Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td)
Abstract
1. Introduction
2. Theoretical Scattering and Transport Simulation Details
2.1. Cross Sections
2.2. Excitation and Ionization
2.3. Comparison of the ROP and OPM Methods
2.4. Transport Simulations
3. Results and Discussion
3.1. Cross Sections
3.2. Transport Properties
3.3. Multi-Term
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunger, M.J.; Buckman, S.J.; Allen, L.J.; McCarthy, I.E.; Ratnavelu, K. Elastic electron scattering from helium: Absolute experimental cross sections, theory and derived interaction potentials. J. Phys. B At. Mol. Opt. Phys. 1992, 25, 1823. [Google Scholar] [CrossRef]
- Khandker, M.H.; Haque, A.K.F.; Haque, M.M.; Billah, M.M.; Watabe, H.; Uddin, M.A. Relativistic Study on the Scattering of e± from Atoms and Ions of the Rn Isonuclear Series. Atoms 2021, 9, 59. [Google Scholar] [CrossRef]
- Lam, L.T.S.F. Relativistic effects in electron scattering by atoms. III. Elastic scattering by krypton, xenon and radon. J. Phys. B At. Mol. Phys. 1982, 15, 119. [Google Scholar] [CrossRef]
- Neerja; Tripathi, A.N.; Jain, A.K. Spin polarization and cross sections in elastic scattering of electrons from Yb, Rn, and Ra atoms. Phys. Rev. A 2000, 61, 032713. [Google Scholar] [CrossRef]
- Sharma Kapil, K.; Vats, R.P. Elastic positron scattering by radon and radium atoms. Phys. Scr. 2012, 85, 045304. [Google Scholar] [CrossRef]
- Chen, S.; McEachran, R.P.; Stauffer, A.D. Ab initio optical potentials for elastic electron and positron scattering from the heavy noble gases. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 025201. [Google Scholar] [CrossRef]
- McEachran, R.P.; Hamilton, K.R.; Bartschat, K. Low-Energy Elastic Electron Scattering from Helium Atoms. Atoms 2021, 9, 82. [Google Scholar] [CrossRef]
- McEachran, R.P.; Ryman, A.G.; Stauffer, A.D.; Morgan, D.L. Positron scattering from noble gases. J. Phys. B At. Mol. Phys. 1977, 10, 663. [Google Scholar] [CrossRef]
- McEachran, R.P.; Morgan, D.L.; Ryman, A.G.; Stauffer, A.D. Positron scattering from noble gases: Corrected results for helium. J. Phys. B At. Mol. Phys. 1978, 11, 951. [Google Scholar] [CrossRef]
- McEachran, R.P.; Stauffer, A.D. Dynamic distortion effects in electron-atom scattering. J. Phys. B At. Mol. Opt. Phys. 1990, 23, 4605. [Google Scholar] [CrossRef]
- McEachran, R.; Stauffer, A. Relativistic Effects in Low-Energy Electron–Argon Scattering. Aust. J. Phys. 1997, 50, 511–524. [Google Scholar]
- Bartschat, K.; McEachran, R.P.; Stauffer, A.D. Optical potential approach to electron and positron scattering from noble gases. I. Argon. J. Phys. B At. Mol. Opt. Phys. 1988, 21, 2789. [Google Scholar] [CrossRef]
- Bartschat, K.; McEarchran, R.P.; Stauffer, A.D. Optical potential approach to electron and positron scattering from noble gases. II. Neon. J. Phys. B At. Mol. Opt. Phys. 1990, 23, 2349. [Google Scholar] [CrossRef]
- Salvat, F. Optical-model potential for electron and positron elastic scattering by atoms. Phys. Rev. A 2003, 68, 012708. [Google Scholar] [CrossRef]
- Moore, C.E. Atomic Energy Levels. As Derived From the Analyses of Optical Spectra, Volume 3; Technical report NSRDS-NBS 35; U.S. Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1958.
