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Abstract: This study aimed to determine the effect of age on CVLM C1 neuron glucoregulatory
proteins in the feeding pathway. Male Sprague Dawley rats aged 3 months and 24 months old were
divided into two subgroups: the treatment group with 2-deoxy-D-glucose (2DG) and the control
group. Rat brains were dissected to obtain the CVLM region of the brainstem. Western blot was
used to determine protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40
(pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK), and
neuropeptide Y Y5 receptors (NPY5R) in CVLM samples. Immunofluorescence was used to
determine TH-, AMPK-, and NPY5R-like immunoreactivities among other brain coronal sections.
Results obtained denote a decrease in basal TH phosphorylation levels and AMPK proteins and an
increase in TH proteins among aged CVLM neurons. Increases in the basal immunoreactivity of
TH+, AMPK+, NPY5R+, TH+/AMPK+, and TH+/NPY5R+ were also observed among old rats. Young
treatment-group rats saw a decrease in TH phosphorylation and AMPK proteins following 2DG
administration, while an increase in AMPK phosphorylation and a decrease in TH proteins were
found among the old-treatment-group rats. These findings suggest the participation of CVLM Cl1
neurons in counter-regulatory responses among young and old rats. Altering protein changes in
aged CVLM C1 neurons may attenuate responses to glucoprivation, thus explaining the decline in
food intake among the elderly.

Keywords: anorexia of aging; caudal ventrolateral medulla; catecholaminergic neurons;
glucoprivation; feeding response

1. Introduction

Anorexia of aging refers to a decline in food intake and appetite attributed to
advancing age. The phenomenon was first introduced by John Morley and Andrew ]J.
Silver in 1988 [1]. The age-induced decrease in metabolic activity and alteration of
appetite-regulatory hormones may be associated with anorexia of aging [2]. Low food
intake in the elderly is also triggered by depression, asociality, and diseases [3,4].
Anorexia of aging could lead to undernutrition, frailty, sarcopenia, or even death [5,6].

Feeding behavior is regulated by interactions between different brain neurons and
accompanying hormone signaling. The presence of ghrelin, cholecystokinin, and leptin in
the feeding pathway has been well established. Catecholamines are also crucial mediators
of the feeding pathway, given their role in promoting food intake and activating
glucoregulatory responses [7,8]. At the cellular level, catecholamines and messengers
such as AMP-activated protein kinase (AMPK), neuropeptide Y (NPY), and pre-
opiomelanocortin are identified and often expressed in hypothalamic and brainstem
neurons [9-11]. These regulatory hormones and proteins appear in the gut-brain axis,
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participating in and interacting with the regulation of energy homeostasis and food intake
[7,12].

Caudal ventrolateral medulla (CVLM) C1 neurons are among the catecholaminergic
neurons, which have been acknowledged as important in the production of glucose
counter-regulatory responses. Previous studies utilized the glucose analogs 2-deoxy-D-
glucose (2DG), 5-thio-D-glucose (5TG,) and insulin to stimulate hunger, create
hypoglycemia, or induce glucoprivation to study glucoregulatory mechanisms [13,14].
2DG increased activation of CVLM C1 neurons [13]. It also stimulated the expression of
dopamine-beta hydroxylase (DBH) and NPY and increased the phosphorylation of
tyrosine hydroxylase (TH) and AMPK [11,15].

According to John E. Morley, age-related changes in physiological activity are
responsible for the anorexia of aging [2]. Many past studies established the involvement
of CVLM (1 neurons in glucose regulation. However, evidence relevant to the effect of
age on this mechanism remains limited. Therefore, by stimulating 2DG-induced
glucoprivation, this study aimed to determine the effect of age on the function of CVLM
C1 neurons in mediating the feeding response.

