Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications
Abstract
:1. Introduction
2. Raw Plant Material: Grapevine Cane
3. Extraction Methods
3.1. Solid–Liquid Extraction Methods
3.2. High-Pressure Methods
3.3. Microwave-Assisted Extraction Method
3.4. Subcritical Water Extraction Method
4. Grapevine Cane Extract Analysis
4.1. High-Pressure Liquid Chromatography (HPLC)
4.2. Liquid Chromatography–Mass Spectrometry (LC–MS)
4.3. Liquid Chromatography–Nuclear Magnetic Resonance (LC–NMR)
5. Applications
5.1. Preservative Activity
5.2. Antifungal Activity
5.3. Insecticidal Effects
5.4. Viticultural Biostimulants
5.5. Health-Related Applications
6. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- International Organisation of Vine and Wine OIV Data Base. Available online: http://www.oiv.int/en/statisticques/recherche (accessed on 8 June 2020).
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Petre, M.; Teodorescu, A. Recycling of vineyard and winery wastes as nutritive composts for edible mushroom cultivation. AIP Conf. Proc. 2010, 1315, 1539–1544. [Google Scholar]
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zacharof, M.-P.P. Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Ciuta, S.; Marculescu, C.; Dinca, C.; Badea, A. Primary characterization of wine making and oil refining industry wastes. UPB Sci. Bull. Ser. C Electr. Eng. 2011, 73, 307–320. [Google Scholar]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Pérez-Rodríguez, N.; Aguilar-Uscanga, M.G.; Domínguez, J.M. Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production. J. Chem. Technol. Biotechnol. 2015, 90, 1027–1039. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.M.; de Souza Oliveira, R.P.; Domínguez, J.M. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview. Waste Manag. 2015, 40, 72–81. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Göktürk Baydar, N. Chemical composition of grape canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- Zwingelstein, M.; Draye, M.; Besombes, J.-L.; Piot, C.; Chatel, G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg. Chem. 2019, 90, 103073. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009, 177, 143–155. [Google Scholar] [CrossRef]
- Kong, Q.; Ren, X.; Qi, J.; Yu, J.; Lu, J.; Wang, S. Carbon-carbon double bond and resorcinol in Resveratrol and its analogues: What is the characteristic structure in quenching singlet oxygen? Biomolecules 2019, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Piekuś-Słomka, N.; Mikstacka, R.; Ronowicz, J.; Sobiak, S. Hybrid cis-stilbene molecules: Novel anticancer agents. Int. J. Mol. Sci. 2019, 20, 1300. [Google Scholar] [CrossRef] [Green Version]
- Balasubramani, S.P.; Rahman, M.A.; Basha, S.M. Synergistic action of stilbenes in Muscadine grape berry extract shows better cytotoxic potential against cancer cells than Resveratrol alone. Biomedicines 2019, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Chen, Y.-Y.; Yeh, Y.-L.; Wang, Y.-J.; Chen, R.-J. Stilbene compounds inhibit tumor growth by the induction of cellular senescence and the inhibition of telomerase activity. Int. J. Mol. Sci. 2019, 20, 2716. [Google Scholar] [CrossRef] [Green Version]
- Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound Resveratrol in brain cancer: A review. Biomolecules 2020, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Szaefer, H.; Licznerska, B.; Cykowiak, M.; Baer-Dubowska, W. Expression of CYP2S1 and CYP2W1 in breast cancer epithelial cells and modulation of their expression by synthetic methoxy stilbenes. Pharmacol. Rep. 2019, 71, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Sáez, V.; Pastene, E.; Vergara, C.; Mardones, C.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Gómez, M.V.; Theoduloz, C.; Riquelme, S.; von Baer, D. Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chem. 2018, 265, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.; Hsieh, T.-C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J. Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. Int. J. Oncol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Wang, W.; Wang, C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol. Lett. 2018. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.-Y.; Molagoda, I.M.N.; Park, C.; Kwon, T.K.; Yun, S.-J.; Kim, W.J.; Kim, G.-Y.; Choi, Y.H. Piceatannol-induced apoptosis is reversed by N-Acetyl-L-cysteine through restoration of XIAP expression. Biol. Pharm. Bull. 2018, 41, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Bales, K.R. The value and limitations of transgenic mouse models used in drug discovery for Alzheimer’s disease: An update. Expert Opin. Drug Discov. 2012, 7, 281–297. [Google Scholar] [CrossRef]
- Richard, T.; Papastamoulis, Y.; Waffo-Teguo, P.; Monti, J.-P. 3D NMR structure of a complex between the amyloid beta peptide (1–40) and the polyphenol ε-viniferin glucoside: Implications in Alzheimer’s disease. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 5068–5074. [Google Scholar] [CrossRef]
- Vion, E.; Page, G.; Bourdeaud, E.; Paccalin, M.; Guillard, J.; Rioux Bilan, A. Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer’s disease. Mol. Cell. Neurosci. 2018, 88, 1–6. [Google Scholar] [CrossRef]
- Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef]
- Ferrieres, J. The French paradox: Lessons for other countries. Heart 2004, 90, 107–111. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.-L.; et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Valenzano, D.R.; Terzibasi, E.; Genade, T.; Cattaneo, A.; Domenici, L.; Cellerino, A. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 2006, 16, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.G.J.G.J.G.; Rogina, B.; Lavu, S.; Howitz, K.; Helfand, S.L.; Tatar, M.; Sinclair, D.; Regina, B.; Lavu, S.; Hewitz, K.; et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430, 686–689. [Google Scholar] [CrossRef]
- Guerrero, R.F.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Wine, Resveratrol and health: A Review. Nat. Prod. Commun. 2009, 4, 1934578X0900400. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.H.; Goupil, S.; Garber, G.B.; Helfand, S.L. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2004, 101, 12980–12985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rascón, B.; Hubbard, B.P.; Sinclair, D.A.; Amdam, G.V. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany. NY) 2012, 4, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444, 337–342. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition 2019, 58, 7–10. [Google Scholar] [CrossRef]
- Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; et al. Oxidative stress inhibition by Resveratrol in alcohol dependent mice. Nutrition 2020, 110783. [Google Scholar] [CrossRef]
- Harhaun, R.; Kunik, O.; Saribekova, D.; Lazzara, G. Biologically active properties of plant extracts in cosmetic emulsions. Microchem. J. 2020, 154, 104543. [Google Scholar] [CrossRef] [Green Version]
- Murgia, D.; Mauceri, R.; Campisi, G.; De Caro, V. Advance on resveratrol application in bone regeneration: Progress and perspectives for use in oral and maxillofacial surgery. Biomolecules 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, M.; Jeandet, P.; Douillet-Breuil, A.C.; Tesson, L.; Bessis, R. Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J. Agric. Food Chem. 2000, 48, 6103–6105. [Google Scholar] [CrossRef] [PubMed]
- Tomé-Carneiro, J.; Gonzálvez, M.; Larrosa, M.; Yáñez-Gascón, M.J.; García-Almagro, F.J.; Ruiz-Ros, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. One-year consumption of a grape nutraceutical containing Resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol. 2012, 110, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Wang, X.-N.; Lou, H.-X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009, 26, 916. [Google Scholar] [CrossRef]
- Lin, M.; Yao, C.-S. Natural oligostilbenes. In Studies in Natural Products Chemistry; Elsevier, Ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 601–644. [Google Scholar]
- Cichewicz, R.H.; Kouzi, S.A. Resveratrol oligomers: Structure, chemistry, and biological activity. In Studies in Natural Products Chemistry; Elsevier, Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 507–579. [Google Scholar]
- Institut des Sciences de la Vigne et du Vin. ISVV—Polyphenols Reference Database. Available online: https://mib-polyphenol.eu/ (accessed on 21 April 2020).