- Robson, R.E.; White, R.D.; Hildebrandt, M. Fundamentals of Charged Particle Transport in Gases and Condensed Matter; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Boyle, G. The Modelling of Non-Equilibrium Light Lepton Transport in Gases and Liquids. Ph.D. Thesis, James Cook University, Townsville, QLD, Australia, 2015. [Google Scholar]
- Boyle, G.J.; Tattersall, W.J.; Cocks, D.G.; McEachran, R.P.; White, R.D. A multi-term solution of the space–time Boltzmann equation for electrons in gases and liquids. Plasma Sources Sci. Technol. 2017, 26, 024007. [Google Scholar] [CrossRef]
- Boyle, G.J.; Casey, M.J.E.; Cocks, D.G.; White, R.D.; Carman, R.J. Thermalisation time of electron swarms in xenon for uniform electric fields. Plasma Sources Sci. Technol. 2019, 28, 035009. [Google Scholar] [CrossRef]
- Boyle, G.J.; Stokes, P.W.; Robson, R.E.; White, R.D. Boltzmann’s equation at 150: Traditional and modern solution techniques for charged particles in neutral gases. J. Chem. Phys. 2023, 159, 024306. [Google Scholar] [CrossRef]
- Kumar, K.; Skullerud, H.; Robson, R.E. Kinetic theory of charged particle swarms in neutral gases. Aust. J. Phys. 1980, 33, 343–448. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover Publications Inc.: Mineola, NY, USA, 1972. [Google Scholar]
- Robson, R.; Ness, K. Velocity distribution function and transport coefficients of electron swarms in gases: Spherical-harmonics decomposition of Boltzmann’s equation. Phys. Rev. A 1986, 33, 2068. [Google Scholar] [CrossRef]
- White, R.D.; Robson, R.E.; Schmidt, B.; Morrison, M.A. Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas? J. Phys. D Appl. Phys. 2003, 36, 3125. [Google Scholar] [CrossRef]
- Petrović, Z.L.; Dujko, S.; Marić, D.; Malović, G.; Nikitović, Z.; Sasić, O.; Jovanović, J.; Stojanović, V.; Radmilović-Radjenović, M. Measurement and interpretation of swarm parameters and their application in plasma modelling. J. Phys. D Appl. Phys. 2009, 42, 194002. [Google Scholar] [CrossRef]
- Yousfi, M.; Segur, P.; Vassiliadis, T. Solution of the Boltzmann equation with ionisation and attachment: Application to SF 6. J. Phys. D Appl. Phys. 1985, 18, 359–375. [Google Scholar] [CrossRef]
- Robson, R. Transport phenomena in the presence of reactions: Definition and measurement of transport coefficients. Aust. J. Phys. 1991, 44, 685–692. [Google Scholar] [CrossRef]
- Casey, M.J.E.; Stokes, P.W.; Cocks, D.G.; Bošnjaković, D.; Simonović, I.; Brunger, M.J.; Dujko, S.; Petrović, Z.L.; Robson, R.E.; White, R.D. Foundations and interpretations of the pulsed-Townsend experiment. Plasma Sources Sci. Technol. 2021, 30, 035017. [Google Scholar] [CrossRef]
- Pack, J.L.; Voshall, R.E.; Phelps, A.V.; Kline, L.E. Longitudinal electron diffusion coefficients in gases: Noble gases. J. Appl. Phys. 1992, 71, 5363–5371. [Google Scholar] [CrossRef]
