Recent Advances in the Development and Clinical Use of HER2 Inhibitors in Non-Small Cell Lung Cancer
Abstract
1. Introduction
2. Biology of HER2 Signal Transduction
3. HER2 Alterations and Prognosis in Patients with NSCLC and Breast Cancer
3.1. ERBB2 Mutations
3.2. ERBB2 Amplification and HER2 Protein Overexpression
4. Clinical Utility of HER2 Tyrosine Kinase Inhibitors
4.1. Afatinib and Dacomitinib as Pan-HER Inhibitors
4.2. Neratinib, Pyrotinib, and Tucatinib for Patients with ERBB2-Mutated NSCLC and HER2-Positive Breast Cancer
Agents | Study | Phase | No. Patients with HER2-Positive MBC | ORR (%) | mPFS (Months) | mOS (Months) |
---|---|---|---|---|---|---|
Lapatinib (1250 mg daily) + Capecitabine (2000 mg/m2, 1–14 d/21 d) | Geyer et al. [50] | III | 163 | 22 | 8.4 | NA |
Capecitabine (2500 mg/m2, 1–14 d/21 d) | 161 | 14 | 4.1 | NA | ||
Neratinib (240 mg daily) + Capecitabine (750 mg/m2 twice daily 1–14 d/21 d) | NALA [49] | III | 307 | 32.8 | 8.8 | 24.0 |
Lapatinib (1250 mg daily) + Capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | 314 | 26.7 | 6.6 | 22.2 | ||
Pyrotinib (400 mg daily) + Capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | PHOEBE [53] | III | 134 | 67.2 | 12.5 | NR |
Lapatinib (1250 mg daily) + Capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | 132 | 51.5 | 6.8 | 26.9 | ||
Tucatinib (300 mg twice daily) + trastuzumab (6 mg/kg q3w) + capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | HER2CLIMB [56] | III | 410 | 40.6 | 7.8 | 21.9 |
Placebo + trastuzumab (6 mg/kg q3w) + capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | 202 | 22.8 | 5.6 | 17.4 |
Drug | Study | Phase | No. of Patients with ERBB2 Mutation | ORR (%) | DCR (%) | mPFS (Months) | mOS (Months) | Grade 3/4 TRAE (%) |
---|---|---|---|---|---|---|---|---|
Neratinib (240 mg daily) | SUMMIT [47] | II | 26 (previously treated) | 3.8 | 42.3 | 5.5 | NA | 22% diarrhea |
Neratinib (240 mg daily) | PUMA-NER-4201 [48] | II | 17 (previously treated) | 0 | 35 | 3.0 | 10.0 | 82% diarrhea |
Neratinib (240 mg daily) + Temsirolimus (8 mg/weekly) | 43 (previously treated) | 19 | 51 | 4.1 | 15.8 | 86% diarrhea | ||
Pyrotinib (400 mg daily) | Zhou et al. [52] | II | 60 (previously treated) | 30.0 | 85.0 | 6.9 | 14.4 | 28.3 20% diarrhea |
Song et al. [51] | II | 78 (independent of prior treatments) | 19.2 | 74.4 | 5.6 | 10.5 | 20.5 16.7% diarrhea | |
Pyrotinib (400 mg daily) + apatinib (250 mg daily) | PATHER2 [55] | II | 33 (previously treated) | 51.5 | 93.9 | 6.9 | 14.8 | 12.1 9.1% hypertension |
Pyrotinib (320 mg daily) + inetetamab (6 mg/kg, q3w) | Huang et al. [58] | Ib | 48 (independent of prior treatments) | 25.0 | 84.1 | 5.5 | NA | 14.6 |
4.3. Poziotinib and Other Novel HER2-TKIs, Such as Zongertinib and BAY2927088
Drug | Study | Phase | No. of Patients with HER2 Mutation | ORR (%) | DCR (%) | mPFS (Months) | mOS (Months) | Grade 3/4 TRAE (%) | Key Grade 3/4 TRAE (%) (Rash/Diarrhea) |
---|---|---|---|---|---|---|---|---|---|
Poziotinib (16 mg daily) | ZENITH20-2 [61] | II | 90 (previously treated) | 27.8 | 70.0 | 5.5 | NA | 78.9 | 48.9/25.6 |
ZENITH20-4 [62] | II | 80 (Treatment naïve/HER2ex20ins) | 39 | 73 | 5.6 | NA | 71 | 43.0/18.0 | |
BAY2927088 (20 mg twice daily) | SOHO-01 [65] | I/II | 44 (cohort D: HER2-targeted therapy naïve) | 70.5 | 81.8 | NA | NA | 33.3 | 1.3/16.7 |
34 (cohort E: previously treated with HER2-ADC) | 35.3 | 52.9 | |||||||
Zongertinib (120 mg or 240 mg daily) | Beamion Lung 1 [66] | Ib | 75 (cohort 1: HER2-targeted therapy naïve) | 71 | 72 | 12.4 | NA | 17 (8% increase ALT) | 0/1.0 |
Zongertinib (120 mg daily) | 31 (cohort 5: previously treated with HER2-ADC) | 48 | 97 | NA | 3 | 0/0 |
Drug | Study | Phase | No. Patients with HER2-Positive MBC | ORR (%) | DCR (%) | mPFS (Months) | mOS (Months) | Grade 3/4 TRAE (%) | Key Grade 3/4 TRAE (%) (Rash/Diarrhea) |
---|---|---|---|---|---|---|---|---|---|
Poziotinib (12 mg daily) | NOV120101-203 [63] | II | 106 (previously treated) | 25.5 | 73 | 4.04 | NA | 37.7 | 3.8/14.2 |
5. Clinical Use of Monoclonal Antibodies and ADCs Against HER2
5.1. The Anti-HER2 Monoclonal Antibodies Trastuzumab and Pertuzumab
5.2. The ADCs Trastuzumab Emtansine (T-DM1) and Trastuzumab Deruxtecan (T-DXd)
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSCLC | Non-small cell lung cancer |
HER2 | Human epidermal growth factor receptor 2 |
ERBB2 | erb-b2 receptor tyrosine kinase 2 |