2. Material and Methods
2.1. Materials

Brain-tissue samples were collected using 2-deoxy-D-glucose, ethylene glycol tetra-
acetic acid (EGTA), and reduced glutathione. Western blot and immunofluorescence
analyses involved primary antibodies; primary monoclonal rat anti-tyrosine hydroxylase
(T1299, Sigma-Aldrich, St. Louis, MI, USA), monoclonal rabbit anti-NPY5R (AB133757,
Abcam, Cambridge, UK)), polyclonal rabbit AMPKa1/2 (H-300) (sc-25792, Santa Cruz,
CA, USA), polyclonal rabbit anti-phospho AMPKa (THR172, Millipore, Burlington, MA,
USA), monoclonal mouse anti-3-actin (A5441, Sigma-Aldrich, St. Louis, MI, USA), and
polyclonal rabbit anti-tyrosine hydroxylase phosphoSer40 (AB5935, Millipore,
Burlington, MA, USA). Primary antibodies in Western blot analysis were detected using
polyclonal goat anti-mouse IgG HRP (HAF007, R&D Systems, Minneapolis, MN, USA)
and polyclonal goat anti-rabbit IgG (H + L) HRP (65-6120, Invitrogen(Massachusetts,
USA)), whereas Alexa Fluor 488 conjugated with goat anti-rabbit IgG (H + L) secondary
antibody (A11008, Thermo Fisher Scientific, Waltham, MA, USA) and CY3 conjugated
with goat anti-mouse IgG (H + L) secondary antibody (A10521, Thermo Fisher Scientific,
Waltham, MA, USA)were used in immunofluorescence.

2.2. Animals

Male Sprague Dawley rats aged 3 months and 24 months were used in this study.
Animals were purchased from the Laboratory Animal Resources Unit (LARU), National
University of Malaysia. All rats were housed in an animal cabin at suitable room
temperature (2025 °C) with ad libitum access to food pellets and water. The animal
studies received ethical approval from the Universiti Kebangsaan Malaysia Animal
Ethical Committee (UKMAEC) (approval number: FP/BLOK/2013/HANAFI/20-
MARCH/499-MARCH-2012-FEB-2015).

2.3. Animal Treatment, Sample Collection, and Preparation

Saline (0.9% sodium chloride) and 2DG (400 mg/kg) were administered
intraperitoneally (0.4 mL) to conscious animals (1 = 6) before removal of food and water.
At 30 min post-treatment, animals were anesthetized with anesthetics (i.e., combination
of ketamine, xylazine, and zoletil-50; 0.4 mL/kg). Animals were decapitated upon non-
response to painful stimuli. Whole brains were further sectioned using a coronal-plane
brain matrix to obtain samples for Western blot (12 = 6 per group). The caudal ventrolateral
medulla (Bregma -13.0 to -14.0 mm) was identified based on a rat brain atlas [16] and
stored at -80 °C wuntil analysis. Animals transcardially perfused with 4%
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paraformaldehyde in 0.1 M phosphate-buffered saline (PBS, pH 7.4) had their whole
brains rapidly removed and preserved overnight in the same fixative (n = 3 per group).
The brains were then washed with PBS and cryoprotected using 30% sucrose in PBS at 4
°C until further analysis.

3. Immunofluorescence

Brainstems were mounted with Tissue-Tek OCT compound (Thermo Fisher
Scientific, Waltham, MA, USA) in a cryostat (Thermo Fisher Scientific, Waltham, MA,
USA) and sectioned on a coronal plane, producing 40 uM brainstem slices. All slices were
stored free-floating in TPBS and then were washed three times for 10 min each time. They
were then treated via the heat-induced antigen-retrieval method using saline-sodium
citrate (SSC) buffer at 80 °C and shaken for 30 min. Next, blocking of tissue sections was
performed with 10% normal horse serum (NHS) in TPBS for 1 h at room temperature.
Tissue sections and primary antibodies (i.e., primary monoclonal rat anti-tyrosine
hydroxylase (1:3000), monoclonal rabbit anti-NPY5R (1:1000), and polyclonal rabbit
AMPKa1/2 (H-300) (1:1000) were then incubated overnight at 4 °C. Following washing
(three times for 10 min each time) in TPBS, the sections were incubated in the dark with
secondary antibodies (i.e., Alexa Fluor 488 conjugated with goat anti-rabbit IgG (H + L)
secondary antibodies (1:1500) and CY3 conjugated with goat anti-mouse IgG (H + L)
secondary antibodies (1:1000) containing 4% NHS in TPBS for 2 h at room temperature.
The sections were washed again three times for 10 min each time. Upon final wash, the
sections were mounted using DPX mounting medium and viewed under a fluorescence
microscope (Olympus, Tokyo, Japan) using cellSens Standard software, version 1.14 [17].
The brain immunofluorescence sections were analysed according to Damanhuri et al. [13].

