Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams
Abstract
1. Introduction
2. Experimental Approach
2.1. SIMION Simulations with Cylindrical Symmetry
2.2. Mechanical Construction of the Analyzer
2.3. Optimization of the Analyzer
3. Experimental Results
3.1. Results on Xe5+
3.2. Results on Si+
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seaton, M.J. The Opacity Project. AIP Conf. Proc. 1995, 322, 117. [Google Scholar]
- Hummer, D.G.; Berrington, K.A.; Eissner, W.; Pradhan, A.K.; Saraph, H.E.; Tully, J.A. Atomic data from the IRON Project. 1: Goals and methods. Astron. Astrophys. 1993, 279, 298–309. [Google Scholar]
- Kjeldsen, H. Photoionization cross sections of atomic ions from merged-beam experiments. J. Phys. B At. Mol. Opt. Phys. 2006, 39, R325–R377. [Google Scholar] [CrossRef]
- Müller, A. Precision studies of deep-inner-shell photoabsorption by atomic ions. Phys. Scr. 2015, 90, 54004. [Google Scholar] [CrossRef]
- Schippers, S.; Muller, A. Photoionization of Astrophysically Relevant Atomic Ions at PIPE. Atoms 2020, 8, 45. [Google Scholar] [CrossRef]
- Müller, A.; Borovik, A., Jr.; Buhr, T.; Hellhund, J.; Holste, K.; Kilcoyne, A.L.D.; Klumpp, S.; Martins, M.; Ricz, S.; Viefhaus, J.; et al. Observation of a Four-Electron Auger Process in Near-K-Edge Photoionization of Singly Charged Carbon Ions. Phys. Rev. Lett. 2015, 114, 013002. [Google Scholar] [CrossRef]
- Kühn, S.; Shah, C.; Lopez-Urrutia, J.R.C.; Fujii, K.; Steinbrügge, R.; Stierhof, J.; Togawa, M.; Harman, Z.; Oreshkina, N.S.; Cheung, C.; et al. High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. Phys. Rev. Lett. 2020, 124, 225001. [Google Scholar] [CrossRef]
- Windelius, O.; Aguilar, A.; Bilodeau, R.C.; Juarez, A.M.; Rebolledo-Salgado, I.; Pegg, D.J.; Röhlen, J.; Castel, T.; Welander, J.; Hanstorp, D.; et al. A collinear angle-resolved photoelectron spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 2017, 410, 144–152. [Google Scholar] [CrossRef]
- Förstel, M.; Jordon-Thaden, B.; Domesle, C.; Arion, T.; Lischke, T.; Mucke, M.; Lammich, L.; Pedersen, H.B.; Klumpp, S.; Martins, M.; et al. Electron Spectroscopy on an Ion Beam at FLASH. Hasylab Annu. Rep. 2009. Available online: https://www.academia.edu/24518735/Electron_Spectroscopy_on_an_Ion_Beam_at_FLASH (accessed on 31 August 2020).
- Domesle, C.; Jordon-Thaden, B.; Lammich, L.; Förstel, M.; Hergenhahn, U.; Wolf, A.; Pedersen, H.B. Photoelectron spectroscopy of O− at 266 nm: Ratio of ground- and excited-state atomic oxygen. Production and channel-resolved photoelectron anisotropy parameters. Phys. Rev. A 2010, 82, 033402. [Google Scholar] [CrossRef]
- Itoh, A.; Schneider, T.; Schiwietz, G.; Roller, Z.; Platten, H.; Nolte, G.; Schneider, D.; Stolterfoht, N. Selective production of Auger electrons from fast projectile ions studied by zero-degree Auger spectroscopy. J. Phys. B At. Mol. Phys. 1983, 16, 3965. [Google Scholar] [CrossRef]
- Penent, F.; Grouard, J.-P.; Montmagnon, J.-L.; Hall, R.I. Translation electron spectroscopy study of the 1P0 shape resonance of H− excited in H− rare-gas collisions (0.5–6 keV). J. Phys. B At. Mol. Opt. Phys. 1991, 24, 173. [Google Scholar] [CrossRef]
- Zouros, T.J.M.; Lee, D.H. Zero Degree Auger Electron Spectroscopy of Projectile Ions. In Accelerator-Based Atomic Physics Techniques and Applications; Shafroth, S.M., Austin, J.C., Eds.; American Institute of Physics: Woodbury, NY, USA, 1997; Chapter 13; pp. 426–479. [Google Scholar]
- Bizau, J.M.; Cubaynes, D.; Richter, M.; Wuilleumier, F.J.; Obert, J.; Putaux, J.C.; Morgan, T.J.; Källne, E.; Sorensen, S.; Damany, A. First observation of photoelectron spectra emitted in the photoionization of a singly charged-ion beam with synchrotron radiation. Phys. Rev. Lett. 1991, 67, 576–579. [Google Scholar] [CrossRef]
- Al Moussalami, S.; Bizau, J.M.; Rouvellou, B.; Cubaynes, D.; Journel, L.; Wuilleumier, F.J.; Obert, J.; Putaux, J.C.; Morgan, T.J.; Richter, M. First angle-resolved photoelectron measurements following inner-shell resonant excitation in a singly charged ion. Phys. Rev. Lett. 1996, 76, 4496–4499. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, A.; Gerth, C.; Richter, M. 4d photoionization of free singly charged xenon ions. Phys. Rev. Lett. 1999, 82, 2068–2070. [Google Scholar] [CrossRef]
