lymphocyte subset |
TCR | T-cell receptor |
TDEs | tumor-derived exosomes |
Tfh | follicular helper T |
TfR | transferrin receptor |
Th | T helper |
TINs | Tumor-infiltrating neutrophils |
TME | tumor microenvironment |
Tregs | regulatory T cells |
Trx-1 | thioredoxin-1 |
VDAC | voltage-dependent anion channel |
References
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.S.; Ruiz, J.; Watts, J.L. Polyunsaturated Fatty Acids Drive Lipid Peroxidation during Ferroptosis. Cells 2023, 12, 804. [Google Scholar] [CrossRef] [PubMed]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. Acsl4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nat. Chem. Biol. 2017, 13, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem. Biol. 2015, 10, 1604–1609. [Google Scholar] [CrossRef]
- Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Grocin, A.G.; da Silva, T.N.X.; Panzilius, E.; Scheel, C.H.; et al. FSP1 is a Glutathione-Independent Ferroptosis Suppressor. Nature 2019, 575, 693–698. [Google Scholar] [CrossRef]
- Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent. Sci. 2020, 6, 41–53. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Signal Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Dömer, D.; Walther, T.; Möller, S.; Behnen, M.; Laskay, T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front. Immunol. 2021, 12, 636954. [Google Scholar] [CrossRef]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in Modulating Acute and Chronic Inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, H.; Tan, S.; Dong, Q.; Fan, X.; Wang, Y.; Zhang, H.; He, J. The Role of Neutrophil Extracellular Traps in Cancer Progression, Metastasis and Therapy. Exp. Hematol. Oncol. 2022, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yin, K.; Zhang, Y.; Lu, H.; Hou, L.; Zhao, H.; Xing, M. Fluoride Induces Neutrophil Extracellular Traps and Aggravates Brain Inflammation by Disrupting Neutrophil Calcium Homeostasis and Causing Ferroptosis. Environ. Pollut. 2023, 331, 121847. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jiang, M.; Li, K.; Li, H.; Zhou, Y.; Xiao, X.; Xu, Y.; Krishfield, S.; Lipsky, P.E.; Tsokos, G.C.; et al. Glutathione Peroxidase 4—Regulated Neutrophil Ferroptosis Induces Systemic Autoimmunity. Nat. Immunol. 2021, 22, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Li, Q.; Shi, J.; Li, P.; Hua, L.; Shultz, L.D.; Ren, G. Immunosuppressive Reprogramming of Neutrophils by Lung Mesenchymal Cells Promotes Breast Cancer Metastasis. Sci. Immunol. 2023, 8, eadd5204. [Google Scholar] [CrossRef]
- Zhu, X.; Zheng, W.; Wang, X.; Li, Z.; Shen, X.; Chen, Q.; Lu, Y.; Chen, K.; Ai, S.; Zhu, Y.; et al. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. Adv. Sci. 2024, 11, 2307870. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Liu, G.; Zhang, Y.; Liu, S.; Gan, D.; Chang, W.; Peng, X.; Sung, E.S.; Gilbert, K.; et al. Neutrophils Resist Ferroptosis and Promote Breast Cancer Metastasis through Aconitate Decarboxylase 1. Cell Metab. 2023, 35, 1688–1703.e10. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef]