4. Western Blot Analysis

Homogenization of CVLM samples and protein determination were performed as in
our previous study [18]. Next, polyacrylamide gel was loaded with 12 pg to 20 ug of
protein per sample. A protein-blotting technique using a wet transfer system was then
executed. TBST buffer (Tris, NaCl, and 0.1% Tween-20) was used to wash (three times for
10 min each time at moderate speed) the protein-containing membrane before it was
incubated overnight at 4 °C with primary antibodies (i.e., primary monoclonal rat anti-
tyrosine hydroxylase (1:600), monoclonal rabbit anti-NPY5R (1:40,000), polyclonal rabbit
AMPKal/2 (H-300) (1:1000), polyclonal rabbit anti-phospho AMPKa THR172 (1:80),
monoclonal mouse anti-3-actin (1:2000), and polyclonal rabbit anti-tyrosine hydroxylase
phosphoSer40 (1:800). Incubation of secondary antibodies (i.e., polyclonal goat anti-
mouse IgG HRP (1:2000) and polyclonal goat anti-rabbit IgG (H + L) HRP (1:1000) was
performed at room temperature for 2 h the following day. After the washing step,
enhanced chemiluminescence (ECL) was added to the surface of the membrane to detect
proteins. The membrane was viewed under a gel-documentation system. Representative
blots are as shown in Figure S1, Supplementary Materials. Protein-band intensity was
quantified using ImageQuant software.

5. Statistical Analysis

Statistical analyses were conducted via GraphPad Prism, version 7. All data were
expressed as means + SEMs. One-way analysis of variance (ANOVA) and Tukey’s post
hoc test were employed to evaluate differences between experimental groups. Statistical
significance was set at p <0.05.

6. Results
6.1. Effect of Aging on TH, AMPK, and NPY5R Immunoreactivities in the CVLM

Localization of TH, AMPK, and NPY5R in the CVLM and relevant age-related
changes can be observed in Figure 1. In the CVLM, TH-, AMPK-, and NPY5R-containing
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neurons increased as age increased (p < 0.001) (Figure 2A). The expression of AMPK and
NPY5R within TH-containing neurons was significantly higher in the old control group
compared with the young control group (p < 0.001) (Figure 2B).

A

TH AMPK+TH

B

Young
groups

Old
groups

TH NPYSR+TH

C

Young
groups

Old
groups

Figure 1. Distribution of TH-containing neurons and colocalization with AMPK or NPY5R in CVLM
in different age groups. The highlighted area in the box indicates the CVLM region (A). TH co-
localized with AMPK (B) and NPY5R (C) in CVLM neurons. The scale bars are 200 and 100 pm.
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Figure 2. Effects of age on the distribution of TH, AMPK, and NPY5R in CVLM neurons. The
numbers of neurons containing TH, AMPK, and NPY5R in CVLM were compared between age
groups (A). Further analysis was conducted to show the colocalization of TH+/AMPK+ and
TH+/NPY5R+ in the same brain region (B). Each bar and associated error bar represent the mean
value of neuronal number +SEM from one experiment (n = 3 per group). *** (p < 0.001) represents a
significant difference between control groups of young rats and old rats, respectively.

6.2. Effect of Aging and Glucoprivation on pSer40 TH, Total TH (tTH), Phosphorylated AMPK,
Total AMPK (tAMPK), and NPY5R in the CVLM.

Figure 3 depicts the effect of glucoprivation on pSer40 TH, total TH (tTH),
phosphorylated AMPK, total AMPK (tAMPK), and NPY5R in the CVLM across age
groups. No significant changes in the level of phosphorylated AMPK and NPY5R were
observed among the old control group compared with the younger control group (Figure
3A,E). Both tAMPK and pSer40 TH were lower in the old control group than in the young
control group (p < 0.01) (Figure 3B,C). However, higher levels of the tTH protein were
found in older rats relative to younger rats (p < 0.05) (Figure 3D).