TKI | Tyrosine kinase inhibitors |
ADC | Antibody-drug conjugates |
EGFR | Epidermal growth factor receptor |
FISH | Fluorescence in situ hybridization |
IHC | Immunohistochemistry |
RTK | Receptor tyrosine kinase |
ASCO/CAP | American Society of Clinical Oncology and the College of American Pathologists |
ORR | Objective response rate |
DCR | Disease control rate |
PFS | Progression-free survival |
OS | Overall survival |
TRAE | Treatment-related adverse events |
MBC | Metastatic breast cancer |
T-DM1 | Trastuzumab-emtansine |
T-DXd | Trastuzumab-deruxtecan |
NGS | Next-generation sequencing |
ER | Estrogen receptor |
ILD | Interstitial lung disease |
ICIs | Immune checkpoint inhibitors |
bsAbs | bispecific antibodies |
ECD | extracellular domains |
References
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef]
- Lindeman, N.I.; Cagle, P.T.; Beasley, M.B.; Chitale, D.A.; Dacic, S.; Giaccone, G.; Jenkins, R.B.; Kwiatkowski, D.J.; Saldivar, J.S.; Squire, J.; et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2013, 137, 828–860. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef]
- Uy, N.F.; Merkhofer, C.M.; Baik, C.S. HER2 in Non-Small Cell Lung Cancer: A Review of Emerging Therapies. Cancers 2022, 14, 4155. [Google Scholar] [CrossRef]
- Chmielecki, J.; Ross, J.S.; Wang, K.; Frampton, G.M.; Palmer, G.A.; Ali, S.M.; Palma, N.; Morosini, D.; Miller, V.A.; Yelensky, R.; et al. Oncogenic alterations in ERBB2/HER2 represent potential therapeutic targets across tumors from diverse anatomic sites of origin. Oncologist 2015, 20, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Broglio, K.; Buzdar, A.U.; Hortobagyi, G.N.; Giordano, S.H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: An institutional-based review. J. Clin. Oncol. 2010, 28, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, A.; Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990, 61, 203–212. [Google Scholar] [CrossRef]
- Gala, K.; Chandarlapaty, S. Molecular pathways: HER3 targeted therapy. Clin. Cancer Res. 2014, 20, 1410–1416. [Google Scholar] [CrossRef]
- Pan, L.; Li, J.; Xu, Q.; Gao, Z.; Yang, M.; Wu, X.; Li, X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine 2024, 103, e38508. [Google Scholar] [CrossRef]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Lee-Hoeflich, S.T.; Crocker, L.; Yao, E.; Pham, T.; Munroe, X.; Hoeflich, K.P.; Sliwkowski, M.X.; Stern, H.M. A central role for HER3 in HER2-amplified breast cancer: Implications for targeted therapy. Cancer Res. 2008, 68, 5878–5887. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat. Rev. Clin. Oncol. 2011, 9, 16–32. [Google Scholar] [CrossRef]
- Coussens, L.; Yang-Feng, T.L.; Liao, Y.C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.A.; Schlessinger, J.; Francke, U.; et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230, 1132–1139. [Google Scholar] [CrossRef]
- van der Geer, P.; Hunter, T.; Lindberg, R.A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 1994, 10, 251–337. [Google Scholar] [CrossRef]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef]
- Li, B.T.; Ross, D.S.; Aisner, D.L.; Chaft, J.E.; Hsu, M.; Kako, S.L.; Kris, M.G.; Varella-Garcia, M.; Arcila, M.E. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers. J. Thorac. Oncol. 2016, 11, 414–419. [Google Scholar] [CrossRef]
- Shigematsu, H.; Takahashi, T.; Nomura, M.; Majmudar, K.; Suzuki, M.; Lee, H.; Wistuba, I.I.; Fong, K.M.; Toyooka, S.; Shimizu, N.; et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 2005, 65, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.N.; Behera, M.; Berry, L.D.; Rossi, M.R.; Kris, M.G.; Johnson, B.E.; Bunn, P.A.; Ramalingam, S.S.; Khuri, F.R. HER2 mutations in lung adenocarcinomas: A report from the Lung Cancer Mutation Consortium. Cancer 2017, 123, 4099–4105. [Google Scholar] [CrossRef]
- Arcila, M.E.; Chaft, J.E.; Nafa, K.; Roy-Chowdhuri, S.; Lau, C.; Zaidinski, M.; Paik, P.K.; Zakowski, M.F.; Kris, M.G.; Ladanyi, M. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res. 2012, 18, 4910–4918. [Google Scholar] [CrossRef]
- Zhao, S.; Fang, W.; Pan, H.; Yang, Y.; Liang, Y.; Yang, L.; Dong, X.; Zhan, J.; Wang, K.; Zhang, L. Conformational Landscapes of HER2 Exon 20 Insertions Explain Their Sensitivity to Kinase Inhibitors in Lung Adenocarcinoma. J. Thorac. Oncol. 2020, 15, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.E.; Narasanna, A.; Perez-Torres, M.; Xiang, B.; Wu, F.Y.; Yang, S.; Carpenter, G.; Gazdar, A.F.; Muthuswamy, S.K.; Arteaga, C.L. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 2006, 10, 25–38. [Google Scholar] [CrossRef]