- Kiselev, K.V.; Grigorchuk, V.P.; Ogneva, Z.V.; Suprun, A.R.; Dubrovina, A.S. Stilbene biosynthesis in the needles of spruce Picea jezoensis. Phytochemistry 2016, 131, 57–67. [Google Scholar] [CrossRef]
- Pugajeva, I.; Perkons, I.; Górnaś, P. Identification and determination of stilbenes by Q-TOF in grape skins, seeds, juice and stems. J. Food Compos. Anal. 2018, 74, 44–52. [Google Scholar] [CrossRef]
- Keller, M. Botany and anatomy. In The Science of Grapevines; Elsevier, Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–57. [Google Scholar]
- Soejima, A.; Wen, J. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am. J. Bot. 2006, 93, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Pawlus, A.D.; Waffo-Téguo, P.; Shaver, J.; Mérillon, J.-M. Stilbenoid chemistry from wine and the genus Vitis, a review. OENO One 2012, 46, 57. [Google Scholar] [CrossRef]
- Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R. Assessment of alcoholic distillates for the extraction of bioactive polyphenols from grapevine canes. Ind. Crops Prod. 2018, 111, 99–106. [Google Scholar] [CrossRef]
- Chen, Q.; Diao, L.; Song, H.; Zhu, X. Vitis amurensis Rupr: A review of chemistry and pharmacology. Phytomedicine 2018, 49, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.T.; Kim, H.; Thuong, P.T.; Ngoc, T.M.; Lee, I.; Hung, N.D.; Bae, K.H. Antioxidant and lipoxygenase inhibitory activity of oligostilbenes from the leaf and stem of Vitis amurensis. J. Ethnopharmacol. 2009, 125, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Ha, D.T.; Chen, Q.C.; Hung, T.M.; Youn, U.J.; Ngoc, T.M.; Thuong, P.T.; Kim, H.J.; Seong, Y.H.; Min, B.S.; Bae, K. Stilbenes and oligostilbenes from leaf and stem of Vitis amurensis and their cytotoxic activity. Arch. Pharm. Res. 2009, 32, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.S.; Ha, T.-Y.Y.; Ahn, J.; Kim, H.-K.K.; Kim, S. Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem. Toxicol. 2009, 47, 404–409. [Google Scholar] [CrossRef]
- Meng, J.-F.; Fang, Y.-L.; Qin, M.-Y.; Zhuang, X.-F.; Zhang, Z.-W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef]
- Wen-Wu, L.; Li-Sheng, D.; Bo-Gang, L.; Yao-Zu, C. Oligostilbenes from Vitis heyneana. Phytochemistry 1996, 42, 1163–1165. [Google Scholar] [CrossRef]
- Zhang, A.; Fang, Y.; Li, X.; Meng, J.; Wang, H.; Li, H.; Zhang, Z.; Guo, Z. Occurrence and estimation of trans-Resveratrol in one-year-old canes from seven major chinese grape producing regions. Molecules 2011, 16, 2846–2861. [Google Scholar] [CrossRef]
- Pawlus, A.D.; Sahli, R.; Bisson, J.; Rivière, C.; Delaunay, J.-C.; Richard, T.; Gomès, E.; Bordenave, L.; Waffo-Téguo, P.; Mérillon, J.-M. Stilbenoid profiles of canes from Vitis and Muscadinia species. J. Agric. Food Chem. 2013, 61, 501–511. [Google Scholar] [CrossRef]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of stilbenoids in grapevine canes and grape cluster stems with a focus on long-term storage effects on stilbenoid concentration in grapevine canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef]
- Zga, N.; Papastamoulis, Y.; Toribio, A.; Richard, T.; Delaunay, J.C.; Jeandet, P.; Renault, J.H.; Monti, J.P.; Mérillon, J.M.; Waffo-Téguo, P. Preparative purification of antiamyloidogenic stilbenoids from Vitis vinifera (Chardonnay) stems by centrifugal partition chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1000–1004. [Google Scholar] [CrossRef]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zachová, Z.; Tříska, J.; Vrchotová, N.; Balík, J.; Sajfrtová, M.; Sovová, H. Combining high-pressure methods for extraction of stilbenes from grape cane. J. Supercrit. Fluids 2018, 142, 38–44. [Google Scholar] [CrossRef]
- Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chem. 2018, 240, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, Z.; Marrufo-Curtido, A.; Vela, C.; Palma, M. Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod. Process. 2017, 103, 18–26. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Biais, B.; Richard, T.; Puertas, B.; Waffo-Teguo, P.; Merillon, J.-M.; Cantos-Villar, E. Grapevine cane’s waste is a source of bioactive stilbenes. Ind. Crops Prod. 2016, 94, 884–892. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Chira, K.; Miramont, C.; Escudier, J.-L.; Samson, A.; Salmon, J.-M.; Ojeda, H.; Teissedre, P.-L. Disease resistant bouquet vine varieties: Assessment of the phenolic, aromatic, and sensory potential of their wines. Biomolecules 2019, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Flamini, R.; Zanzotto, A.; de Rosso, M.; Lucchetta, G.; Vedova, A.D.; Bavaresco, L. Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant Pathol. 2016, 93, 112–118. [Google Scholar] [CrossRef]
- Lucini, L.; Baccolo, G.; Rouphael, Y.; Colla, G.; Bavaresco, L.; Trevisan, M. Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry 2018, 156, 1–8. [Google Scholar] [CrossRef]
- Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.-M.; Cluzet, S. Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J. Agric. Food Chem. 2013, 61, 11392–11399. [Google Scholar] [CrossRef]
- Houillé, B.; Besseau, S.; Courdavault, V.; Oudin, A.; Glévarec, G.; Delanoue, G.; Guérin, L.; Simkin, A.J.; Papon, N.; Clastre, M.; et al. Biosynthetic origin of E -Resveratrol accumulation in grape canes during postharvest storage. J. Agric. Food Chem. 2015, 63, 1631–1638. [Google Scholar] [CrossRef]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; von Baer, D. Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Zaitsev, G.P.; Grishin, Y.V.; Mosolkova, V.E.; Ogay, Y.A. Grape cane as a source of trans-Resveratrol and trans-Viniferin in the technology of biologically active compounds and its possible applications. In Proceedings of the NATO Science for Peace and Security Series A: Chemistry and Biology; Springer: Dordrecht, The Netherlands, 2013; pp. 241–246. [Google Scholar]
- Vergara, C.; von Baer, D.; Mardones, C.; Wilkens, A.; Wernekinck, K.; Damm, A.; Macke, S.; Gorena, T.; Winterhalter, P. Stilbene levels in grape cane of different cultivars in Southern Chile: Determination by HPLC-DAD-MS/MS method. J. Agric. Food Chem. 2012, 60, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. Ind. Crops Prod. 2017, 109, 730–736. [Google Scholar] [CrossRef]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J. Changes in the grape cane stilbene content under various conditions of storage. ACS Sustain. Chem. Eng. 2019, 7, 19584–19590. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds. Food Chem. 2016, 204, 499–505. [Google Scholar] [CrossRef]
- Sáez, V.; Gayoso, C.; Riquelme, S.; Pérez, J.; Vergara, C.; Mardones, C.; von Baer, D. C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage. J. Chromatogr. B 2018, 1074–1075, 70–78. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high-performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef]
- European Parliament Commission Regulation (EC) No 535/2008 of 13 June 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 708/2007 Concerning use of Alien and Locally Absent Species in Aquaculture; European Parliament: Brussels, Belgium, 2008; pp. 1–17.
- Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.-M. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Ind. Crops Prod. 2018, 126, 272–279. [Google Scholar] [CrossRef]
- Richard, T.; Temsamani, H.; Cantos-Villar, E.; Monti, J.-P. Application of LC–MS and LC–NMR techniques for secondary metabolite identification. In Advances in Botanical Research; Elsevier, Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 67–98. [Google Scholar]
- Acevedo De la Cruz, A.; Hilbert, G.; Rivière, C.; Mengin, V.; Ollat, N.; Bordenave, L.; Decroocq, S.; Delaunay, J.-C.; Delrot, S.; Mérillon, J.-M.; et al. Anthocyanin identification and composition of wild Vitis spp. accessions by using LC–MS and LC–NMR. Anal. Chim. Acta 2012, 732, 145–152. [Google Scholar] [CrossRef]
- Pawlus, A.D.; Cantos-Villar, E.; Richard, T.; Bisson, J.; Poupard, P.; Papastamoulis, Y.; Monti, J.-P.; Teissedre, P.-L.; Waffo-Téguo, P.; Mérillon, J.-M. Chemical dereplication of wine stilbenoids using high performance liquid chromatography–nuclear magnetic resonance spectroscopy. J. Chromatogr. A 2013, 1289, 19–26. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Galati, A.; Schifani, G.; Crescimanno, M.; Migliore, G. “Natural wine” consumers and interest in label information: An analysis of willingness to pay in a new Italian wine market segment. J. Clean. Prod. 2019, 227, 405–413. [Google Scholar] [CrossRef]
- Ubeda, C.; Hornedo-Ortega, R.; Cerezo, A.B.; Garcia-Parrilla, M.C.; Troncoso, A.M. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem. 2020, 314, 126222. [Google Scholar] [CrossRef]
- Costanigro, M.; Appleby, C.; Menke, S.D. The wine headache: Consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Qual. Prefer. 2014, 31, 81–89. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2012, 234, 1–12. [Google Scholar] [CrossRef]
- Sonni, F.; Cejudo Bastante, M.J.; Chinnici, F.; Natali, N.; Riponi, C. Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: Influence on volatile composition of white wines. J. Sci. Food Agric. 2009, 89, 688–696. [Google Scholar] [CrossRef]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Raposo, R.; Chinnici, F.; Ruiz-Moreno, M.J.; Puertas, B.; Cuevas, F.J.; Carbú, M.; Guerrero, R.F.; Ortíz-Somovilla, V.; Moreno-Rojas, J.M.; Cantos-Villar, E. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality. Food Chem. 2018, 243, 453–460. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Raposo, R.; Puertas, B.; Cuevas, F.J.; Chinnici, F.; Moreno-Rojas, J.M.; Cantos-Villar, E. Effect of a grapevine-shoot waste extract on red wine aromatic properties. J. Sci. Food Agric. 2018, 98, 5606–5615. [Google Scholar] [CrossRef]
- Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Moreno-Rojas, J.M.; Gonzalo-Diago, A.; Guerrero, R.; Ortíz, V.; Cantos-Villar, E. Grapevine-shoot stilbene extract as a preservative in red wine. Food Chem. 2016, 197, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.; Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Gonzalo-Diago, A.; Moreno-Rojas, J.M.; Cantos-Villar, E. Grapevine-shoot stilbene extract as a preservative in white wine. Food Packag. Shelf Life 2018, 18, 164–172. [Google Scholar] [CrossRef]
- Medrano-Padial, C.; Puerto, M.; Moreno, F.J.; Richard, T.; Cantos-Villar, E.; Pichardo, S. In vitro toxicity assessment of stilbene extract for its potential use as antioxidant in the wine industry. Antioxidants 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]
- Gabaston, J.; Cantos-Villar, E.; Biais, B.; Waffo-Teguo, P.; Renouf, E.; Corio-Costet, M.-F.; Richard, T.; Mérillon, J.-M. Stilbenes from Vitis vinifera L. waste: A sustainable tool for controlling Plasmopara Viticola. J. Agric. Food Chem. 2017, 65, 2711–2718. [Google Scholar] [CrossRef] [PubMed]
- Gabaston, J.; Richard, T.; Biais, B.; Waffo-Teguo, P.; Pedrot, E.; Jourdes, M.; Corio-Costet, M.-F.; Mérillon, J.-M. Stilbenes from common spruce (Picea abies) bark as natural antifungal agent against downy mildew (Plasmopara viticola). Ind. Crops Prod. 2017, 103, 267–273. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Cluzet, S.; Palos Pinto, A.; Dufour, M.-C.; Corio-Costet, M.-F.; Mérillon, J.-M. Pinus pinaster knot: A source of polyphenols against Plasmopara viticola. J. Agric. Food Chem. 2017, 65, 8884–8891. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [Green Version]
- El Khawand, T.; Gabaston, J.; Taillis, D.; Iglesias, M.-L.; Pedrot, E.; Palos Pinto, A.; Valls Fonayet, J.; Merillon, J.M.; Decendit, A.; Cluzet, S.; et al. A dimeric stilbene extract produced by oxidative coupling of resveratrol active against Plasmopara viticola and Botrytis cinerea for vine treatments. OENO One 2020, 54, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Pool, R.M.; Creasy, L.L.; Frackelton, A.S. Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Vitis J. Grapevine Res. 1981, 20, 136–145. [Google Scholar]
- Dercks, W.; Creasy, L.L. The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol. Mol. Plant Pathol. 1989, 34, 189–202. [Google Scholar] [CrossRef]
- Pezet, R.; Perret, C.; Jean-Denis, J.B.; Tabacchi, R.; Gindro, K.; Viret, O. δ-Viniferin, a Resveratrol dehydrodimer: One of the major stilbenes synthesized by stressed grapevine leaves. J. Agric. Food Chem. 2003, 51, 5488–5492. [Google Scholar] [CrossRef] [PubMed]