- Robson, R.E.; Kumar, K. On the validity of the two-term approximation of the electron distribution function. Aust. J. Phys. 1971, 24, 835–840. [Google Scholar] [CrossRef][Green Version]
- Brennan, M.; Ness, K. Momentum Transfer Cross Section for e–Kr Scattering. Aust. J. Phys. 1993, 46, 249–260. [Google Scholar] [CrossRef]
Energy | Elas. | MTCS | VTCS | Exc. | Energy | Elas. | MTCS | VTCS | Exc. | Ion. |
---|---|---|---|---|---|---|---|---|---|---|
[eV] | [] | [] | [] | [] | [eV] | [] | [] | [] | [] | [] |
0 | 2.72 | 2.72 | 1.81 | 0 | 10 | 4.45 | 1.53 | 1.46 | 8.19 | 0 |
1 | 2.42 | 2.41 | 1.61 | 0 | 11 | 4.33 | 1.30 | 1.34 | 1.00 | 2.70 |
1 | 1.32 | 1.30 | 8.81 | 0 | 12 | 4.22 | 1.12 | 1.22 | 1.15 | 2.26 |
0.1 | 2.12 | 1.94 | 1.38 | 0 | 13 | 4.13 | 9.75 | 1.11 | 1.27 | 4.33 |
0.2 | 9.24 | 7.74 | 5.82 | 0 | 14 | 4.06 | 8.74 | 1.02 | 1.39 | 6.27 |
0.3 | 5.22 | 4.01 | 3.13 | 0 | 15 | 3.99 | 8.08 | 9.30 | 1.49 | 8.14 |
0.4 | 3.30 | 2.33 | 1.85 | 0 | 16 | 3.92 | 7.73 | 8.53 | 1.59 | 1.01 |
0.5 | 2.22 | 1.44 | 1.15 | 0 | 17 | 3.85 | 7.63 | 7.86 | 1.70 | 1.22 |
0.6 | 1.57 | 9.44 | 7.23 | 0 | 18 | 3.76 | 7.74 | 7.29 | 1.80 | 1.43 |
0.7 | 1.15 | 6.55 | 4.63 | 0 | 19 | 3.66 | 8.01 | 6.82 | 1.90 | 1.66 |
0.8 | 8.89 | 4.91 | 3.03 | 0 | 20 | 3.54 | 8.36 | 6.44 | 1.99 | 1.89 |
0.9 | 7.28 | 4.07 | 2.12 | 0 | 21 | 3.40 | 8.75 | 6.14 | 2.06 | 2.12 |
1.0 | 6.39 | 3.79 | 1.67 | 0 | 22 | 3.25 | 9.12 | 5.91 | 2.12 | 2.37 |
1.2 | 6.10 | 4.35 | 1.75 | 0 | 23 | 3.09 | 9.43 | 5.71 | 2.17 | 2.62 |
1.4 | 7.15 | 5.93 | 2.68 | 0 | 24 | 2.92 | 9.64 | 5.54 | 2.22 | 2.87 |
1.6 | 9.77 | 1.03 | 4.38 | 0 | 25 | 2.76 | 9.76 | 5.38 | 2.26 | 3.12 |
1.8 | 1.18 | 1.10 | 5.99 | 0 | 30 | 2.01 | 9.12 | 4.59 | 2.41 | 4.27 |
2.0 | 1.49 | 1.43 | 8.07 | 0 | 35 | 1.52 | 7.71 | 3.80 | 2.47 | 5.15 |
2.2 | 1.84 | 1.77 | 1.03 | 0 | 40 | 1.22 | 6.45 | 3.18 | 2.45 | 5.76 |
2.4 | 2.22 | 2.13 | 1.25 | 0 | 45 | 1.04 | 5.50 | 2.75 | 2.40 | 6.18 |
2.6 | 2.61 | 2.48 | 1.47 | 0 | 50 | 9.29 | 4.80 | 2.45 | 2.33 | 6.47 |
2.8 | 2.99 | 2.81 | 1.67 | 0 | 55 | 8.57 | 4.28 | 2.27 | 2.27 | 6.64 |
3.0 | 3.35 | 3.11 | 1.85 | 0 | 60 | 8.10 | 3.92 | 2.13 | 2.21 | 6.74 |
3.2 | 3.69 | 3.37 | 2.00 | 0 | 65 | 7.84 | 3.58 | 2.09 | 2.15 | 6.80 |
3.4 | 4.00 | 3.58 | 2.13 | 0 | 70 | 7.68 | 3.34 | 2.06 | 2.10 | 6.81 |
3.6 | 4.26 | 3.73 | 2.22 | 0 | 75 | 7.60 | 3.14 | 2.05 | 2.05 | 6.80 |
3.8 | 4.49 | 3.84 | 2.29 | 0 | 80 | 7.58 | 2.97 | 2.05 | 1.99 | 6.77 |
4.0 | 4.67 | 3.90 | 2.34 | 0 | 85 | 7.58 | 2.82 | 2.05 | 1.93 | 6.72 |
4.2 | 4.82 | 3.92 | 2.36 | 0 | 90 | 7.61 | 2.70 | 2.06 | 1.88 | 6.66 |
4.4 | 4.93 | 3.91 | 2.37 | 0 | 95 | 7.63 | 2.58 | 2.06 | 1.82 | 6.59 |
4.6 | 5.01 | 3.87 | 2.36 | 0 | 100 | 7.67 | 2.47 | 2.06 | 1.77 | 6.51 |
4.8 | 5.07 | 3.80 | 2.34 | 0 | 110 | 7.71 | 2.27 | 2.03 | 1.67 | 6.34 |