- Kapralov, A.A.; Yang, Q.; Dar, H.H.; Tyurina, Y.Y.; Anthonymuthu, T.S.; Kim, R.; St. Croix, C.M.; Mikulska-Ruminska, K.; Liu, B.; Shrivastava, I.H.; et al. Redox Lipid Reprogramming Commands Susceptibility of Macrophages and Microglia to Ferroptotic Death. Nat. Chem. Biol. 2020, 16, 278–290. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y. Tumor-Associated Macrophages: From Basic Research to Clinical Application. J. Hematol. Oncol. 2017, 10, 58. [Google Scholar] [CrossRef]
- Li, L.-G.; Peng, X.-C.; Yu, T.-T.; Xu, H.-Z.; Han, N.; Yang, X.-X.; Li, Q.-R.; Hu, J.; Liu, B.; Yang, Z.-Y.; et al. Dihydroartemisinin Remodels Macrophage into an M1 Phenotype via Ferroptosis-Mediated DNA Damage. Front. Pharmacol. 2022, 13, 949835. [Google Scholar] [CrossRef]
- Hu, J.; Hu, H.; Liu, Q.; Feng, B.; Lu, Y.; Chen, K. Inhibition of Apoc1 Reverses Resistance of Sorafenib by Promoting Ferroptosis in Esophageal Cancers. Gene 2024, 892, 147874. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, W.; Yi, J.; Li, W.; Liu, J.; Fu, W.; Ren, L.; Li, S.; Ge, B.; Yang, Y.; et al. Apolipoprotein C1 Promotes Glioblastoma Tumorigenesis by Reducing KEAP1/NRF2 and CBS-Regulated Ferroptosis. Acta Pharmacol. Sin. 2022, 43, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zheng, Z.; Liu, H.; Zhang, Y.; Kang, J.; Kong, X.; Rong, D.; Sun, G.; Sun, G.; Liu, L.; et al. Inhibition of APOC1 Promotes the Transformation of M2 into M1 Macrophages via the Ferroptosis Pathway and Enhances Anti-PD1 Immunotherapy in Hepatocellular Carcinoma Based on Single-Cell RNA Sequencing. Redox Biol. 2022, 56, 102463. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, H.; Chen, Y.; Liu, X.; Tian, J.; Shen, W. The Role of Macrophage Iron Overload and Ferroptosis in Atherosclerosis. Biomolecules 2022, 12, 1702. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Östberg, N.; Yalcinkaya, M.; Dou, H.; Endo-Umeda, K.; Tang, Y.; Hou, X.; Xiao, T.; Fidler, T.P.; Abramowicz, S.; et al. Erythroid Lineage Jak2V617F Expression Promotes Atherosclerosis through Erythrophagocytosis and Macrophage Ferroptosis. J. Clin. Invest. 2022, 132, e155724. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, A.-S.; Enns, C.A. Iron Regulation by Hepcidin. J. Clin. Investig. 2013, 123, 2337–2343. [Google Scholar] [CrossRef]
- Verga Falzacappa, M.V.; Vujic Spasic, M.; Kessler, R.; Stolte, J.; Hentze, M.W.; Muckenthaler, M.U. STAT3 Mediates Hepatic Hepcidin Expression and Its Inflammatory Stimulation. Blood 2007, 109, 353–358. [Google Scholar] [CrossRef]
- Bao, X.; Luo, X.; Bai, X.; Lv, Y.; Weng, X.; Zhang, S.; Leng, Y.; Huang, J.; Dai, X.; Wang, Y.; et al. Cigarette Tar Mediates Macrophage Ferroptosis in Atherosclerosis through the Hepcidin/FPN/SLC7A11 Signaling Pathway. Free Radic. Biol. Med. 2023, 201, 76–88. [Google Scholar] [CrossRef]
- You, Z.; Ye, X.; Jiang, M.; Gu, N.; Liang, C. Lnc-MRGPRF-6:1 Promotes Ox-LDL-Induced Macrophage Ferroptosis via Suppressing GPX4. Mediat. Inflamm. 2023, 2023, 5513245. [Google Scholar] [CrossRef]
- Xu, S.; Wu, B.; Zhong, B.; Lin, L.; Ding, Y.; Jin, X.; Huang, Z.; Lin, M.; Wu, H.; Xu, D. Naringenin Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating the Nuclear Factor-Erythroid Factor 2-Related Factor 2 (Nrf2)/System Xc-/Glutathione Peroxidase 4 (GPX4) Axis to Inhibit Ferroptosis. Bioengineered 2021, 12, 10924–10934. [Google Scholar] [CrossRef]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zhu, X.; Chen, Y.; Xu, B.; Bai, X.; Weng, X.; Xu, J.; Tao, Y.; Yang, D.; et al. MCL Attenuates Atherosclerosis by Suppressing Macrophage Ferroptosis via Targeting KEAP1/NRF2 Interaction. Redox Biol. 2024, 69, 102987. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Lu, P.; Ji, Y.; Wang, X.; Liu, C.; Lu, X.; Xu, X.; Wang, X. IDH1 Promotes Foam Cell Formation by Aggravating Macrophage Ferroptosis. Biology 2022, 11, 1392. [Google Scholar] [CrossRef]