- Pezet, R.; Pont, V. Identification of pterostilbene in grape berries of vitis vinifera. Plant Physiol. Biochem. 1988, 26, 603–608. [Google Scholar]
- Pezet, R.; Gindro, K.; Viret, O.; Richter, H. Effects of resveratrol, viniferins and pterostilbene on Plasmora viticola zoospore mobility and disease development. Vitis J. Grapevine Res. 2004, 43, 145–148. [Google Scholar]
- Schnee, S.; Viret, O.; Gindro, K. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol. Mol. Plant Pathol. 2008, 72, 128–133. [Google Scholar] [CrossRef]
- Lambert, C.; Bisson, J.; Waffo-Téguo, P.; Papastamoulis, Y.; Richard, T.; Corio-Costet, M.-F.; Mérillon, J.-M.; Cluzet, S. Phenolics and their antifungal role in grapevine wood decay: Focus on the Botryosphaeriaceae family. J. Agric. Food Chem. 2012, 60, 11859–11868. [Google Scholar] [CrossRef]
- Richard, T.; Abdelli-Belhad, A.; Vitrac, X.; Waffo-Téguo, P.; Mérillon, J.-M. Vitis vinifera canes, a source of stilbenoids against downy mildew. OENO One 2016, 50. [Google Scholar] [CrossRef] [Green Version]
- Billet, K.; Delanoue, G.; Arnault, I.; Besseau, S.; Oudin, A.; Courdavault, V.; Marchand, P.A.; Giglioli-Guivarc’h, N.; Guérin, L.; Lanoue, A. Vineyard evaluation of stilbenoid-rich grape cane extracts against downy mildew: A large-scale study. Pest Manag. Sci. 2019, 75, 1252–1257. [Google Scholar] [CrossRef]
- Gabaston, J.; Leborgne, C.; Waffo-Teguo, P.; Valls, J.; Palos Pinto, A.; Richard, T.; Cluzet, S.; Mérillon, J. Wood and roots of major grapevine cultivars and rootstocks: A comparative analysis of stilbenes by UHPLC-DAD-MS/MS and NMR. Phytochem. Anal. 2019, 30, 320–331. [Google Scholar] [CrossRef]
- De Bona, G.S.; Adrian, M.; Negrel, J.; Chiltz, A.; Klinguer, A.; Poinssot, B.; Héloir, M.-C.; Angelini, E.; Vincenzi, S.; Bertazzon, N. Dual mode of action of grape cane extracts against Botrytis cinerea. J. Agric. Food Chem. 2019, 67, 5512–5520. [Google Scholar] [CrossRef]
- Olivier, V.; Spring, J.-L.; Gindro, K. Stilbenes: Biomarkers of grapevine resistance to fungal diseases. OENO One 2018, 52, 235–241. [Google Scholar] [CrossRef]
- Gabaston, J.; El Khawand, T.; Waffo-Teguo, P.; Decendit, A.; Richard, T.; Mérillon, J.-M.; Pavela, R. Stilbenes from grapevine root: A promising natural insecticide against Leptinotarsa decemlineata. J. Pest Sci. (2004) 2018, 91, 897–906. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Sánchez-Vioque, R.; Santana-Méridas, O.; Martín-Bejerano, M.; Alonso, G.L.; Salinas, M.R.; Zalacain, A. A potential use of vine-shoot wastes: The antioxidant, antifeedant and phytotoxic activities of their aqueous extracts. Ind. Crops Prod. 2017, 97, 120–127. [Google Scholar] [CrossRef]
- Pavela, R.; Waffo-Teguo, P.; Biais, B.; Richard, T.; Mérillon, J.-M. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J. Pest Sci. (2004) 2017, 90, 961–970. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Garde-Cerdán, T.; Zalacain, A.; Pardo-García, A.I.; Salinas, M.R. Applications of an oak extract on Petit Verdot grapevines. Influence on grape and wine volatile compounds. Food Chem. 2012, 132, 1836–1845. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Garde-Cerdán, T.; Martínez, L.; Alonso, G.L.; Salinas, M.R. Effect of oak extract application to Verdejo grapevines on grape and wine aroma. J. Agric. Food Chem. 2011, 59, 3253–3263. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Angenieux, M.; Pardo-García, A.I.; Alonso, G.L.; Ojeda, H.; Rosario Salinas, M. Glycosidic aroma precursors of Syrah and Chardonnay grapes after an oak extract application to the grapevines. Food Chem. 2013, 138, 956–965. [Google Scholar] [CrossRef]
- Pardo-García, A.I.I.; Martínez-Gil, A.M.M.; Cadahía, E.; Pardo, F.; Alonso, G.L.L.; Salinas, M.R.R. Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Res. Int. 2014, 55, 150–160. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Effect of vine-shoots toasting on the generation of high added value volatiles. Flavour Fragr. J. 2016, 31, 293–301. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality. Food Res. Int. 2017, 98, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Morel-Salmi, C.; Julia, A.; Vigor, C.; Vercauteren, J. A huge PVDF adsorption difference between Resveratrol and ε-Viniferin allows to quantitatively purify them and to assess their anti-Tyrosinase roperty. Chromatographia 2014, 77, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Simón, B.; Cadahía, E.; del Álamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Doussot, F.; De Jéso, B.; Quideau, S.; Pardon, P. Extractives content in cooperage oak wood during natural seasoning and toasting; influence of tree species, geographic location, and single-tree effects. J. Agric. Food Chem. 2002, 50, 5955–5961. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Cutzach, I.; Pons, M.; Dubourdieu, D. Monitoring toasting intensity of barrels by chromatographic analysis of volatile compounds from toasted oak wood. J. Agric. Food Chem. 1999, 47, 4310–4318. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Cabrita, M.J.; García, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Winemaking with vine-shoots. Modulating the composition of wines by using their own resources. Food Res. Int. 2019, 121, 117–126. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Oliva, J.; Zalacain, A. Toasted vine-shoot chips as enological additive. Food Chem. 2018, 263, 96–103. [Google Scholar] [CrossRef]