- Mazieres, J.; Peters, S.; Lepage, B.; Cortot, A.B.; Barlesi, F.; Beau-Faller, M.; Besse, B.; Blons, H.; Mansuet-Lupo, A.; Urban, T.; et al. Lung cancer that harbors an HER2 mutation: Epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 2013, 31, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Gaibar, M.; Beltran, L.; Romero-Lorca, A.; Fernandez-Santander, A.; Novillo, A. Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer. J. Oncol. 2020, 2020, 6375956. [Google Scholar] [CrossRef]
- Deniziaut, G.; Tille, J.C.; Bidard, F.C.; Vacher, S.; Schnitzler, A.; Chemlali, W.; Tremoulet, L.; Fuhrmann, L.; Cottu, P.; Rouzier, R.; et al. ERBB2 mutations associated with solid variant of high-grade invasive lobular breast carcinomas. Oncotarget 2016, 7, 73337–73346. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, C.; Zoppoli, G.; Gundem, G.; Pruneri, G.; Larsimont, D.; Fornili, M.; Fumagalli, D.; Brown, D.; Rothe, F.; Vincent, D.; et al. Genomic Characterization of Primary Invasive Lobular Breast Cancer. J. Clin. Oncol. 2016, 34, 1872–1881. [Google Scholar] [CrossRef]
- Cocco, E.; Lopez, S.; Santin, A.D.; Scaltriti, M. Prevalence and role of HER2 mutations in cancer. Pharmacol. Ther. 2019, 199, 188–196. [Google Scholar] [CrossRef]
- Kurozumi, S.; Alsaleem, M.; Monteiro, C.J.; Bhardwaj, K.; Joosten, S.E.P.; Fujii, T.; Shirabe, K.; Green, A.R.; Ellis, I.O.; Rakha, E.A.; et al. Targetable ERBB2 mutation status is an independent marker of adverse prognosis in estrogen receptor positive, ERBB2 non-amplified primary lobular breast carcinoma: A retrospective in silico analysis of public datasets. Breast Cancer Res. 2020, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, Y.; Sheng, S.; Yuan, H.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; et al. HER2 somatic mutations are associated with poor survival in HER2-negative breast cancers. Cancer Sci. 2017, 108, 671–677. [Google Scholar] [CrossRef]
- Croessmann, S.; Formisano, L.; Kinch, L.N.; Gonzalez-Ericsson, P.I.; Sudhan, D.R.; Nagy, R.J.; Mathew, A.; Bernicker, E.H.; Cristofanilli, M.; He, J.; et al. Combined Blockade of Activating ERBB2 Mutations and ER Results in Synthetic Lethality of ER+/HER2 Mutant Breast Cancer. Clin. Cancer Res. 2019, 25, 277–289. [Google Scholar] [CrossRef]
- Bon, G.; Di Lisa, F.S.; Filomeno, L.; Arcuri, T.; Krasniqi, E.; Pizzuti, L.; Barba, M.; Messina, B.; Schiavoni, G.; Sanguineti, G.; et al. HER2 mutation as an emerging target in advanced breast cancer. Cancer Sci. 2024, 115, 2147–2158. [Google Scholar] [CrossRef]
- Zack, T.I.; Schumacher, S.E.; Carter, S.L.; Cherniack, A.D.; Saksena, G.; Tabak, B.; Lawrence, M.S.; Zhsng, C.Z.; Wala, J.; Mermel, C.H.; et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 2013, 45, 1134–1140. [Google Scholar] [CrossRef]
- Ninomiya, K.; Hata, T.; Yoshioka, H.; Ohashi, K.; Bessho, A.; Hosokawa, S.; Ishikawa, N.; Yamasaki, M.; Shibayama, T.; Aoe, K.; et al. A Prospective Cohort Study to Define the Clinical Features and Outcome of Lung Cancers Harboring HER2 Aberration in Japan (HER2-CS STUDY). Chest 2019, 156, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, J.; Ying, J.; Mitsudomi, T.; Lee, D.H.; Wang, Z.; Chu, Q.; Mack, P.C.; Cheng, Y.; Duan, J.; et al. Consensus for HER2 alterations testing in non-small-cell lung cancer. ESMO Open 2022, 7, 100395. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Varella-Garcia, M.; Franklin, W.A.; Veve, R.; Chen, L.; Helfrich, B.; Zeng, C.; Baron, A.; Bunn, P.A., Jr. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br. J. Cancer 2002, 86, 1449–1456. [Google Scholar] [CrossRef]
- Odintsov, I.; Makarem, M.; Nishino, M.; Bachert, S.E.; Zhang, T.; LoPiccolo, J.; Paweletz, C.P.; Gokhale, P.C.; Ivanova, E.; Saldanha, A.; et al. Prevalence and Therapeutic Targeting of High-Level ERBB2 Amplification in NSCLC. J. Thorac. Oncol. 2024, 19, 732–748. [Google Scholar] [CrossRef]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27, 4702–4711. [Google Scholar] [CrossRef]
- Yu, H.A.; Pao, W. Targeted therapies: Afatinib--new therapy option for EGFR-mutant lung cancer. Nat. Rev. Clin. Oncol. 2013, 10, 551–552. [Google Scholar] [CrossRef]