- Amaral, E.P.; Costa, D.L.; Namasivayam, S.; Riteau, N.; Kamenyeva, O.; Mittereder, L.; Mayer-Barber, K.D.; Andrade, B.B.; Sher, A. A Major Role for Ferroptosis in Mycobacterium Tuberculosis—Induced Cell Death and Tissue Necrosis. J. Exp. Med. 2019, 216, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Pepper, M.; Thomas, P.G. Principles and Therapeutic Applications of Adaptive Immunity. Cell 2024, 187, 2052–2078. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zou, S.; Wen, K. The Crosstalk of CD8+ T Cells and Ferroptosis in Cancer. Front. Immunol. 2024, 14, 1255443. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-Mediated Ferroptosis Dampens Intratumoral CD8+ T Cell Effector Function and Impairs Their Antitumor Ability. Cell Metab. 2021, 33, 1001–1012.e5. [Google Scholar] [CrossRef]
- Xu, S.; Chaudhary, O.; Rodríguez-Morales, P.; Sun, X.; Chen, D.; Zappasodi, R.; Xu, Z.; Pinto, A.F.M.; Williams, A.; Schulze, I.; et al. Uptake of Oxidized Lipids by the Scavenger Receptor CD36 Promotes Lipid Peroxidation and Dysfunction in CD8+ T Cells in Tumors. Immunity 2021, 54, 1561–1577.e7. [Google Scholar] [CrossRef]
- Xiao, L.; Ma, X.; Ye, L.; Su, P.; Xiong, W.; Bi, E.; Wang, Q.; Xian, M.; Yang, M.; Qian, J.; et al. IL-9/STAT3/Fatty Acid Oxidation—Mediated Lipid Peroxidation Contributes to Tc9 Cell Longevity and Enhanced Antitumor Activity. J. Clin. Investig. 2022, 132, e153247. [Google Scholar] [CrossRef]
- Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019, 50, 1132–1148. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.-F.; Luo, W.; Fu, D.; Shen, W.-Y.; Zhang, Y.-L.; Zhao, S.; Dai, R.-P. CD36-Mediated Ferroptosis Destabilizes CD4+ T Cell Homeostasis in Acute Stanford Type-A Aortic Dissection. Cell Death Dis. 2024, 15, 669. [Google Scholar] [CrossRef]
- Kong, Z.; Cai, S.; Xie, W.; Chen, J.; Xie, J.; Yang, F.; Li, Z.; Bai, X.; Liu, T. CD4+ T Cells Ferroptosis Is Associated with the Development of Sepsis in Severe Polytrauma Patients. Int. Immunopharmacol. 2024, 127, 111377. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Z.; Zhang, H.; Chen, C.; Zeng, M.; Yunis, J.; Wei, Y.; Wan, Y.; Wang, N.; Zhou, M.; et al. Selenium—GPX4 Axis Protects Follicular Helper T Cells from Ferroptosis. Nat. Immunol. 2021, 22, 1127–1139. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Q.; Hao, Y.; Yao, W.; Lu, J.; Chen, C.; Chen, X.; Lin, Y.; Huang, Q.; Xu, L.; et al. The Kinase Complex mTORC2 Promotes the Longevity of Virus-Specific Memory CD4+ T Cells by Preventing Ferroptosis. Nat. Immunol. 2022, 23, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, Y.; Luo, S.; Li, Z.; Huang, F.; Liu, Z. GPX4 Aggravates Experimental Autoimmune Encephalomyelitis by Inhibiting the Functions of CD4+ T Cells. Biochem. Biophys. Res. Commun. 2023, 642, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Plitas, G.; Rudensky, A.Y. Regulatory T Cells: Differentiation and Function. Cancer Immunol. Res. 2016, 4, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Mougiakakos, D.; Johansson, C.C.; Jitschin, R.; Böttcher, M.; Kiessling, R. Increased Thioredoxin-1 Production in Human Naturally Occurring Regulatory T Cells Confers Enhanced Tolerance to Oxidative Stress. Blood 2011, 117, 857–861. [Google Scholar] [CrossRef]