- Baechler, S.A.; Schroeter, A.; Dicker, M.; Steinberg, P.; Marko, D. Topoisomerase II-Targeting properties of a grapevine-shoot extract and Resveratrol oligomers. J. Agric. Food Chem. 2014, 62, 780–788. [Google Scholar] [CrossRef]
- Biais, B.; Krisa, S.; Cluzet, S.; Da Costa, G.; Waffo-Teguo, P.; Mérillon, J.-M.; Richard, T. Antioxidant and cytoprotective activities of grapevine stilbenes. J. Agric. Food Chem. 2017, 65, 4952–4960. [Google Scholar] [CrossRef]
- Chaher, N.; Arraki, K.; Dillinseger, E.; Temsamani, H.; Bernillon, S.; Pedrot, E.; Delaunay, J.-C.; Mérillon, J.-M.; Monti, J.-P.; Izard, J.-C.; et al. Bioactive stilbenes from Vitis vinifera grapevine shoots extracts. J. Sci. Food Agric. 2014, 94, 951–954. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo-Castro, L.A.; Schiborr, C.; David, F.; Ehrt, H.; Voggel, J.; Sus, N.; Behnam, D.; Bosy-Westphal, A.; Frank, J. The Oral Bioavailability of Trans -Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization. Mol. Nutr. Food Res. 2018, 62, 1701057. [Google Scholar] [CrossRef] [PubMed]
Stilbene | Species Concentration (mg/kg dw) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V. amurensis | V. arizonica | V. berlandieri | V. betulifolia | V. X champinii | V. cinerea | V. coignetiae | V. davidii | V. X doaniana | V. heyneana | V. flexuosa | V. labrusca | V. mustangensis | V. pentagona | V. riparia | V. ruperstris | V. vinifera | V. thunbergii | |
t-/c-Astringin | nd | nd | nd | nd | nd | nd | 367.0 ± 17.0 | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nd |
t-Piceatannol | 1962.2 ± 122.4 | 1100.8 ± 21.5 | 894.4 ± 6.8 | 194.1 ± 13.6 | 599.7 ± 71.8 | 1195.1 ± 73.6 | nq | nd | 1151.1 ± 196.5 | Nd | nd | 377.0 ± 34.3 | 199.6 ± 34.9 | nd | 615.4 ± 18.1 | 1182.7 ± 26.7 | 1710.0 ± 4.0 | nd |
t-c-Piceid | nq | nd | 64.2 ± 2.5 | 101.0 ± 1.5 | nd | 133.8 ± 8.6 | 201.0 ± 25.0 | nd | nd | Nd | nd | nd | nd | nd | 291.7 ± 11.6 | 257.0 ± 9.6 | 284.0 ± 36.0 | nd |
Pterostilbene | nd | nd | nd | nd | nd | nd | 547.0 ± 124.0 | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nd |
t-/c-Resveratrol | 5432.9 ± 208.6 | 2412.4 ± 7.5 | 1951.2 ± 86.0 | 191.0 ± 2.4 | 2534.9 ± 15.0 | 3165.7 ± 131.3 | 25.0 ± 4.0 | 1049.0 ± 138.0 | 3572.2 ± 76.7 | Nd | nd | 1028.2 ± 53.0 | 364.0 ± 2.1 | 839.0 ± 31.0 | 1666.1 ± 9.4 | 3966.5 ± 52.5 | 66200.0 ±11.0 | nq |
t-/c-Resveratroloside | 213.6 ± 7.2 | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nd |
t-Rhapontigenin | nd | nd | nd | nd | nd | nd | 22.0 ± 3.0 | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nd |
Rhaponticin | nd | nd | nd | nd | nd | nd | 52.0 ± 6.0 | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nd |
t-Ampelopsin A | nq | nd | nd | 149.6 ± 6.6 | nd | nd | nd | nd | nd | Nq | nd | nd | nd | nd | nd | nd | 220.0 ± 16.0 | nd |
Ampelopsin F | nq | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nd | nd | nd | nd | nd | nd | 360.0 – nq | nq |
t-Amurensin H | nd | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nq |
t-Gnetin A | nd | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nq | nd | nd | nd | nd | nd | nd | nd |
Pallidol | nd | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nd | nd | nd | nd | nd | nd | 80.0 – nq | nd |
c-Parthenocissin A | nd | nd | nd | nd | nd | nd | nd | nd | nd | Nd | nd | nd | nd | nd | nd | nd | 220.0 – nq | nd |
t-/c-ε-Viniferin | 4510.4 ± 20.9 | 3715.5 ± 11.5 | 1264.5 ± 33.8 | 1397.4 ± 16.9 | 4054.9 ± 87.5 | 1610.9 ± 29.0 | nd | nd | 4352.5 ± 35.8 | Nq | nd | 4683.7 ± 99.7 | 3254.3 ± 68.5 | nd | 5739.0 ± 45.8 | 3912.6 ± 301.7 | 40600.0 ± 47.0 | nd |
t-/c-ω-Viniferin | nd | 122.2 ± 3.1 | nd | 65.1 ± 2.6 | 365.9 ± 9.3 | nd | nd | nd | 288.3 ± 3.2 | Nd | nd | 214.2 ± 3.2 | 270.5 ± 6.4 | nd | 156.8 ± 3.2 | 374.3 ± 26.9 | 85.2 ± 40.0 | nd |
Vitisinol A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Vitisinol B | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
t-Vitisinol C | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Vitisinol D | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
t-Vitisinol E | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Vitisinol G | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
t-Gnetin H | nq | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
α-Viniferin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 105.6 ± 98.4 | nd |
t-Amurensin B | 567.1 ± 14.7 | nd | nd | 55.9 ± 2.5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Amurensin G | nq | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Ampelopsin C | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | nd | nd | nq |
t-/c-Ampelopsin E | 1615.1 ± 35.4 | 428.4 ± 3.5 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 575.6 ± 16.9 | nd | nd | nq |
t-/c-Miyabenol C | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 1060.0 –nq | nd |
t-Vitisinol F | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Ampelopsin H | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 40.0 – nq | nd |
Flexuosol A | nd | nd | Nd | nd | nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | nd | nd |
Heyneanol A | nd | nd | Nd | Nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | nd | nd | nd |
Hopeaphenol | nd | nd | Nd | Nd | nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | 1468.2 – nq | nd |