- Shirley, M. Dacomitinib: First Global Approval. Drugs 2018, 78, 1947–1953. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Zhou, C.; Wang, H.; Shu, Y.; Zhang, J.; Hua, H.; Huang, D.C.; Zhou, C. Afatinib in patients with advanced non-small cell lung cancer harboring HER2 mutations, previously treated with chemotherapy: A phase II trial. Lung Cancer 2020, 147, 209–213. [Google Scholar] [CrossRef]
- Dziadziuszko, R.; Smit, E.F.; Dafni, U.; Wolf, J.; Wasag, B.; Biernat, W.; Finn, S.P.; Kammler, R.; Tsourti, Z.; Rabaglio, M.; et al. Afatinib in NSCLC With HER2 Mutations: Results of the Prospective, Open-Label Phase II NICHE Trial of European Thoracic Oncology Platform (ETOP). J. Thorac. Oncol. 2019, 14, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- De Greve, J.; Moran, T.; Graas, M.P.; Galdermans, D.; Vuylsteke, P.; Canon, J.L.; Schallier, D.; Decoster, L.; Teugels, E.; Massey, D.; et al. Phase II study of afatinib, an irreversible ErbB family blocker, in demographically and genotypically defined lung adenocarcinoma. Lung Cancer 2015, 88, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Camidge, D.R.; Giaccone, G.; Hida, T.; Li, B.T.; O’Connell, J.; Taylor, I.; Zhang, H.; Arcila, M.E.; Goldberg, Z.; et al. Targeting HER2 aberrations as actionable drivers in lung cancers: Phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015, 26, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yang, G.; Xu, H.; Yang, L.; Qiu, W.; Wang, Y. Treatment outcome and clinical characteristics of HER2 mutated advanced non-small cell lung cancer patients in China. Thorac. Cancer 2020, 11, 679–685. [Google Scholar] [CrossRef]
- Schlam, I.; Swain, S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. NPJ Breast Cancer 2021, 7, 56. [Google Scholar] [CrossRef]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef]
- Gandhi, L.; Besse, B.; Mazieres, J.; Waqar, S.; Cortot, A.; Barlesi, F.; Quoix, E.; Otterson, G.; Ettinger, D.; Horn, L.; et al. MA04.02 Neratinib ± Temsirolimus in HER2-Mutant Lung Cancers: An International, Randomized Phase II Study. J. Thorac. Oncol. 2017, 12, S358–S359. [Google Scholar] [CrossRef]
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With >/= 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef]
- Song, Z.; Li, Y.; Chen, S.; Ying, S.; Xu, S.; Huang, J.; Wu, D.; Lv, D.; Bei, T.; Liu, S.; et al. Efficacy and safety of pyrotinib in advanced lung adenocarcinoma with HER2 mutations: A multicenter, single-arm, phase II trial. BMC Med. 2022, 20, 42. [Google Scholar] [CrossRef]
- Zhou, C.; Li, X.; Wang, Q.; Gao, G.; Zhang, Y.; Chen, J.; Shu, Y.; Hu, Y.; Fan, Y.; Fang, J.; et al. Pyrotinib in HER2-Mutant Advanced Lung Adenocarcinoma After Platinum-Based Chemotherapy: A Multicenter, Open-Label, Single-Arm, Phase II Study. J. Clin. Oncol. 2020, 38, 2753–2761. [Google Scholar] [CrossRef]
- Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 351–360. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, W.; Min, X.; Gu, K.; Yu, G.; Zhang, Z.; Cui, J.; Miao, L.; Zhang, L.; Yuan, X.; et al. Apatinib Plus Gefitinib as First-Line Treatment in Advanced EGFR-Mutant NSCLC: The Phase III ACTIVE Study (CTONG1706). J. Thorac. Oncol. 2021, 16, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xu, H.; Yang, Y.; Zhang, S.; Xu, F.; Hao, X.; Li, J.; Xing, P.; Hu, X.; Liu, Y.; et al. Pyrotinib combined with apatinib for targeting metastatic non-small cell lung cancer with HER2 alterations: A prospective, open-label, single-arm phase 2 study (PATHER2). BMC Med. 2022, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yu, J.; Wang, W.; Song, G.; Wang, X.; Ren, J.; Di, L.; Wang, X. A phase I dose-escalation study of a biosimilar trastuzumab in Chinese metastasis breast cancer patients. Springerplus 2015, 4, 803. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Huang, Y.; Yang, Y.; Zhang, Y.; Hong, S.; Zhao, H.; Zhao, S.; Zhou, T.; Chen, G.; et al. Phase 1b trial of anti-HER2 antibody inetetamab and pan-HER inhibitor pyrotinib in HER2-positive advanced lung cancer. MedComm (2020) 2024, 5, e536. [Google Scholar] [CrossRef]
- Brazel, D.; Park, C.J.; Nagasaka, M. The development of Zongertinib for HER2-mutant NSCLC. Crit. Rev. Oncol. Hematol. 2025, 215, 104896. [Google Scholar] [CrossRef]