- Xu, C.; Sun, S.; Johnson, T.; Qi, R.; Zhang, S.; Zhang, J.; Yang, K. The Glutathione Peroxidase Gpx4 Prevents Lipid Peroxidation and Ferroptosis to Sustain Treg Cell Activation and Suppression of Antitumor Immunity. Cell Rep. 2021, 35, 109235. [Google Scholar] [CrossRef]
- Muri, J.; Thut, H.; Bornkamm, G.W.; Kopf, M. B1 and Marginal Zone B Cells but Not Follicular B2 Cells Require Gpx4 to Prevent Lipid Peroxidation and Ferroptosis. Cell Rep. 2019, 29, 2731–2744.e4. [Google Scholar] [CrossRef]
- Chen, Q.; Xiang, M.; Gao, Z.; Lvu, F.; Sun, Z.; Wang, Y.; Shi, X.; Xu, J.; Wang, J.; Liang, J. The Role of B-Cell Ferroptosis in the Pathogenesis of Systemic Lupus Erythematosus. Clin. Immunol. 2023, 256, 109778. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J.; Ye, K.; Zhao, J.; Huang, S.; He, S.; Qin, Y.; Meng, L.; Wang, J.; Song, J. Neutrophil-Derived IL-6 Potentially Drives Ferroptosis Resistance in B Cells in Lupus Kidney. Mediat. Inflamm. 2023, 2023, 9810733. [Google Scholar] [CrossRef] [PubMed]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; He, Z.; Li, L.; Liu, S.; Jiang, M.; Zhao, B.; Deng, M.; Wang, W.; Mi, X.; et al. Breakthrough of Solid Tumor Treatment: CAR-NK Immunotherapy. Cell Death Discov. 2024, 10, 40. [Google Scholar] [CrossRef]
- Poznanski, S.M.; Singh, K.; Ritchie, T.M.; Aguiar, J.A.; Fan, I.Y.; Portillo, A.L.; Rojas, E.A.; Vahedi, F.; El-Sayes, A.; Xing, S.; et al. Metabolic Flexibility Determines Human NK Cell Functional Fate in the Tumor Microenvironment. Cell Metab. 2021, 33, 1205–1220.e5. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Cantoni, C.; Pietra, G.; Mingari, M.C.; Moretta, L. Effect of Tumor Cells and Tumor Microenvironment on NK-Cell Function. Eur. J. Immunol. 2014, 44, 1582–1592. [Google Scholar] [CrossRef]
- De Jaeghere, E.A.; Denys, H.G.; De Wever, O. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends Cancer 2019, 5, 704–723. [Google Scholar] [CrossRef]
- Yao, L.; Hou, J.; Wu, X.; Lu, Y.; Jin, Z.; Yu, Z.; Yu, B.; Li, J.; Yang, Z.; Li, C.; et al. Cancer-Associated Fibroblasts Impair the Cytotoxic Function of NK Cells in Gastric Cancer by Inducing Ferroptosis via Iron Regulation. Redox Biol. 2023, 67, 102923. [Google Scholar] [CrossRef]
- Cui, J.-X.; Xu, X.-H.; He, T.; Liu, J.-J.; Xie, T.-Y.; Tian, W.; Liu, J.-Y. L-Kynurenine Induces NK Cell Loss in Gastric Cancer Microenvironment via Promoting Ferroptosis. J. Exp. Clin. Cancer Res. 2023, 42, 52. [Google Scholar] [CrossRef]
- Mashouri, L.; Yousefi, H.; Aref, A.R.; Ahadi, A.M.; Molaei, F.; Alahari, S.K. Exosomes: Composition, Biogenesis, and Mechanisms in Cancer Metastasis and Drug Resistance. Mol. Cancer 2019, 18, 75. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Zhang, X.; Zhou, Y.; Ma, T.; Liang, J.; Zhang, J. Glioblastoma-Derived Exosomes Promote Lipid Accumulation and Induce Ferroptosis in Dendritic Cells via the NRF2/GPX4 Pathway. Front. Immunol. 2024, 15, 1439191. [Google Scholar] [CrossRef]