Isohopeaphenol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 120.0 – nq | nd |
Miyabenol A | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
r2-Viniferin | nq | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | 15200.5 ± 60.0 | nq |
r-Viniferin | 972.1 ± 48.9 | 4279.6 ± 62.5 | 2038.0 ± 98.1 | nd | 5031.8 ± 95.2 | 2531.7 ± 69.4 | nd | nd | 2506.2 ± 12.0 | nd | nd | 5051.0 ± 237.7 | 6966.2 ± 69.2 | nd | 1950.7 ± 24.8 | 4916.1 ± 412.3 | 2159.0 – nq | nq |
t-/c-Vitisin B | nd | nd | nd | nd | nd | nd | nq | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq | nq |
Vitisin C | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Viniferal | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nq |
Viniferol E | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 140.0 – nq | nd |
Extraction Technique | Method | Conditions | Concentration (mg/Kg dw) | References |
---|---|---|---|---|
Solid-Liquid Extraction | 1 | Ethanol:H2O (80:20 v/v) Ultrasonic homogenizer sonification. 4 Times with renovation of solvent. Centrifugation | Cabernet sauvignon: t-Resveratrol (1639 ± 15) and t-ε-Viniferin (2203 ± 29) Merlot: t-Resveratrol (2409 ± 103) and t-ε-Viniferin (1656 ± 355) Regent: t-Resveratrol (753 ± 27) and t-ε-Viniferin (1218 ± 40) Riesling: t-Resveratrol (1994 ± 34) and t-ε-Viniferin (1928 ± 96) Pinot gris: t-Resveratrol (1941 ± 32) and t-ε-Viniferin (3297 ± 70) Sauvignon blanc: t-Resveratrol (2010 ± 124) and t-ε-Viniferin (3329 ± 296) Pinot noir: t-Resveratrol (1908 ± 124) and t-ε-Viniferin (2790 ± 123) Pinot blanc: t-Resveratrol (3199 ± 95) and t-ε-Viniferin (2125 ± 155) | Vergara et al. [78]; Ewald et al. [64] |
2 | Ethanol:H2O (80:20 v/v) Ultrasonic 4 times with renovation of solvent. Centrifugation | Pinot noir: Ampelopsin A (204 ± 1), t-Piceatannol (374 ± 5), t-Resveratrol (3655 ± 4), Hopeaphenol (60 ± 9), t-ε-Viniferin (1445 ± 1) and r-Viniferin (traces) Gewürztraminer: t-Piceatannol (233 ± 18), t-Resveratrol (3599 ± 116), Hopeaphenol (65 ± 6), t-ε-Viniferin (542 ± 29) and r-Viniferin (49 ± 1) Tinta pais: t-Piceatannol (192 ± 9), t-Resveratrol (3034 ± 58), Hopeaphenol (69 ± 8), t-ε-Viniferin (114 ± 4) and r-Viniferin (traces) Cabernet sauvignon: t-Piceatannol (283 ± 8), t-Resveratrol (2407 ± 110), Hopeaphenol (79 ± 14), t-ε-Viniferin (333 ± 10) and r-viniferin (traces) Syrah: t-Piceatannol (261 ± 14), t-Resveratrol (3591 ± 188), Hopeaphenol (traces), t-ε-Viniferin (368 ± 14) and r-viniferin (traces) Carmenère: t-Piceatannol (212 ± 23), t-Resveratrol (2811 ± 98), Hopeaphenol (traces), t-ε-Viniferin (324 ± 7) and r-viniferin (traces) Sauvignon blanc: t-Piceatannol (182 ± 14), t-Resveratrol (136 ± 20), Hopeaphenol (74 ± 6), t-ε-Viniferin (508 ± 44) and r-viniferin (traces) Garnacha Tintorera: t-Piceatannol (308 ± 12), t-Resveratrol (4074 ± 125), Hopeaphenol (59 ± 10), t-ε-Viniferin (512 ± 2) and r-viniferin (traces) Cinsault: t-Piceatannol (143 ± 1), t-Resveratrol (1506 ± 48), Hopeaphenol (traces), t-ε-Viniferin (324 ± 10) and r-Viniferin (traces) Moscatel de Alejandria: t-Piceatannol (288 ± 22), t-Resveratrol (4941 ± 128), Hopeaphenol (traces), t-ε-Viniferin (343 ± 23) and r-viniferin (traces) Semillon: t-Piceatannol (216 ± 5), t-Resveratrol (2112 ± 18), Hopeaphenol (traces), t-ε-Viniferin (621 ± 13) and r-viniferin (traces) Merlot: t-Piceatannol (170 ± 8), t-Resveratrol (1936 ± 65), Hopeaphenol (32 ± 3), t-ε-Viniferin (294 ± 12) and r-viniferin (traces). | Gorena et al. [76]; Sáez et al. [82] | |
3 | Acetone:H2O (60:40 v/v) Centrifugation Dryness Resolved methanol/water (1:1 v/v) | Cabernet sauvignon: t -Piceatannol (735 ± 142), t-Resveratrol (871 ± 202), t-ε-Viniferin (2379 ± 1123), r-Viniferin (420 ± 109) and Miyabenol C (30 ± 12) Carignan: t-Piceatannol (519 ± 80), t-Resveratrol (880 ± 304), Hopeaphenol (1439 ± 214), t-ε-Viniferin (967 ± 71), r-Viniferin (traces) and Miyabenol C (87 ± 21) Chardonnay: t-Piceatannol (190 ± 67), t-Resveratrol (190 ± 87), Hopeaphenol (766 ± 149), t-ε-Viniferin (2089 ± 334), r-Viniferin (traces) and Miyabenol C (traces) Chenin: t-Piceatannol (1227 ± 267), t-Resveratrol (794 ± 161), Hopeaphenol (623 ± 175), t-ε-Viniferin (2218 ± 274), r-viniferin (traces) and Miyabenol C (traces) Cinsault: t-Piceatannol (298 ± 268), t-Resveratrol (486 ± 226), Hopeaphenol (339 ± 96), t-ε-Viniferin (1629 ± 100), r-Viniferin (traces) and Miyabenol C (1060 ± 12) Gamay: t-Piceatannol (843 ± 138), t-Resveratrol (980 ± 201), Hopeaphenol (1085 ± 182), t-ε-Viniferin (1828 ± 157), r-Viniferin (102 ± 53) and Miyabenol C (traces) Gewürztraminer: t-Piceatannol (490 ± 150), t-Resveratrol (649 ± 290), Hopeaphenol (1118 ± 357), t-ε-Viniferin (2199 ± 379), r-Viniferin (1116 ± 380) and Miyabenol C (traces) Grenache: t-Piceatannol (372 ± 195), t-Resveratrol (752 ± 392), Hopeaphenol (465 ± 123), t-ε-Viniferin (1792 ± 110), r-Viniferin (88 ± 22) and Miyabenol C (traces) Melon: t-Piceatannol (561 ± 359), t-Resveratrol (963 ± 189), Hopeaphenol (645 ± 188), t-ε-Viniferin (1970 ± 193), r-Viniferin (126 ± 44) and Miyabenol C (traces) Merlot: t-Piceatannol (947 ± 353), t-Resveratrol (1181 ± 189), Hopeaphenol (642 ± 163), t-ε-Viniferin (2263 ± 220), r-Viniferin (146 ± 48) and Miyabenol C (22 ± 14) Pinot noir: t-Piceatannol (1710 ± 224), t-Resveratrol (1526 ± 293), Hopeaphenol (1126 ± 294), t-ε-Viniferin (3737 ± 421), r-Viniferin (313 ± 156) and