- Robichaux, J.P.; Elamin, Y.Y.; Tan, Z.; Carter, B.W.; Zhang, S.; Liu, S.; Li, S.; Chen, T.; Poteete, A.; Estrada-Bernal, A.; et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat. Med. 2018, 24, 638–646. [Google Scholar] [CrossRef]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non-Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. 2022, 40, 710–718. [Google Scholar] [CrossRef]
- Cornelissen, R.; Prelaj, A.; Sun, S.; Baik, C.; Wollner, M.; Haura, E.B.; Mamdani, H.; Riess, J.W.; Cappuzzo, F.; Garassino, M.C.; et al. Poziotinib in Treatment-Naive NSCLC Harboring HER2 Exon 20 Mutations: ZENITH20-4, A Multicenter, Multicohort, Open-Label, Phase 2 Trial (Cohort 4). J. Thorac. Oncol. 2023, 18, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Lee, K.H.; Sohn, J.H.; Lee, K.S.; Jung, K.H.; Kim, J.H.; Lee, K.H.; Ahn, J.S.; Kim, T.Y.; Kim, G.M.; et al. A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER2-positive metastatic breast cancer who had received at least two prior HER2-directed regimens: Results of the NOV120101-203 trial. Int. J. Cancer 2018, 143, 3240–3247. [Google Scholar] [CrossRef] [PubMed]
- Siegel, F.; Siegel, S.; Graham, K.; Karsli-Uzunbas, G.; Korr, D.; Schroeder, J.; Boemer, U.; Hillig, R.C.; Mortier, J.; Niehues, M.; et al. BAY 2927088: The first non-covalent, potent, and selective tyrosine kinase inhibitor targeting EGFR exon 20 insertions and C797S resistance mutations in NSCLC. Eur. J. Cancer 2022, 174, S9–S10. [Google Scholar] [CrossRef]
- Girard, N.; Loong, H.H.F.; Goh, B.-C.; Jänne, P.A.; Dong, X.; Novello, S.; Lu, S.; Daniele, G.; Kim, H.R.; Yang, T.-Y.; et al. Phase I/II SOHO-01 study of BAY 2927088 in patients with previously treated HER2-mutant NSCLC: Safety and efficacy results from 2 expansion cohorts. J. Thorac. Oncol. 2025, 20, vii–viii. [Google Scholar] [CrossRef]
- Heymach, J.V.; Ruiter, G.; Ahn, M.J.; Girard, N.; Smit, E.F.; Planchard, D.; Wu, Y.L.; Cho, B.C.; Yamamoto, N.; Sabari, J.K.; et al. Zongertinib in Previously Treated HER2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2025, 392, 23. [Google Scholar] [CrossRef]
- Clamon, G.; Herndon, J.; Kern, J.; Govindan, R.; Garst, J.; Watson, D.; Green, M. Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: A phase II trial of Cancer and Leukemia Group B. Cancer 2005, 103, 1670–1675. [Google Scholar] [CrossRef]
- Gatzemeier, U.; Groth, G.; Butts, C.; Van Zandwijk, N.; Shepherd, F.; Ardizzoni, A.; Barton, C.; Ghahramani, P.; Hirsh, V. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol. 2004, 15, 19–27. [Google Scholar] [CrossRef]
- Langer, C.J.; Stephenson, P.; Thor, A.; Vangel, M.; Johnson, D.H.; Eastern Cooperative Oncology Group, S. Trastuzumab in the treatment of advanced non-small-cell lung cancer: Is there a role? Focus on Eastern Cooperative Oncology Group study 2598. J. Clin. Oncol. 2004, 22, 1180–1187. [Google Scholar] [CrossRef]
- Lara, P.N., Jr.; Laptalo, L.; Longmate, J.; Lau, D.H.; Gandour-Edwards, R.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R.; California Cancer, C. Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: A California Cancer Consortium screening and phase II trial. Clin. Lung Cancer 2004, 5, 231–236. [Google Scholar] [CrossRef]
- Swain, S.M.; Baselga, J.; Kim, S.B.; Ro, J.; Semiglazov, V.; Campone, M.; Ciruelos, E.; Ferrero, J.M.; Schneeweiss, A.; Heeson, S.; et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 2015, 372, 724–734. [Google Scholar] [CrossRef]
- Bachelot, T.; Ciruelos, E.; Schneeweiss, A.; Puglisi, F.; Peretz-Yablonski, T.; Bondarenko, I.; Paluch-Shimon, S.; Wardley, A.; Merot, J.L.; du Toit, Y.; et al. Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE). Ann. Oncol. 2019, 30, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.; Ciruelos, E.; Schneeweiss, A.; Puglisi, F.; Peretz-Yablonski, T.; Campone, M.; Bondarenko, I.; Nowecki, Z.; Errihani, H.; Paluch-Shimon, S.; et al. Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication. Ann. Oncol. 2021, 32, 1245–1255. [Google Scholar] [CrossRef]
- Baselga, J.; Cortes, J.; Kim, S.B.; Im, S.A.; Hegg, R.; Im, Y.H.; Roman, L.; Pedrini, J.L.; Pienkowski, T.; Knott, A.; et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 2012, 366, 109–119. [Google Scholar] [CrossRef]
- Mazieres, J.; Lafitte, C.; Ricordel, C.; Greillier, L.; Negre, E.; Zalcman, G.; Domblides, C.; Madelaine, J.; Bennouna, J.; Mascaux, C.; et al. Combination of Trastuzumab, Pertuzumab, and Docetaxel in Patients With Advanced Non-Small-Cell Lung Cancer Harboring HER2 Mutations: Results From the IFCT-1703 R2D2 Trial. J. Clin. Oncol. 2022, 40, 719–728. [Google Scholar] [CrossRef]
- Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; Carpeno, J.C.; Garrido, P.; et al. Trastuzumab Emtansine (T-DM1) in Patients with Previously Treated HER2-Overexpressing Metastatic Non-Small Cell Lung Cancer: Efficacy, Safety, and Biomarkers. Clin. Cancer Res. 2019, 25, 64–72. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef] [PubMed]
- Iwama, E.; Zenke, Y.; Sugawara, S.; Daga, H.; Morise, M.; Yanagitani, N.; Sakamoto, T.; Murakami, H.; Kishimoto, J.; Matsumoto, S.; et al. Trastuzumab emtansine for patients with non-small cell lung cancer positive for human epidermal growth factor receptor 2 exon-20 insertion mutations. Eur. J. Cancer 2022, 162, 99–106. [Google Scholar] [CrossRef]
- Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Dieras, V.; Guardino, E.; et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazieres, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Goto, K.; Goto, Y.; Kubo, T.; Ninomiya, K.; Kim, S.W.; Planchard, D.; Ahn, M.J.; Smit, E.F.; de Langen, A.J.; Perol, M.; et al. Trastuzumab Deruxtecan in Patients with HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results from the Randomized, Phase II DESTINY-Lung02 Trial. J. Clin. Oncol. 2023, 41, 4852–4863. [Google Scholar] [CrossRef]
- Smit, E.F.; Felip, E.; Uprety, D.; Nagasaka, M.; Nakagawa, K.; Paz-Ares Rodriguez, L.; Pacheco, J.M.; Li, B.T.; Planchard, D.; Baik, C.; et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): Primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 2024, 25, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Kim, S.B.; Chung, W.P.; Im, S.A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.M.; Petry, V.; Chung, C.F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Hurvitz, S.A.; Im, S.A.; Iwata, H.; Curigliano, G.; Kim, S.B.; Chiu, J.W.Y.; Pedrini, J.L.; Li, W.; Yonemori, K.; et al. Trastuzumab deruxtecan versus trastuzumab emtansine in HER2-positive metastatic breast cancer: Long-term survival analysis of the DESTINY-Breast03 trial. Nat. Med. 2024, 30, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Kim, K.A.; Lee, C.Y.; Shim, H.S. The frequency and clinical impact of HER2 alterations in lung adenocarcinoma. PLoS ONE 2017, 12, e0171280. [Google Scholar] [CrossRef]
- de Langen, A.J.; Jebbink, M.; Hashemi, S.M.S.; Kuiper, J.L.; de Bruin-Visser, J.; Monkhorst, K.; Thunnissen, E.; Smit, E.F. Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. Br. J. Cancer. 2018, 119, 558–564. [Google Scholar] [CrossRef]
- Planchard, D.; Brahmer, J.R.; Yang, J.C.H.; Kim, H.R.; Li, R.K.; Han, J.Y.; Cortinovis, D.L.; Runglodvatana, Y.; Nakajima, E.; Ragone, A.; et al. 1507TiP Phase Ib multicenter study of trastuzumab deruxtecan (T-DXd) and immunotherapy with or without chemotherapy in first-line treatment of patients (pts) with advanced or metastatic nonsquamous non-small cell lung cancer (NSCLC) and HER2 overexpression (OE): DESTINY-Lung03. Ann. Oncol. 2023, 34, S848–S849. [Google Scholar] [CrossRef]
- Italiano, A.; Besse, B.; Borghaei, H.; Popat, S.; Palacios, G.A.; Goncalves, A.; Meurer, M.; Mazieres, J.; Chouaid, C.; García, J.S.; et al. 118MO Trastuzumab deruxtecan (T-DXd) and pembrolizumab in immuno-oncology (IO)-naive HER2-expressing or HER2-mutant non-small cell lung cancer (NSCLC): Interim analysis of a phase Ib study. Immuno-Oncol. Technol. 2024, 24, 100747. [Google Scholar] [CrossRef]
- Bob, T.L.; Ahn, M.-J.; Goto, K.; Mazieres, J.; Padda, S.K.; William, N.W.; Wu, Y.-L.; Dearden, S.; Ragone, A.; Viglianti, N.; et al. Open-label, randomized, multicenter, phase 3 study evaluating trastuzumab deruxtecan (T-DXd) as first-line treatment in patients with unresectable, locally advanced, or metastatic non–small cell lung cancer (NSCLC) harboring HER2 exon 19 or 20 mutations (DESTINY-Lung04). J. Clin. Oncol. 2022, 40, TPS9137. [Google Scholar] [CrossRef]
- Abuhelwa, Z.; Alloghbi, A.; Alqahtani, A.; Nagasaka, M. Trastuzumab Deruxtecan-Induced Interstitial Lung Disease/Pneumonitis in ERBB2-Positive Advanced Solid Malignancies: A Systematic Review. Drugs 2022, 82, 979–987. [Google Scholar] [CrossRef]
- Swain, S.M.; Nishino, M.; Lancaster, L.H.; Li, B.T.; Nicholson, A.G.; Bartholmai, B.J.; Naidoo, J.; Schumacher-Wulf, E.; Shitara, K.; Tsurutani, J.; et al. Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis-Focus on proactive monitoring, diagnosis, and management. Cancer Treat. Rev. 2022, 106, 102378. [Google Scholar] [CrossRef]