5.0 | 5.11 | 3.72 | 2.31 | 0 | 120 | 7.73 | 2.09 | 1.98 | 1.58 | 6.17 |
5.2 | 5.13 | 3.63 | 2.28 | 0 | 130 | 7.71 | 1.92 | 1.91 | 1.50 | 6.00 |
5.4 | 5.13 | 3.53 | 2.24 | 0 | 140 | 7.66 | 1.77 | 1.82 | 1.42 | 5.83 |
5.6 | 5.13 | 3.42 | 2.21 | 0 | 150 | 7.58 | 1.64 | 1.73 | 1.35 | 5.67 |
5.8 | 5.12 | 3.31 | 2.17 | 0 | 160 | 7.49 | 1.52 | 1.64 | 1.29 | 5.52 |
6.0 | 5.10 | 3.20 | 2.13 | 0 | 170 | 7.39 | 1.42 | 1.56 | 1.23 | 5.38 |
6.2 | 5.07 | 3.09 | 2.09 | 0 | 180 | 7.28 | 1.34 | 1.48 | 1.17 | 5.24 |
6.4 | 5.05 | 2.99 | 2.05 | 0 | 190 | 7.17 | 1.27 | 1.41 | 1.12 | 5.11 |
6.6 | 5.02 | 2.88 | 2.01 | 0 | 200 | 7.06 | 1.21 | 1.36 | 1.07 | 4.98 |
6.8 | 4.98 | 2.78 | 1.97 | 0 | 250 | 6.56 | 1.05 | 1.17 | 9.46 | 4.48 |
7.0 | 4.93 | 2.66 | 1.93 | 1.63 | 300 | 6.12 | 1.00 | 1.07 | 8.05 | 4.03 |
7.2 | 4.89 | 2.55 | 1.88 | 3.03 | 350 | 5.74 | 9.84 | 1.00 | 6.94 | 3.65 |
7.4 | 4.84 | 2.45 | 1.84 | 3.62 | 400 | 5.42 | 9.70 | 9.36 | 6.05 | 3.33 |
7.6 | 4.81 | 2.36 | 1.81 | 3.94 | 450 | 5.13 | 9.53 | 8.75 | 5.33 | 3.06 |
7.8 | 4.77 | 2.27 | 1.77 | 4.23 | 500 | 4.88 | 9.32 | 8.17 | 4.74 | 2.82 |
8.0 | 4.74 | 2.19 | 1.74 | 4.39 | 550 | 4.66 | 9.07 | 7.62 | 4.54 | 2.66 |
8.2 | 4.70 | 2.11 | 1.71 | 4.53 | 600 | 4.47 | 8.81 | 7.11 | 4.11 | 2.48 |
8.4 | 4.67 | 2.04 | 1.68 | 4.76 | 650 | 4.30 | 8.54 | 6.64 | 3.74 | 2.32 |
8.6 | 4.64 | 1.96 | 1.65 | 5.09 | 700 | 4.15 | 8.27 | 6.22 | 3.42 | 2.17 |
8.8 | 4.61 | 1.89 | 1.62 | 5.87 | 750 | 4.01 | 8.00 | 5.83 | 3.14 | 2.04 |
9.0 | 4.58 | 1.82 | 1.59 | 6.51 | 800 | 3.89 | 7.73 | 5.48 | 2.90 | 1.92 |
9.2 | 4.55 | 1.76 | 1.56 | 6.90 | 850 | 3.78 | 7.47 | 5.17 | 2.68 | 1.81 |
9.4 | 4.52 | 1.70 | 1.54 | 7.24 | 900 | 3.68 | 7.22 | 4.88 | 2.49 | 1.71 |
9.6 | 4.50 | 1.64 | 1.51 | 7.55 | 950 | 3.59 | 6.98 | 4.62 | 2.32 | 1.62 |
9.8 | 4.47 | 1.59 | 1.48 | 7.86 | 1000 | 3.51 | 6.74 | 4.39 | 2.17 | 1.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyle, G.J.; Muccignat, D.L.; Machacek, J.R.; McEachran, R.P. Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td). Atoms 2025, 13, 82. https://doi.org/10.3390/atoms13100082
Boyle GJ, Muccignat DL, Machacek JR, McEachran RP. Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td). Atoms. 2025; 13(10):82. https://doi.org/10.3390/atoms13100082
Chicago/Turabian StyleBoyle, Gregory J., Dale L. Muccignat, Joshua R. Machacek, and Robert P. McEachran. 2025. "Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td)" Atoms 13, no. 10: 82. https://doi.org/10.3390/atoms13100082
APA StyleBoyle, G. J., Muccignat, D. L., Machacek, J. R., & McEachran, R. P. (2025). Integral Cross Sections and Transport Properties for Electron–Radon Scattering over a Wide Energy Range (0–1000 eV) and a Reduced Electric Field Range (0.01–1000 Td). Atoms, 13(10), 82. https://doi.org/10.3390/atoms13100082