Miyabenol C (73 ± 22) Riesling: t-Piceatannol (270 ± 101), t-Resveratrol (605 ± 258), Hopeaphenol (1468 ± 601), t-ε-Viniferin (1716 ± 411), r-Viniferin (88 ± 54) and Miyabenol C (174 ± 12) Sauvignon blanc: t-Piceatannol (607 ± 294), t-Resveratrol (730 ± 34), Hopeaphenol (841 ± 263), t-ε-Viniferin (2697 ± 167), r-Viniferin (369 ± 212) and Miyabenol C (36 ± 17) Semillon: t-Piceatannol (471 ± 208), t-Resveratrol (872 ± 263), Hopeaphenol (287 ± 124), t-ε-Viniferin (2448 ± 186), r-Viniferin (252 ± 106) and Miyabenol C (traces) Syrah: t-Piceatannol (460 ± 253), t-Resveratrol (481 ± 373), Hopeaphenol (586 ± 456), t-ε-Viniferin (2507 ± 462), r-Viniferin (182 ± 244) and Miyabenol C (38 ± 14) Ugni blanc: t-Piceatannol (1056 ± 295), t-Resveratrol (689 ± 1190), Hopeaphenol (818 ± 202), t-ε-Viniferin (2292 ± 259), r-Viniferin (138 ± 21) and Miyabenol C (39 ± 12) | Lambert et al. [74]; Guerrero et al. [70] | |
High-Pressure Methods | 4 | Sample in column heated and pressurized Ethanol in dynamic mode. 3 Times folds | Cabernet moravia: t-Resveratrol (46500), t-ε-Viniferin (7300) and r2-Viniferin (500) | Zachová et al. [67] |
4 | Sample in column heated and pressurized. Solvent with 3 cycles Supernatant evaporated until dry extract | Cabernet moravia (Acetone): t-resveratrol (66200), t-ε-Viniferin (40600) and r2-Viniferin (15200) Cabernet moravia (mix-distilled alcohol:H2O): t-Piceid (36 ± 6), t-Piceatannol (195 ± 3), t-Resveratrol (1215 ± 161) and t-ε-Viniferin (2141 ± 14) | Zachová et al. [67]; Rodríguez-Cabo et al. [55] | |
Microwave-assisted extraction | 5 | Sample at 125 °C Ethanol:H2O (80:20 v/v) | Cabernet Franc: Piceatannol (28 ± 6), t-Resveratrol (27 ± 2) and t-ε-Viniferin (222 ± 10) Cabernet Sauvignon: t-Resveratrol (533 ± 21) and t-ε-Viniferin (1109 ± 16) Carmenére: Piceatannol (84 ± 6), t-Resveratrol (77 ± 4) and t-ε-Viniferin (178 ± 6) Chardonnay: Piceatannol (19 ± 1), t-Resveratrol (37 ± 3) and t-ε-Viniferin (692 ± 6) Gewürtztraminer: Piceatannol (494 ± 24), t-Resveratrol (52361 ± 107) and t-ε-Viniferin (2567 ± 24) Jaen tinto: Piceatannol (66 ± 1), t-Resveratrol (402 ± 17) and t-ε-Viniferin (457 ± 7) Malbec: t-Piceid (228 ± 10), Piceatannol (66 ± 9), t-Resveratrol (960 ± 29) and t-ε-Viniferin (1414 ± 17) Marselan: Piceatannol (40 ± 1), t-Resveratrol (11 ± 1) and t-ε-Viniferin (201 ± 4) Melonera: t-Piceid (241 ± 33), Piceatannol (59 ± 1), t-Resveratrol (427 ± 18) and t-ε-Viniferin (1102 ± 12) Merlot: Piceatannol (57 ± 2), t-Resveratrol (69 ± 1) and t-ε-Viniferin (1017 ± 14) Moscatel Alejandria: Piceatannol (29 ± 1), t-Resveratrol (86 ± 2) and t-ε-Viniferin (1922 ± 27) Moscatel julius: Piceatannol (111 ± 11), t-Resveratrol (24 ± 2) and t-ε-Viniferin (63 ± 1) Palomino fino: t-Piceid (167 ± 5), Piceatannol (21 ± 0), t-Resveratrol (142 ± 17) and t-ε-Viniferin (870 ± 12) Palomino negro: t-Resveratrol (498 ± 10) and t-ε-Viniferin (816 ± 8) Petit verdot: Piceatannol (77 ± 3), t-Resveratrol (20 ± 0) and t-ε-Viniferin (47 ± 0) Pinot noir: t-Resveratrol (640 ± 24) and t-ε-Viniferin (3543 ± 70) Regent: Piceatannol (82 ± 3), t-Resveratrol (51 ± 0) and t-ε-Viniferin (67 ± 3) Sauvignon blanc: t-Resveratrol (519 ± 35) and t-ε-Viniferin (3100 ± 65) Syrah: Piceatannol (55 ± 3), t-Resveratrol (469 ± 18) and t-ε-Viniferin (1031 ± 17) Tannat: t-Piceid (284 ± 15), Piceatannol (4 ± 0), t-Resveratrol (460 ± 6) and t-ε-Viniferin (1032 ± 8) Tempranillo: t-Piceid (76 ± 2), Piceatannol (43 ± 6), t-Resveratrol (204 ± 8) and t-ε-Viniferin (602 ± 6) Tintilla de Rota: Piceatannol (45 ± 2), t-Resveratrol (486 ± 21) and t-ε-Viniferin (1275 ± 15) Vijiriega: Piceatannol (160 ± 6), t-Resveratrol (1529 ± 44) and t-ε-Viniferin (620 ± 8) Zinfandel: t-Piceid (192 ± 1), t-Resveratrol (243 ± 5) and t-ε-Viniferin (1080 ± 9) | Piñeiro et al. [69] |
Subcritical Water | 6 | Sample in H2O at 160 °C and under pressure | Merlot: Piceid (70), Piceatannol (130), Resveratrol (650), Ampelopsin A (220), Ampelopsin F (360), Pallidol (80), Parthenocissin A (200), ε-Viniferin (300), w-Viniferin (40), Viniferol E (140), Hopeaphenol (340), Isohopeaphenol (120), Ampelopsin H (40) and r2-Viniferin (60) | Gabaston et al. [85] |
Analysis | Identified Compounds from Grapevine Cane | References | |
---|---|---|---|
HPLC–DAD/FLD | 1 | t-Resveratrol, t-ε-Viniferin and r2-Viniferin | [66,67] |
2 | t-Resveratrol and t-ε-Viniferin | [64] | |
3 | t-Resveratrol (306 nm), t-Piceid (304 nm), t-Piceatannol (323 nm), Ampelopsin A (208 nm), Hopeaphenol (282 nm), r-Viniferin (326 nm), r2-viniferin (328 nm) and t-ε-Viniferin (323 nm) | [76] | |
4 | Hopeaphenol, Isohopeaphenol and Ampelopsin A (280 nm); t-Resveratrol (306 nm); t-Piceid, Piceatannol, t-ε-Viniferin, r-Viniferin and t-ω-Viniferin (320 nm) | [69,70] | |
5 | t-Resveratrol and t-Piceatannol | [68] | |
LC–MS | 6 | t-ε-Viniferin (C28H22O6): C28H22O6+ (m/z 455.1482), C28H21O5+(m/z 437.1373), C22H17O5+ (m/z 361.0740), and C13H11O3+ (m/z 215.0709) and r2-viniferin (C56H42O12): C56H42O12+ (m/z 907.2745), C35H27O7+ (m/z 559.1709), C28H21O6+ (m/z 453.1339), C22H17O5+ (m/z 361.1038), and C13H11O3+ (m/z 215.0690) | [66] |
7 | α-Viniferin C24H30O9 (m/z 677.1812), Resveratrol trimer A C42H32O9 (m/z 679.1964), Resveratrol trimer B C42H32O9 (m/z 679.1968), Resveratrol tetramer A C56H42O12 (m/z 905.2598) and Resveratrol tetramer B C56H42O12 (m/z 905.2612). | [55] | |
