Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications
Abstract
1. Introduction
2. General Characteristics of the Method
3. Overlap and Potential Energy Matrices
4. Kinetic Energy Matrix
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FE | Fock expansion |
WF | wave function |
HSC | hyperspherical coordinates |
AFC | angular Fock coefficient |
HH | hyperspherical harmonic |
ME | matrix element |
BF | basis function |
SBF | special basis function |
RHS | right hand side |
CFHHM | correlation function hyperspherical harmonic method |
VMNN | variational method of near the nucleus (calculations) |
Appendix A
References
- Fock, V.A. On the Schrödinger Equation of the Helium Atom. Izv. Akad. Nauk SSSR Ser. Fiz. 1954, 18, 161–174. [Google Scholar]
- Fock, V.A. Selected Works: Quantum Mechanics and Quantum Field Theory; Fadeev, L.D., Khalfin, L.A., Komarov, I.V., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; p. 525. [Google Scholar]
- Abbott, P.C.; Maslen, E.N. Coordinate systems and analytic expansions for three-body atomic wavefunctions: I. Partial summation for the Fock expansion in hyperspherical coordinates. J. Phys. A Math. Gen. 1987, 20, 2043–2075. [Google Scholar] [CrossRef]
- Liverts, E.Z.; Barnea, N. Angular Fock coefficients. Refinement and further development. Phys. Rev. A 2015, 92, 042512. [Google Scholar] [CrossRef]
- Liverts, E.Z. Analytic calculation of the edge components of the angular Fock coefficients. Phys. Rev. A 2016, 94, 022504. [Google Scholar] [CrossRef]
- Liverts, E.Z.; Krivec, R. Fock Expansion for Two-Electron Atoms: High-Order Angular Coefficients. Atoms 2022, 10, 135. [Google Scholar] [CrossRef]
- Morgan, J.D., III. Convergence properties of Fock’s expansion for S-state eigenfunctions of the helium atom. Theor. Chim. Acta 1986, 69, 181–223. [Google Scholar] [CrossRef]
- Nakashima, H.; Nakatsuji, H. Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method. J. Chem. Phys. 2007, 127, 224104. [Google Scholar] [CrossRef]
- Rodriguez, K.V.; Gasaneo, G.; Mitnik, D.M. Accurate and simple wavefunctions for the helium isoelectronic sequence with correct cusp conditions. J. Phys. B 2007, 40, 3923–3939. [Google Scholar] [CrossRef]
- Forrey, R.C. Compact representation of helium wave functions in perimetric and hyperspherical coordinates. Phys. Rev. A 2004, 69, 022504. [Google Scholar] [CrossRef]
- Drake, G.W.F. High Precision Calculations for Helium. In Atomic, Molecular, and Optical Physics Handbook; Drake, G.W.F., Ed.; AIP Press: New York, NY, USA, 1996. [Google Scholar]
- Haftel, M.I.; Mandelzweig, V.B. Exact Solution of Coupled Equations and the Hyperspherical Formalism: Calculation of Expectation Values and Wavefunctions of Three Coulomb-Bound Particles. Ann. Phys. 1983, 150, 48–91. [Google Scholar] [CrossRef]
- Haftel, M.I.; Mandelzweig, V.B. Fast Convergent Hyperspherical Harmonic Expansion for Three-Body Systems. Ann. Phys. 1989, 189, 29–52. [Google Scholar] [CrossRef]
- Haftel, M.I.; Krivec, R.; Mandelzweig, V.B. Power Series Solution of Coupled Differential Equations in One Variable. J. Comp. Phys. 1996, 123, 149–161. [Google Scholar] [CrossRef][Green Version]
- Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177. [Google Scholar] [CrossRef]
- Myers, C.R. Fock’s expansion, Kato’s cusp conditions, and the exponential ansatz. Phys. Rev. 1991, A9, 5537–5546. [Google Scholar] [CrossRef]