- Han, L.; Bai, L.; Qu, C.; Dai, E.; Liu, J.; Kang, R.; Zhou, D.; Tang, D.; Zhao, Y. PPARG-Mediated Ferroptosis in Dendritic Cells Limits Antitumor Immunity. Biochem. Biophys. Res. Commun. 2021, 576, 33–39. [Google Scholar] [CrossRef]
- Xiao, K.; Zhang, S.; Peng, Q.; Du, Y.; Yao, X.; Ng, I.-I.; Tang, H. PD-L1 Protects Tumor-Associated Dendritic Cells from Ferroptosis during Immunogenic Chemotherapy. Cell Rep. 2024, 43, 114868. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Ren, C.; Wang, L.-X.; Yao, R.-Q.; Dong, N.; Wu, Y.; Tian, Y.-P.; Yao, Y.-M. Sestrin2 Protects Dendrite Cells against Ferroptosis Induced by Sepsis. Cell Death Dis. 2021, 12, 834. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Smyth, M.J. Myeloid Immunosuppression and Immune Checkpoints in the Tumor Microenvironment. Cell Mol. Immunol. 2020, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived-Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-Derived Suppressor Cells Coming of Age. Nat. Immunol. 2018, 19, 108–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P.; Chen, Y.; Chen, Y.; Wang, X.; Shen, S.; Zhao, Y.; Zhu, Y.; Wang, T. Mitochondria-Mediated Ferroptosis Induced by CARD9 Ablation Prevents MDSCs-Dependent Antifungal Immunity. Cell Commun. Signal 2024, 22, 210. [Google Scholar] [CrossRef]
- Jiang, L.; Kon, N.; Li, T.; Wang, S.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a P53-Mediated Activity during Tumour Suppression. Nature 2015, 520, 57–62. [Google Scholar] [CrossRef]
- Zhu, H.; Klement, J.D.; Lu, C.; Redd, P.S.; Yang, D.; Smith, A.D.; Poschel, D.B.; Zou, J.; Liu, D.; Wang, P.G.; et al. Asah2 Represses the P53—Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis. J. Immunol. 2021, 206, 1395–1404. [Google Scholar] [CrossRef]
- Kim, R.; Hashimoto, A.; Markosyan, N.; Tyurin, V.A.; Tyurina, Y.Y.; Kar, G.; Fu, S.; Sehgal, M.; Garcia-Gerique, L.; Kossenkov, A.; et al. Ferroptosis of Tumor Neutrophils Causes Immune Suppression in Cancer. Nature 2022, 612, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Kang, R.; Tang, D.; Liu, J. Ferroptosis: Principles and Significance in Health and Disease. J. Hematol. Oncol. 2024, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; et al. Pharmacological Inhibition of Cystine-Glutamate Exchange Induces Endoplasmic Reticulum Stress and Ferroptosis. Elife 2014, 3, e02523. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Wu, Y.; Tsai, H.; Zhu, H.; Zhang, Y.; Liu, S.; Guo, P.; Zhang, Z.; Zhang, Z.; Wen, X.; Wang, D.; et al. CX-5461 Ameliorates Disease in Lupus-Prone Mice by Triggering B-Cell Ferroptosis via P53-SLC7A11-ALOX12 Pathway. Free Radic. Biol. Med. 2024, 223, 325–340. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Hao, J.; Duan, H.-Q.; Zhao, C.-X.; Sun, C.; Li, B.; Fan, B.-Y.; Wang, X.; Li, W.-X.; et al. Deferoxamine Promotes Recovery of Traumatic Spinal Cord Injury by Inhibiting Ferroptosis. Neural Regen. Res. 2019, 14, 532. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, X.; Zhao, Y.; Flores, J.J.; Huang, L.; Gu, L.; Li, R.; Zhang, X.; Zhu, S.; Dong, S.; et al. Mitochondrial Ferritin Upregulation by Deferiprone Reduced Neuronal Ferroptosis and Improved Neurological Deficits via NDRG1/Yap Pathway in a Neonatal Rat Model of Germinal Matrix Hemorrhage. J. Cereb. Blood Flow. Metab. 2024, 45, 510–527. [Google Scholar] [CrossRef]