HPLC–DAD-FLD–MS/MS | 8 | t-Piceid (DAD λmax = 304 - 315 nm, FLD λExc-Emis = 330 - 374 nm, m/z 389), Ampelopsin A (DAD λmax = 280 nm, FLD λExc-Emis = 230 - 320 nm, m/z 469), t-Piceatannol (DAD λmax = 324 nm, FLD λExc-Emis = 330 - 374 nm, m/z 243), Pallidol (DAD λmax = 280 nm, m/z 253), t-Resveratrol (DAD λmax = 306 nm, FLD λExc-Emis = 330 - 374 nm, m/z 227), Hopeaphenol (DAD λmax = 280 nm, FLD λExc-Emis = 230 - 320 nm, m/z 905), t-ε-Viniferin (DAD λmax = 324 nm, FLD λExc-Emis = 330 - 374 nm, m/z 453), t-δ-Viniferin (DAD λmax = 324 nm, FLD λExc-Emis = 330 - 374 nm, m/z 453), t-ω-Viniferin (DAD λmax = 324 nm, FLD λExc-Emis = 330 - 374 nm, m/z 453) and r-Viniferin (DAD λmax = 326 nm, FLD λExc-Emis = 330 - 374 nm, m/z 905). | [82] |
HPLC–DAD–ESI–MS/MS | 9 | t-Piceid (λmax = 304 - 315 nm, m/z 389), Ampelopsin A (λmax = 280 nm, m/z 469), t-Piceatannol (λmax = 323 - 303 nm, m/z 243), t-Resveratrol (λmax = 304 - 316 nm, m/z 227) and t-ε-Viniferin (λmax = 308 - 322 nm, m/z 453) | [78] |
10 | Ampelopsin A (m/z 469), Hopeaphenol (m/z 905), Piceatannol (m/z 243), Resveratrol (m/z 227), r2-Viniferin (m/z 905), Miyabenol C (m/z 679), t-ε-Viniferin (m/z 453) and r-Viniferin (m/z 905) | [64] | |
11 | t-Resveratrol (m/z 227), t-Piceid (m/z 389), t-Piceatannol (m/z 243), Ampelopsin A (m/z 469), Hopeaphenol (m/z 906), r-Viniferin (m/z 906), r2-viniferin (m/z 906) and t-ε-Viniferin (m/z 453) | [76] | |
UHPLC–DAD/ESI–Q-TOF | 12 | t-Resveratrol, t-Piceid, t-Piceatannol, Ampelopsin A, Ampelopsin F, Pallidol, t-Parthenocissin A, Miyabenol C, Ampelopsin E, Viniferol E, Ampelopsin H, Hopeaphenol, Isohopeaphenol, r-Viniferin, r2-viniferin, t-ω-Viniferin, and t-ε-Viniferin | [85] |
HPLC–NMR | 13 | t-Piceatannol: 1H-NMR δ (ppm) 7.00 (1H, d, J = 2.0 Hz, H-2), 6.93 (1H, d, J = 16.4 Hz, H-7), 6.88 (1H, dd, J = 2.0, 8.4 Hz, H-6) 6.80 (1H, d, J = 16.4 Hz, H-8), 6.77 (1H, d, J = 8.4, H-5), 6.45 (2H, d, J = 2.1 Hz, H-10,14), 6.14 (1H, t, J = 2.1 Hz, H-12) t-Resveratrol: 1H-NMR δ (ppm) 7.36 (2H, d, J = 8.5 Hz, H-2,6), 6.99 (1H, d, J = 16.4 Hz, H-7), 6.82 (1H, d, J = 16.4 Hz, H-8), 6.76 (2H, d, J = 8.5, H-3,5), 6.44 (2H, d, J = 2.1 Hz, H-10,14), 6.13 (1H, t, J = 2.1 Hz, H-12) Hopeaphenol: 1H-NMR δ (ppm) 7.07 (2H, d, J = 8.5 Hz, H-2b,6b), 6.79 (2H, d, J = 8.5 Hz, H-2a,6a), 6.76 (2H, d, J = 8.5 Hz, H-3b,5b), 6.56 (2H, d, J = 8.5 Hz, H-3a,5a), 6.39 (1H, brs, H-12b), 6.19 (1H, brs, H-14b), 5.73 (1H, d, J = 12.2 Hz, H-7b), 5.72 (1H, brs, H-12a), 5.42 (1H, d, brs, H-14a), 4.85 (1H, brs, H-7a), 4.08 (1H, d, J = 12.2 Hz, H-8b), 3.76 (1H, brs, H-8a) Isohopeaphenol: 1H-NMR δ (ppm) 7.46 (2H, d, J = 8.4 Hz, H-2a,6a), 6.95 (2H, d, J = 8.4 Hz, H-3a,5a), 6.30 (2H, d, J = 8.4 Hz, H-2b,6b), 6.23 (2H, d, J = 8.4, H-3b,5b), 6.22 (1H, brs, H-12a), 6.01 (1H, brs, H-14a), 5.80 (1H, d, brs, H-12b), 5.51 (1H, d, J = 10.8 Hz, H-7a), 5.31 (1H, d, brs, H-14b), 5.27 (1H, d, J = 10.8 Hz, H-8a), 4.77 (1H, brs, H-7b), 3.23 (1H, brs, H-8b) t-ε-Viniferin: 1H-NMR δ (ppm) 7.14 (2H, d, J = 8.3 Hz, H-2a,6a), 7.11 (2H, d, J = 8.3 Hz, H-2b,6b), 6.87 (1H, d, J = 16.4, H-7b), 6.76 (2H, d, J = 8.5 Hz, H-3a,5a), 6.69 (2H, d, J = 8.8 Hz, H-3b,5b), 6.62 (1H, d, J = 1.8, H-14b), 6.59 (1H, d, J = 16.4 Hz, H-8b), 6.28 (1H, d, J = 1.8 Hz, H-12b), 6.12 (2H, d, J = 2.01 Hz, H-10a,14a), 6.09 (1H, t, J = 2.1 Hz, H-12a), 5.39 (1H, d, J = 5.7 Hz, H-7a), 4.45 (1H, d, J = 5.7 Hz, H-8a) t-ω-Viniferin: 1H-NMR δ (ppm) 7.14 (2H, d, J = 8.4 Hz, H-2b,6b), 6.95 (2H, d, J = 8.4 Hz, H 2a,6a), 6.90 (1H, d, J = 16.4 Hz, H-7b), 6.69 (2H, d, J = 8.4 Hz, H-3b,5b), 6.63 (1H, brs, H-14b), 6.61 (1H, d, J = 16.4 Hz, H-8b), 6.55 (2H, d, J = 8.4 Hz, H-3a,5a), 6.32 (1H, d, brs, H-12b), 5.84 (1H, d, J = 8.5 Hz, H-7a), 5.83 (1H, brs, H-12a), 5.70 (2H, brs, H-10a,14a), 4.64 (1H, d, J = 8.5 Hz, H-8a) r-Viniferin: 1H-NMR δ (ppm) 7.15 (2H, d, J = 8.5 Hz, H-2a,6a), 7.13 (2H, d, J = 8.5 Hz, H-2d,6d), 7.05 (1H, brd, J = 8.2 Hz,-H-6b), 6.79 (2H, d, J = 8.4 Hz, H-3a,5a),6.77 (2H, d, J = 8.4 Hz, H-3d,5d), 6.73 (1H, d, J = 16.4 Hz, H-8b), 6.73 (1H, d, brs, H-2b), 6.72 (1H, d, J = 8.2 H-5b), 6.60 (2H, d, J = 8.5 Hz, H-2c,6c), 6.56 (1H, d, J = 1.8, H-14b), 6.52 (2H, d, J = 8.5 Hz, H-3c,5c), 6.30 (1H, d, J = 1.8, H-12b), 6.27 (1H, d, J = 1.8, H-12c), 6.08 (2H, d, J = 1.8 Hz, H-10d,14d), 6.06 (1H, brs, H-12d), 6.05 (1H, d, J = 1.8, H-14c), 5.96 (1H, t, J = 1.8, H-12a), 5.90 (2H, d, J = 1.8 Hz, H-10a,14a), 5.45 (1H, d, J = 5.0 Hz, H-7c), 5.39 (1H, d, J = 5.6 Hz, H-7d), 5.33 (1H, d, J = 5.6 Hz, H-7a), 4.41 (1H, d, J = 5.6 Hz, H-8a), 4.41 (1H, d, J = 5.6 Hz, H-8d), 4.21 (1H, d, J = 5.0 Hz, H-8c) | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliaño-González, M.J.; Richard, T.; Cantos-Villar, E. Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules 2020, 10, 1195. https://doi.org/10.3390/biom10081195
Aliaño-González MJ, Richard T, Cantos-Villar E. Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules. 2020; 10(8):1195. https://doi.org/10.3390/biom10081195
Chicago/Turabian StyleAliaño-González, María José, Tristan Richard, and Emma Cantos-Villar. 2020. "Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications" Biomolecules 10, no. 8: 1195. https://doi.org/10.3390/biom10081195
APA StyleAliaño-González, M. J., Richard, T., & Cantos-Villar, E. (2020). Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules, 10(8), 1195. https://doi.org/10.3390/biom10081195