- Frolov, A.M. Exponential representation in the Coulomb threebody problem. J. Phys. B 2004, 37, 2917–2932. [Google Scholar] [CrossRef]
- Frolov, A.M. Field shifts and lowest order QED corrections for the ground 11S and 23S states of the helium atoms. J. Chem. Phys. 2007, 126, 104302. [Google Scholar] [CrossRef] [PubMed]
- Frolov, A.M. On the Q-dependence of the lowest-order QED corrections and other properties of the ground 11S-states in the two-electron ions. Chem. Phys. Let. 2015, 638, 108–115. [Google Scholar] [CrossRef]
- Liverts, E.Z.; Barnea, N. S-states of helium-like ions. Comput. Phys. Comm. 2011, 182, 1790–1795. [Google Scholar] [CrossRef]
- Liverts, E.Z.; Barnea, N. Three-body systems with Coulomb interaction. Bound and quasi-bound S-states. Comput. Phys. Comm. 2013, 184, 2596–2603. [Google Scholar] [CrossRef]
- Lopez Vieyra, J.C.; Turbiner, A.V. On 1/Z expansion for two-electron systems. arXiv 2013, arXiv:1309.2707. [Google Scholar]
- Gottschalk, J.E.; Maslen, E.N. Coordinate systems and analytic expansions for three-body atomic wavefunctions: III. Derivative continuity via solution to Laplace’s equation. J. Phys. A Math. Gen. 1987, 20, 2781–2803. [Google Scholar] [CrossRef]
- Liverts, E.Z. Two-particle atomic coalescences: Boundary conditions for the Fock coefficient components. Phys. Rev. A 2016, 94, 022506. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Volume 1: Elementary Functions; Gordon and Breach Science Publishers: New York, NY, USA, 1986. [Google Scholar]
n | m | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 | 1 | 0 | 0 | ||||||
5012817232500000 | 2 | 0 | 2 | ||||||
3 | 0 | 4 | |||||||
4 | 0 | 6 | |||||||
5 | 0 | 8 | |||||||
6 | 0 | 10 | |||||||
7 | 8 | 0 | |||||||
8 | 8 | 2 | |||||||
9 | 6 | 0 | |||||||
10 | 6 | 2 | |||||||
11 | 2 | 0 | |||||||
12 | 2 | 2 | |||||||
13 | 2 | 4 | |||||||
14 | 2 | 6 | |||||||
15 | 4 | 0 | |||||||
16 | 4 | 2 | |||||||
17 | 4 | 4 | |||||||
18 | 4 | 6 | |||||||
4 | 1 | 0 | 0 | ||||||
15431472000 | 2 | 2 | 0 | ||||||
3 | 4 | 0 | |||||||
4 | 6 | 0 | |||||||
5 | 8 | 0 | |||||||
6 | 0 | 2 | |||||||
7 | 0 | 4 | |||||||
8 | 0 | 6 | |||||||
9 | 0 | 8 | |||||||
10 | 2 | 2 | |||||||
11 | 2 | 4 | |||||||
12 | 4 | 2 | |||||||
13 | 4 | 4 | |||||||
3 | 1 | 0 | 0 | ||||||
170100 | 2 | 2 | 0 | 2064 | |||||
3 | 4 | 0 | 2064 | ||||||
4 | 0 | 2 | |||||||
5 | 0 | 4 | 1112 | ||||||
6 | 0 | 6 | 1112 | ||||||
7 | 2 | 2 | 2064 | ||||||
8 | 4 | 2 | 2064 | ||||||
2 | 1 | 0 | 0 | ||||||
180 | 2 | 2 | 0 | ||||||
3 | 4 | 0 | |||||||
4 | 0 | 2 | |||||||
5 | 0 | 4 | |||||||
1 | 1 | 0 | 0 | ||||||
2 | 0 | 2 | |||||||
0 | 1 | 1 | 0 | 0 |
Atom/Ion | Z | ||||||
---|---|---|---|---|---|---|---|
0.38238 | 516 | 1.465 279 051 825 740 | 4.6 (−13) | 0.682115722 | 0.20291 | ||
He | 2 | 0.47675 | 516 | 2.903 724 377 034 119 | 8.7 (−15) | 1.8104293184 | 1.86874 |
Li+ | 3 | 0.62285 | 516 | 7.279 913 412 669 306 | 4.1 (−17) | 6.852009437 | 33.32118 |
Be2+ | 4 | 0.72787 | 516 | 13.655 566 238 423 587 | 1.4 (−16) | 17.198172547 | 231.0389 |
B3+ | 5 | 0.80232 | 516 | 22.030 971 580 242 781 | −1.4 (−16) | 34.75874366 | 996.0099 |
C4+ | 6 | 0.85240 | 516 | 32.406 246 601 898 530 | −1.3 (−16) | 61.44357805 | 3221.850 |
N5+ | 7 | 0.88221 | 441 | 44.781 445 148 772 703 | 5.3 (−16) | 99.1625345 | 8596.074 |
O6+ | 8 | 0.89466 | 441 | 59.156 595 122 757 924 | 3.6 (−16) | 149.8254726 | 19,974.31 |