Biomolecules 2022, 12, 449 6 of 11

A Phospho AMPR/TAMEPK B TANIFK/p-actin
Control 2DG  Control DG Control 2DG  Control DG
Young Old Young Old

Phospho AVPK [ S S G ek BeeReegeesssERes Gw
AVPK [ R SRS G101 facin | ————12kDa

44 1.59 *

|—|
2 |
43
i — 107
2 e
=24 ++
<
z
g 0.5
£1-
0 T T 0.0 T T
Control 2DG  Control 2DG Control 2DG  Control DG
Young (0)11) Young Old
C pSerd0 TIV ¢TH D tTH/B-actin
Control  2DG Control 2DG Control  2DG Control DG
Young Ooud Young oud
pSerd0 TH - o . . i, 60KD CTH —— e —— e — e e GOLD
CTLL —— e —— s G0KDa  [-actin ————— e —— — 1]}
39 1.09 ]
* +
.|
- - 2]
@
£27
2 0.6
£ == |
S ++
B 0.4
£ po—
3
= 0.2
0 T T 0.0 T T
Control  2DG  Control 2DG Control  2DG  Control 2DG
Young Old Young Old
E NPYS5R/B-actin

Control 2DG Control 2DG
Young ol

NPYSR ——————————————————— )
Briclil | ————————————————— {211

0.8

T L

0.6

0.4+

Intensity of Protein Bands

T T
Control  2DG  Control 2DG
Young 0)01]

Figure 3. Effects of age and glucoprivation condition on the level of phosphorylated AMPK (A),
total AMPK (tAMPK) (B), pSer40 TH (C), TH (D), and NPY5R (E). Each bar and associated error bar
represents mean value of the intensity band + SEM from one experiment (n = 6 per group).
Representative Western blots (A-D) depicting effects of age and 2DG or saline; each lane represents
a single animal. ++ (p <0.01) and + (p < 0.05) represent significant differences between control groups
of young and old rats, respectively, and ** (p <0.01) and * (p < 0.05) represent significant differences
between 2DG and control groups of the same-aged rats.
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In terms of phosphorylated AMPK, the young treatment group showed no changes,
but an increase was observed in the old treatment group in comparison with its respective
control group (p < 0.01) (Figure 3A). A decrease in tAMPK (p < 0.05) in response to
glucoprivation was observed in the younger group, while 2DG failed to stimulate changes
in tAMPK expression in the older group (Figure 3B). A significant decline in levels of
pSer40 TH was observed in the 2DG-treated younger group compared with its control
group (p < 0.05) (Figure 3C). Same-site TH phosphorylation remained unchanged in the
older 2DG group compared with its control group (Figure 3C). Glucoprivation did not
affect the expression of tTH protein in the young treatment group compared with the
young control group (Figure 3D). However, a decrease in tTH expression (p < 0.01) was
reported among 2DG-treated older rats (Figure 3D). No significant changes were reported
for NPY5R in response to glucoprivation in the young and old groups relative to their
controls (Figure 3E).

7. Discussion

This study revealed that the older group had higher levels of basal TH enzyme in the
CVLM than the younger group. The adrenal gland, also a site for epinephrine production,
showed similar increases in basal TH mRNA, protein, and activity [19-21]. Levels of
circulating epinephrine appeared to be consistent among the old and young subjects
despite the involvement of catecholamine synthesis [19,22,23]. Higher expression of TH
protein in the CVLM of older rats could be an attribute that enables TH enzymes to be
readily activated in order to meet higher catecholamine demands in times of stress. This
study focused on pSer40 TH, which is site-phosphorylated by PKA, to which it was found
that levels of pSer40 TH were lower among the older group than the younger group.
Moreover, TH enzyme deactivation in the substantia nigra (SN) was said to increase with
increasing levels of carbonyl content in the SN [24]. Interestingly, though PKA is not age-
dependent, its regulator, adenylyl cyclase, is supposedly affected by age [25]. Therefore,
attenuated cAMP/PKA signaling is probably responsible for the lower pSer40 TH level in
older rats.

This study also found that NPY-Y5-receptor-like immunoreactivity (NPY5R-LI) in
the CVLM increased with aging. A significant decrease in NPYIR, a separate NPY
receptor subtype, was found in the hypothalamus [26]. Contrarily, the ventrolateral
medulla (VLM) showed consistent NPY-like immunoreactivity (NPY-LI) in both young
and old rats [27,28]. Injection of NPY into the CVLM produced a significant drop in blood
pressure and heart rate [29]. As such, increasing NPY5R-LI in the CVLM may be counter-
regulatory to age-associated increases in blood pressure [30-32]. Findings from this study
revealed that the older group had less AMPK and a consistent AMPK-phosphorylation
rate relative to the younger group. Several studies reported similar findings [33-35],
though some showed increased AMPK phosphorylation and activity as age increased
[36,37]. The function of AMPK is to promote ATP-generating processes and inhibit ATP-
consuming processes [38]. Phosphorylation of acetyl-CoA carboxylase (ACC) decreases
with age [33,37]. Therefore, lower AMPK activity could contribute to age-related
dysregulation of fat metabolism [39,40]. Inhibition of AMPK signaling increases
neurogenesis in the hippocampus, suggesting that the upregulation of fatty-acid synthesis
is due to decreased AMPK signaling, which promotes cell proliferation [41]. This finding
also explains the reason for the high AMPK-like immunoreactivity (AMPK-LI) among the
older group.