- Wu, Y.; Ran, L.; Yang, Y.; Gao, X.; Peng, M.; Liu, S.; Sun, L.; Wan, J.; Wang, Y.; Yang, K.; et al. Deferasirox Alleviates DSS-Induced Ulcerative Colitis in Mice by Inhibiting Ferroptosis and Improving Intestinal Microbiota. Life Sci. 2023, 314, 121312. [Google Scholar] [CrossRef]
- Radadiya, P.S.; Thornton, M.M.; Puri, R.V.; Yerrathota, S.; Dinh-Phan, J.; Magenheimer, B.; Subramaniam, D.; Tran, P.V.; Zhu, H.; Bolisetty, S.; et al. Ciclopirox Olamine Induces Ferritinophagy and Reduces Cyst Burden in Polycystic Kidney Disease. JCI Insight 2021, 6, e141299. [Google Scholar] [CrossRef]
- Zilka, O.; Shah, R.; Li, B.; Friedmann Angeli, J.P.; Griesser, M.; Conrad, M.; Pratt, D.A. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Cent. Sci. 2017, 3, 232–243. [Google Scholar] [CrossRef]
- Wu, H.; Liu, A. Long Non-Coding RNA NEAT1 Regulates Ferroptosis Sensitivity in Non-Small-Cell Lung Cancer. J. Int. Med. Res. 2021, 49, 300060521996183. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, Y.; Zhou, H.; Chen, C. Ferroptosis: Challenges and Opportunities for Nanomaterials in Cancer Therapy. Regen. Biomater. 2023, 10, rbad004. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Patel, M.M. Threatening Cancer with Nanoparticle Aided Combination Oncotherapy. J. Control. Release 2019, 301, 76–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shen, Y.; Pu, Y.; Zhou, B.; Bing, J.; Ge, M.; Zhu, Y.; Gao, S.; Wu, W.; Zhou, M.; et al. Biomimetic Inducer Enabled Dual Ferroptosis of Tumor and M2-Type Macrophages for Enhanced Tumor Immunotherapy. Biomaterials 2023, 303, 122386. [Google Scholar] [CrossRef]
- Tang, B.; Zhu, J.; Wang, Y.; Chen, W.; Fang, S.; Mao, W.; Xu, Z.; Yang, Y.; Weng, Q.; Zhao, Z.; et al. Targeted xCT-Mediated Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and Enhances the Efficacy of the Anti-PD-1/L1 Response. Adv. Sci. 2023, 10, 2203973. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, W.; Yang, Z.; Sun, J.; Chang, J.; Huang, L.; Xue, L.; Zhang, X.; Zhi, H.; Chen, S.; et al. Nanotechnology-Enabled M2 Macrophage Polarization and Ferroptosis Inhibition for Targeted Inflammatory Bowel Disease Treatment. J. Control. Release 2024, 367, 339–353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Lu, Y.; Zeng, Q.; Zhu, X.; Guan, W.; Liu, S. Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression. Biomolecules 2025, 15, 1464. https://doi.org/10.3390/biom15101464
Xu H, Lu Y, Zeng Q, Zhu X, Guan W, Liu S. Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression. Biomolecules. 2025; 15(10):1464. https://doi.org/10.3390/biom15101464
Chicago/Turabian StyleXu, Hanxiao, Yanjun Lu, Qingwei Zeng, Xudong Zhu, Wenxian Guan, and Song Liu. 2025. "Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression" Biomolecules 15, no. 10: 1464. https://doi.org/10.3390/biom15101464
APA StyleXu, H., Lu, Y., Zeng, Q., Zhu, X., Guan, W., & Liu, S. (2025). Ferroptosis of Immune Cells in Infection, Inflammation and Tumor Progression. Biomolecules, 15(10), 1464. https://doi.org/10.3390/biom15101464