- Rouvellou, B.; Bizau, J.M.; Cubaynes, D.; Journel, L.; Al Moussalami, S.; Wuilleumier, F.J. A dedicated electron spectrometer for photoionization studies of atomic ions with synchrotron radiation. J. Electron. Spectrosc. Relat. Phenom. 1995, 76, 237–243. [Google Scholar] [CrossRef]
- Bizau, J.M.; Cubaynes, D.; Guilbaud, S.; El Eassan, N.; Al Shorman, M.M.; Bouisset, E.; Guigand, J.; Moustier, O.; Marié, A.; Nadal, E.; et al. A merged-beam setup at SOLEIL dedicated to photoelectron–photoion coincidence studies on ionic species. J. Electron. Spectrosc. Relat. Phenom. 2016, 210, 5–12. [Google Scholar] [CrossRef]
- Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Penent, F.; Lablanquie, P.; Andric, L.; Palaudoux, J.; Al Shorman, M.M.; Blancard, C. Photoelectron Spectroscopy of Ions: Study of the Auger Decay of the 4d→nf (n = 4, 5) Resonances in Xe5+ Ion. Phys. Rev. Lett. 2016, 116, 103001. [Google Scholar] [CrossRef]
- Khalal, M.A.; Lablanquie, P.; Andric, L.; Palaudoux, J.; Penent, F.; Bučar, K.; Žitnik, M.; Püttner, R.; Jänkälä, K.; Cubaynes, D.; et al. 4d-inner-shell ionization of Xe+ ions and subsequent Auger decay. Phys. Rev. A 2017, 96, 013412. [Google Scholar] [CrossRef]
- Granneman, E.H.A.; van der Wiel, J.M. Handbook of Synchrotron Radiation; Koch, E.E., Eastman, D.E., Farge, Y., Eds.; North-Holland: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1983; Volume 1A, pp. 367–456. [Google Scholar]
- Read, F. The parallel cylindrical mirror electron energy analyzer. Rev. Sci. Instrum. 2002, 73, 1129. [Google Scholar] [CrossRef]
- Manura, D.; Dahl, D. SIMION® 8.1 User Manual; Scientific Instrument Services, Inc.: Ringoes, NJ, USA, 2008; Available online: http://simion.com/ (accessed on 31 August 2020).
- Tremsin, A.S.; Pearson, J.F.; Lees, J.E.; Fraser, G.W. The Microsphere Plate: A new type of electron multiplier. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 368, 719–730. [Google Scholar] [CrossRef]
- Universite Paris-Saclay. Available online: http://www.ismo.u-psud.fr/IMG/pdf/tdc-v4_notice_utilisateur.pdf (accessed on 31 August 2020).
- Jagutzki, O.; Mergel, V.; Ullmann-Pfleger, K.; Spielberger, L.; Spillmann, U.; Dörner, R.; Schmidt-Böcking, H. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks: Large area imaging, precise multi-hit timing information and high detection rate. Nucl. Instrum. Methods Phys. Res. A 2002, 477, 244–249. [Google Scholar] [CrossRef]
- Kennedy, E.T.; Mosnier, J.-P.; Van Kampen, P.; Cubaynes, D.; Guilbaud, S.; Blancard, C.; McLaughlin, B.M.; Bizau, J.-M. Photoionization cross sections of the aluminumlike Si+ ion in the region of the 2p threshold (94–137 eV). Phys. Rev. A 2014, 90, 063409. [Google Scholar] [CrossRef]
- Ralchenko, Y.; Kramida, A.E.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database; version 4.0.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. Available online: http://physics.nist.gov/asd3 (accessed on 31 August 2020).
- Mosnier, J.-P.; Kennedy, E.T.; van Kampen, P.; Cubaynes, D.; Guilbaud, S.; Sisourat, N.; Puglisi, A.; Carniato, S.; Bizau, J.-M. Inner-shell photoexcitations as probes of the molecular ions CH+, OH+, and SiH+: Measurements and theory. Phys. Rev. A 2016, 93, 061401. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penent, F.; Cubaynes, D.; Lablanquie, P.; Palaudoux, J.; Guilbaud, S.; Moustier, O.; Guigand, J.; Bizau, J.-M. Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams. Atoms 2020, 8, 63. https://doi.org/10.3390/atoms8040063
Penent F, Cubaynes D, Lablanquie P, Palaudoux J, Guilbaud S, Moustier O, Guigand J, Bizau J-M. Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams. Atoms. 2020; 8(4):63. https://doi.org/10.3390/atoms8040063
Chicago/Turabian StylePenent, Francis, Denis Cubaynes, Pascal Lablanquie, Jérôme Palaudoux, Ségolène Guilbaud, Olivier Moustier, Jérôme Guigand, and Jean-Marc Bizau. 2020. "Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams" Atoms 8, no. 4: 63. https://doi.org/10.3390/atoms8040063
APA StylePenent, F., Cubaynes, D., Lablanquie, P., Palaudoux, J., Guilbaud, S., Moustier, O., Guigand, J., & Bizau, J.-M. (2020). Modification of a Cylindrical Mirror Analyzer for High Efficiency Photoelectron Spectroscopy on Ion Beams. Atoms, 8(4), 63. https://doi.org/10.3390/atoms8040063