An investigation on the effect of 2DG-induced glucoprivation on CVLM C1 neurons
among young and old groups was conducted. A significant decrease in pSer40 TH levels
post-2DG injection was found within the young group but not the older group. Other
studies, however, observed different trends among different phosphorylation sites (Ser19,
Ser31 TH) during glucoprivation [13,42], although 2DG is said to increase activation of
CVLM neurons [43]. A 2DG-induced increase in epinephrine could exert negative
feedback towards TH phosphorylation, controlling levels of catecholamine secretion, thus



Biomolecules 2022, 12, 449

8 of 11

resulting in the lower pSer40 TH found in the young treatment group. However, a similar
decrease was not observed in the old treatment group, suggesting an aging-related
absence of 2DG-induced TH activation. An increase in age also diminished the TH
response towards stressors, such as long-term exercise and reserpine administration
[20,44]. The TH protein was not altered by 2DG in the younger group, but a decline in TH
was observed among the older group. Damanhuri et al. also reported similar findings
based on a study administering 2DG to young rats [13]. Nonetheless, regulation of TH in
CVLM neurons under glucoprivation appeared to be age-specific, where phosphorylation
was more likely among the younger group, whereas TH in the older group was regulated
by protein expression. However, the mechanism explaining the age difference remains
unclear.

Insulin and 2DG are said to significantly increase the activation and activity of AMPK
in the hypothalamus, specifically in the PVN, ARC, and VMH [45,46]. However, this study
found no significant changes in the phosphorylation of AMPK within CVLM neurons in
the young treatment group. High levels of glucose in the bloodstream could trigger
glucagon to activate insulin secretion, promoting cell glucose uptake [47-50]. Thus,
reduced AMPK protein within CVLM neurons could be due to the inhibitory action of
insulin [51]. Unlike the younger group, the older group showed higher phosphorylation
of AMPK. However, similar levels of AMPK protein were observed in response to 2DG-
induced glucoprivation among both age groups. Furthermore, 2DG caused a decrease in
cellular ATP levels [52], resulting in higher AMPK activation. Glucose availability can be
increased through the role of AMPK, which promotes ATP-producing processes and
inhibits ATP-consuming processes [38]. Overall, these findings suggest that the older
group’s counter-regulatory responses were activated via AMPK signaling.

Administration of 2DG to both age groups revealed no significant changes towards
NPY5R expression in CVLM neurons, therefore highlighting the need for further studies
on the role of glucoprivation in the activation of NPY5R. From a previous study, the use
of NPY5R antagonists revealed the role of NPY5R in synaptic strength and epinephrine
secretion during food deprivation [53]. The NPY5R ligand, NPY, has been extensively
studied, enforcing its participation in the activation of counter-regulatory responses [53—
55]. In conclusion, protein modifications observed in the CVLM play a role in the feeding
pathway as aging takes place. Aging reduces TH activation in the CVLM, thus affecting
intended adrenergic signaling. There might be an association between increased NPY-like
immunoreactivity and reduced AMPK activity among the older group with age-induced
secondary changes (e.g., high blood pressure and dysregulated fat metabolism).
Administering 2DG resulted in significant increases in blood glucose among both age
groups, signifying the activation of counter-regulatory responses (CRR) towards
glucoprivation. The involvement of CVLM C1 neurons in CRR is further backed by
reduced pSer40 TH and AMPK proteins within the young group. Although aging
suppressed TH activation in CVLM C1 neurons in response to 2DG, the older group was
able to activate CRR by increasing AMPK signaling in CVLM C1 neurons. These findings
suggest the role of CVLM C1 neurons in the counter-regulatory responses of young and
old rats (see Figure 4). Altering protein changes in aging CVLM C1 neurons may attenuate
responses to glucoprivation, thus explaining the decline in food intake among the elderly.
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Figure 4. Summary of the glucose counterregulatory responses in CVLM neurons following
glucoprivation in young and aged rats [56].
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