- Saura, C.; Modi, S.; Krop, I.; Park, Y.H.; Kim, S.B.; Tamura, K.; Iwata, H.; Tsurutani, J.; Sohn, J.; Mathias, E.; et al. Trastuzumab deruxtecan in previously treated patients with HER2-positive metastatic breast cancer: Updated survival results from a phase II trial (DESTINY-Breast01). Ann. Oncol. 2024, 35, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Kubo, K.; Azuma, A.; Kanazawa, M.; Kameda, H.; Kusumoto, M.; Genma, A.; Saijo, Y.; Sakai, F.; Sugiyama, Y.; Tatsumi, K.; et al. Consensus statement for the diagnosis and treatment of drug-induced lung injuries. Respir. Investig. 2013, 51, 260–277. [Google Scholar] [CrossRef]
- Cheema, P.; Hartl, S.; Koczywas, M.; Hochmair, M.; Shepherd, F.A.; Chu, Q.; Galletti, G.; Gustavson, M.; Iyer, S.; Carl Barrett, J.; et al. 695 Efficacy and safety of trastuzumab deruxtecan (T-DXd) with durvalumab in patients with non-small cell lung cancer (HER2 altered NSCLC) who progressed on anti-PD1/PD-L1 therapy (HUDSON). In Proceedings of the Regular and Young Investigator Award Abstracts, Boston, MA, USA, 23 April–26 June 2025; p. A787. [Google Scholar]
- Nakayama, I.; Berz, D.; Yazgili, S.A.; Erzen, D.; Shitara, K. Beamion BCGC-1: A phase Ib/II trial of the HER2-selective tyrosine kinase inhibitor (TKI) zongertinib (BI 1810631) + trastuzumab deruxtecan (T-DXd) or trastuzumab emtansine (T-DM1) for patients with metastatic breast cancer (mBC) and metastatic gastric, gastroesophageal junction, or esophageal adenocarcinoma (mGEAC). J. Clin. Oncol. 2025, 43, TPS509. [Google Scholar] [CrossRef]
- Goebeler, M.E.; Stuhler, G.; Bargou, R. Bispecific and multispecific antibodies in oncology: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2024, 21, 539–560. [Google Scholar] [CrossRef]
- Vogel, A.; Ducreux, M. ESMO Clinical Practice Guideline interim update on the management of biliary tract cancer. ESMO Open 2025, 10, 104003. [Google Scholar] [CrossRef]
- Weisser, N.E.; Sanches, M.; Escobar-Cabrera, E.; O’Toole, J.; Whalen, E.; Chan, P.W.Y.; Wickman, G.; Abraham, L.; Choi, K.; Harbourne, B.; et al. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat. Commun. 2023, 14, 1394. [Google Scholar] [CrossRef] [PubMed]
- Schram, A.M.; Odintsov, I.; Espinosa-Cotton, M.; Khodos, I.; Sisso, W.J.; Mattar, M.S.; Lui, A.J.W.; Vojnic, M.; Shameem, S.H.; Chauhan, T.; et al. Zenocutuzumab, a HER2xHER3 Bispecific Antibody, Is Effective Therapy for Tumors Driven by NRG1 Gene Rearrangements. Cancer Discov. 2022, 12, 1233–1247. [Google Scholar] [CrossRef]
- Ishiyama, N.; O’Connor, M.; Salomatov, A.; Romashko, D.; Thakur, S.; Mentes, A.; Hopkins, J.F.; Frampton, G.M.; Albacker, L.A.; Kohlmann, A.; et al. Computational and Functional Analyses of HER2 Mutations Reveal Allosteric Activation Mechanisms and Altered Pharmacologic Effects. Cancer Res. 2023, 83, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Cui, W.; Li, L.; Wei, X.; Chu, C.; Zhang, G.; Liu, C.; Xu, H.; Liu, C.; Wang, K.; et al. BDTX-189, a novel tyrosine kinase inhibitor, inhibits cell activity via ERK and AKT pathways in the EGFR C797S triple mutant cells. Chem. Biol. Interact. 2024, 395, 111033. [Google Scholar] [CrossRef] [PubMed]
Drug | Study | Phase | No. of Patients with ERBB2 Mutation | ORR (%) | DCR (%) | mPFS (Months) | mOS (Months) | Grade 3/4 TRAE (%) |
---|---|---|---|---|---|---|---|---|
Afatinib (40 mg daily) | Fan et al. [41] | II | 18 (EGFR/HER2 inhibitor naïve) | 0 | 61.1 | 2.76 | 10.02 | 27.8 |
Dziadziuszko et al. [42] | II | 13 (previously treated) | 7.7 | 53.8 | 3.7 | 12.9 | NA | |
Afatinib (50 mg daily) | De Grève et al. [43] | II | 7 (independent of prior treatments) | 0 | 71 | 3.9 | NA | NA |
Dacomitinib (30–45 mg daily) | Kris et al. [44] | II | 26 (any prior systemic therapy) | 12.0 | NA | 3.0 | 9.0 | 53.3 |
Agents | Study | Phase | Patient Population | N | ORR (%) | PFS (Months) | OS (Months) |
---|---|---|---|---|---|---|---|
Trastuzumab (first week: 4 mg/kg, 2 mg/kg weekly) | CALGB 39,810 [67] | II | HER2-positive (previously treated) | 24 | 5.0 | 2.6 | 5.3 |
Cisplatin (75 mg/m2 day 1)/gemcitabine (1250 mg/m2 day 1, 8, q3w) | Gatzemeier et al. [68] | II | HER2-positive (first line) | 50 | 41 | 7.0 | NR |
cisplatin (75 mg/m2 day 1)/gemcitabine (1250 mg/m2 day 1, 8) + Trastuzumab (first week: 4 mg/kg, 2 mg/kg weekly) q3w | 51 | 36 | 6.1 | 12.2 | |||