F7+ | 9 | 0.89193 | 441 | 75.531 712 363 959 490 | 2.6 (−16) | 215.3422520 | 41,827.47 |
Ne8+ | 10 | 0.87572 | 441 | 93.906 806 515 037 548 | 2.0 (−16) | 297.6227308 | 80,761.89 |
Na9+ | 11 | 0.84738 | 441 | 114.281 883 776 072 721 | 1.5 (−16) | 398.5767736 | 146,112.4 |
Mg10+ | 12 | 0.80801 | 441 | 136.656 948 312 646 929 | 1.2 (−16) | 520.1142308 | 250,608.2 |
Al11+ | 13 | 0.75854 | 441 | 161.032 003 026 058 359 | 1.0 (−16) | 664.1449752 | 411,112.2 |
Si12+ | 14 | 0.69974 | 441 | 187.407 049 998 662 925 | 8.5 (−17) | 832.5788588 | 649,432.6 |
P13+ | 15 | 0.63229 | 441 | 215.782 090 763 537 159 | 7.2 (−17) | 1027.325721 | 993,207.9 |
S14+ | 16 | 0.55675 | 441 | 246.157 126 474 254 738 | 6.2 (−17) | 1250.295442 | 147,686.5 (+1) |
Cl15+ | 17 | 0.47364 | 441 | 278.532 158 015 400 094 | 5.3 (−17) | 1503.397895 | 214,264.8 (+1) |
Ar16+ | 18 | 0.38340 | 441 | 312.907 186 076 611 148 | 4.7 (−17) | 1788.543432 | 304,172.8 (+1) |
K17+ | 19 | 0.28642 | 441 | 349.282 211 203 453 166 | 4.1 (−17) | 2107.640384 | 423,536.9 (+1) |
Ca18+ | 20 | 0.18307 | 441 | 387.657 233 833 158 555 | 3.7 (−17) | 2462.600113 | 579,618.9 (+1) |
Sc19+ | 21 | 0.07366 | 441 | 428.032 254 320 234 690 | 3.3 (−17) | 2855.332029 | 780,947.6 (+1) |
Ti20+ | 22 | −0.04152 | 441 | 470.407 272 955 138 383 | 2.9 (−17) | 3287.745943 | 103,745.9 (+2) |
V21+ | 23 | −0.16221 | 441 | 514.782 289 978 111 773 | 2.7 (−17) | 3761.751772 | 136,064.1 (+2) |
Cr22+ | 24 | −0.28816 | 441 | 561.157 305 589 581 271 | 2.4 (−17) | 4279.259269 | 176,369.1 (+2) |
Mn23+ | 25 | −0.41916 | 441 | 609.532 319 958 075 745 | 2.2 (−17) | 4842.178389 | 226,167.5 (+2) |
Fe24+ | 26 | −0.55501 | 441 | 659.907 333 226 327 804 | 2.0 (−17) | 5452.418955 | 287,169.7 (+2) |
Co25+ | 27 | −0.69552 | 441 | 712.282 345 516 026 550 | 1.8 (−17) | 6111.890859 | 361,307.4 (+2) |
Ni26+ | 28 | −0.84052 | 441 | 766.657 356 931 557 099 | 1.7 (−17) | 6822.503872 | 450,752.1 (+2) |
Zn28+ | 30 | −1.14334 | 441 | 881.407 377 488 360 605 | 1.5 (−17) | 8404.792902 | 685,562.3 (+2) |
Zr38+ | 40 | −2.88133 | 441 | 1575.157 449 525 559 44 | 7.8 (−18) | 20,034.060 | 392,478.5 (+3) |
Sn48+ | 50 | −4.92537 | 441 | 2468.907 492 812 711 76 | 4.9 (−18) | 39,260.262 | 151,406.5 (+4) |
Nd58+ | 60 | −7.21331 | 441 | 3562.657 521 697 319 28 | 3.3 (−18) | 67,993.257 | 455,483.1 (+4) |
Yb68+ | 70 | −9.70406 | 441 | 4856.407 542 342 006 26 | 2.4 (−18) | 108,142.90 | 115,468.8 (+5) |
Hg78+ | 80 | −12.3685 | 441 | 6350.157 557 832 474 81 | 1.8 (−18) | 161,619.06 | 258,314.5 (+5) |
Th88+ | 90 | −15.1846 | 441 | 8043.907 569 884 711 27 | 1.4 (−18) | 230,331.59 | 525,303.7 (+5) |
Fm98+ | 100 | −18.1357 | 441 | 9937.657 579 529 067 14 | 1.1 (−18) | 316,190.36 | 990,905.1 (+5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liverts, E.Z.; Krivec, R. Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications. Atoms 2024, 12, 69. https://doi.org/10.3390/atoms12120069
Liverts EZ, Krivec R. Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications. Atoms. 2024; 12(12):69. https://doi.org/10.3390/atoms12120069
Chicago/Turabian StyleLiverts, Evgeny Z., and Rajmund Krivec. 2024. "Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications" Atoms 12, no. 12: 69. https://doi.org/10.3390/atoms12120069
APA StyleLiverts, E. Z., & Krivec, R. (2024). Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications. Atoms, 12(12), 69. https://doi.org/10.3390/atoms12120069