Carboplatin (AUC 6, q3w)/paclitaxel (225 mg/m2 q3w) + Trastuzumab (first week: 4 mg/kg, 2 mg/kg weekly) | ECOG 2598 [69] | II | HER2-positive (first line) | 53 | 24.5 | 3.25 | 10.1 |
Docetaxel (30 mg/m2 weekly for 6 weeks q8w) + Trastuzumab (first week: 4 mg/kg, 2 mg/kg weekly) | Lara et al. [70] | II | HER2-positive (second line) | 13 | 8 | 4.3 | 5.7 |
Pertuzumab (1st cycle: 840 mg q3w, 420 mg q3w)/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/Docetaxel (75 mg/m2 q3w) | IFCT-1703 R2D2 [75] | II | HER2 mutation (previously treated) | 45 | 29 | 6.8 | 17.6 |
Agents | Study | Phase | Patient Population | N | ORR (%) | PFS (Months) | OS (Months) |
---|---|---|---|---|---|---|---|
Pertuzumab (1st cycle: 840 mg q3w, 420 mg q3w)/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/Docetaxel (75 mg/m2 q3w) | CLEOPATRA [71,74] | III | HER2-positive MBC (first-line therapy) | 402 | 80.2 | 18.5 | 56.5 |
Placebo/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/Docetaxel (75 mg/m2 q3w) | 406 | 69.3 | 12.4 | 40.8 | |||
Pertuzumab (1st cycle: 840 mg q3w, 420 mg q3w)/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/Docetaxel (the dose: investigator’s discretion, q3w) | PERUSE [72,73] | III | HER2-positive MBC (first-line therapy) | 775 | 79 | 19.4 | 66.5 |
Pertuzumab (1st cycle: 840 mg q3w, 420 mg q3w)/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/Paclitaxel (dose at the investigator’s discretion, q3w) | 588 | 83 | 23.2 | 64.0 | |||
Pertuzumab (1st cycle: 840 mg q3w, 420 mg q3w)/Trastuzumab (1st cycle 8 mg/kg q3w, 6 mg/kg q3w)/nab-Paclitaxel (dose at the investigator’s discretion, q3w) | 65 | 77 | 19.2 | 70.9 |
Agents | Study | Phase | Patient Population | N | ORR (%) | mPFS (Months) | mOS (Months) | Grade 3/4 TRAE (%) | Key TRAE Grade 1-2/3-5 (%) (ILD/Pneumonitis) |
---|---|---|---|---|---|---|---|---|---|
T-DM1 (3.6 mg/kg q3w) | Peters et al. [76] | II | HER2 overexpression (previously treated) | 49 | 20 | 2.6 | 12.2 | 22.4 | 0 |
Iwama et al. [78] | II | HER2 mutations (previously treated) | 22 | 38.1 | 2.8 | 8.1 | 22.7 | 0 | |
Li et al. [77] | II | HER2 mutations (treatment naïve and previously treated) | 18 | 44 | 5.0 | NA | 6 | 0 | |
T-DXd (6.4 mg/kg q3w) | DESTINY-Lung01 [80] | II | HER2 mutations (previously treated) | 91 | 55 | 8.2 | 17.8 | 49% | 15.4/5.5 (one patient with Grade 5) |
T-DXd (5.4 mg/kg q3w) | DESTINY-Lung02 [81] | II | HER2 mutations (previously treated) | 102 | 50 | 9.9 | 19.5 | 38.6 | 26/2 (one patient with Grade 5) |
T-DXd (6.4 mg/kg q3w) | 50 | 28 | 15.4 | NE | 58.0 | 10.9/2 (one patient with Grade 5) | |||
T-DXd (6.4 mg/kg q3w) | DESTINY-Lung01 [82] | II | HER2 overexpression (previously treated) | 49 | 26.5 | 5.7 | 12.4 | 53 | 10/6 (one patient with Grade 5) |
T-DXd (5.4 mg/kg q3w) | 41 | 34.1 | 6.7 | 11.2 | 22 | 5/0 |
Agents | Study | Phase | Patient Population | N | ORR (%) | PFS (Months) | OS (Months) | Grade 3/4 TRAE (%) | Key TRAE Grade 1-2/3-5 (%) (ILD/Pneumonitis) |
---|---|---|---|---|---|---|---|---|---|
T-DM1 (3.6 mg/kg q3w) | EMILIA [79] | III | HER2 positive MBC | 495 | 43.6 | 9.4 | 30.9 | 40.8 | 0/0 |
Lapatinib (1250 mg daily/capecitabine (1000 mg/m2 twice daily 1–14 d/21 d) | 496 | 30.8 | 5.8 | 25.1 | 57.0 | 0/0 | |||
T-DXd (5.4 mg/kg q3w) | DESTINY-Breast03 [83,84] | III | HER2 positive MBC | 261 | 79.9 | 29.0 | 52.6 | 58.0 | 9.7/0.8 |
T-DM1 (3.6 mg/kg q3w) | 264 | 36.9 | 7.2 | 42.7 | 52.1 | 1.9/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekyalongo, R.; Yamaoka, T.; Tsurutani, J. Recent Advances in the Development and Clinical Use of HER2 Inhibitors in Non-Small Cell Lung Cancer. Biomolecules 2025, 15, 1443. https://doi.org/10.3390/biom15101443
Ekyalongo R, Yamaoka T, Tsurutani J. Recent Advances in the Development and Clinical Use of HER2 Inhibitors in Non-Small Cell Lung Cancer. Biomolecules. 2025; 15(10):1443. https://doi.org/10.3390/biom15101443
Chicago/Turabian StyleEkyalongo, Richy, Toshimitsu Yamaoka, and Junji Tsurutani. 2025. "Recent Advances in the Development and Clinical Use of HER2 Inhibitors in Non-Small Cell Lung Cancer" Biomolecules 15, no. 10: 1443. https://doi.org/10.3390/biom15101443
APA StyleEkyalongo, R., Yamaoka, T., & Tsurutani, J. (2025). Recent Advances in the Development and Clinical Use of HER2 Inhibitors in Non-Small Cell Lung Cancer. Biomolecules, 15(10), 1443. https://doi.org/10.3390/biom15101443