On Invariant Vectors in the Presence of Electric and Magnetic Fields
Abstract
:1. Introduction
2. The Kepler Problem: The Runge–Lenz Vector and Bertrand’s Theorem
2.1. The Runge–Lenz, Eccentricity, and Hamilton Vectors
2.2. The Bertrand Theorem
- First Binet formula:
- Second Binet formula:
3. The Runge–Lenz Vector in Quantum Mechanics
3.1. Construction of the Rotation Group Quantum Mechanical Analog to the Runge–Lenz Vector
3.2. The Algebra of the , Generators
3.3. Identifying the Closed Algebra of and with the Group
3.4. Energy Levels of Hydrogen Atom
4. Analogy with the Harmonic Potential: Invariant Tensor
- The orbit is closed (Bertrand’s theorem).
- The motion is periodic (degeneracy).
- There is a Laplace invariant.
- The motion has a dynamical symmetry higher than the rotation geometrical symmetry.
- For each value of the energy, one can find an infinity of classical orbits of different shapes.
- The separation of variables applies to several systems of coordinates.
- The quantum states are degenerate.
4.1. The Laplace Tensor
4.2. The Kustaanheimo–Stiefel Transformation
4.3. Integrability and Similarity
5. Invariant in the Presence of an Electric Field: The Redmond Invariant
6. Oks’ Supergeneralized Runge–Lenz Vector for the Two-Center Problem
7. Invariants in the Presence of a Magnetic Field
7.1. The Landau–Avron–Sivardière Approach
7.2. The Zeeman Effect
7.3. The Spectrum of the Hydrogen Atom in Electric and Magnetic Fields
7.4. Magnetic Monopole
8. The Charge-Dyon System
8.1. Classical Approach of the Charged Monopole Problem
8.2. Quantum Mechanical MIC–Kepler Problem
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | McIntosh and Cisneros |
Appendix A. Parabolic Quantum Numbers
References
- Noether, E. Gleichungen mit vorgeschriebener Gruppe. Math. Ann. 1917, 78, 221–229. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Hermann, J. Metodo d’investigare l’Orbite de’ Pianeti, nell’ipotesi che le forze centrali o pure le gravità. G Lett. D’Italia 1710, 2, 447–467. (In Italian) [Google Scholar]
- Hermann, J. Extrait d’une Lettre de M. Hermann à M. Bernoulli datée de Padoue le 12; Mémoires de l’Académie Royale des Sciences: Paris, France, 1712; pp. 519–521. (In French) [Google Scholar]
- Bernoulli, J.L. Extrait de la Réponse de M. Bernoulli à M. Hermann datée de Basle le 7 octobre 1710; Mémoires de l’Académie Royale des Sciences: Paris, France, 1712; pp. 521–533. (In French) [Google Scholar]
- Laplace, P.S. Celestial Mechanics; Chelsea: New York, NY, USA, 1969; Volume I, p. 344. [Google Scholar]
- Hamilton, W.R. The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction. Proc. R. Ir. Acad. 1847, 3, 344ff. [Google Scholar]
- Runge, C. Vektoranalysis; S. Hirzel: Leipzig, Germany, 1919; Volume I, p. 70. [Google Scholar]
- Lenz, W. Über den Bewegungsverlauf und Quantenzustande der gestorten Keplerbewegung. Z. Phys. 1924, 24, 197–207. (In German) [Google Scholar] [CrossRef]
- Pauli, W. Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys. 1926, 36, 336–363. (In German) [Google Scholar] [CrossRef]
- Guichardet, A. Histoire d’un vecteur tricentenaire. Gaz. Société Mathématique Fr. 2008, 117, 23–33. (In French) [Google Scholar]
- Bertrand, J. Théorème relatif au mouvement dun point attiré vers un center fixe. C. R. Acad. Sci. 1873, 77, 849–853. [Google Scholar]
- Fock, V. Zur Theorie des Wasserstoffatoms. Z. Phys. 1935, 98, 145–154. (In German) [Google Scholar] [CrossRef]
- Bargmann, V. Zur Theorie des Wasserstoffatoms: Bemerkungen zur gleichnamigen Arbeit von V. Fock. Z. Phys. 1936, 99, 576–582. (In German) [Google Scholar] [CrossRef]
- Jauch, J.M.; Hill, E.L. On the problem of degeneracy in quantum mechanics. Phys. Rev. 1940, 57, 641–645. [Google Scholar] [CrossRef]
- Redmond, P.J. Generalization of the Runge–Lenz vector in the presence of an electric field. Phys. Rev. 1964, 133, B1352–B1353. [Google Scholar] [CrossRef]
- Alhassid, Y.; Hinds, E.A.; Meschede, D. Dynamical symmetries of the perturbed hydrogen atom: The van der Waals interaction. Phys. Rev. Lett. 1987, 59, 1545–1548. [Google Scholar] [CrossRef]
- Blümel, R.; Kappler, W.; Quint, W.; Walther, H. Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 1989, 40, 808–824. [Google Scholar] [CrossRef]
- Simonović, N.S.; Nazmitdinov, R.G. Hidden symmetries of two-electron quantum dots in a magnetic field. Phys. Rev. B 2003, 67, 041305(R). [Google Scholar] [CrossRef] [Green Version]
- Kryukov, N.; Oks, E. Supergeneralized Runge–Lenz vector in the problem of two Coulomb or Newton centers. Phys. Rev. A 2012, 85, 054503. [Google Scholar] [CrossRef]
- Oks, E.; Uzer, T. A robust perturbation theory for degenerate states based on exact constants of the motion. Europhys. Lett. 2000, 49, 554–557. [Google Scholar] [CrossRef]
- Schwinger, J. A Magnetic model of matter. Science 1969, 165, 757–761. [Google Scholar] [CrossRef]
- Dirac, P. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 1931, 133, 60–72. [Google Scholar]
- Goldstein, H. Celestial Mechanics, 2nd ed.; Addison-Wesley, Reading: Boston, MA, USA, 1980. [Google Scholar]
- Goldstein, H. Prehistory of the Runge–Lenz vector. Am. J. Phys. 1975, 43, 737–738. [Google Scholar] [CrossRef]
- Goldstein, H. More on the prehistory of the Laplace or Runge–Lenz vector. Am. J. Phys. 1976, 44, 1123–1124. [Google Scholar] [CrossRef]
- Cajori, F. A History of Mathematical Notations; Dover: New York, NY, USA, 1993. [Google Scholar]
- Bringuier, E. Eccentricity as a vector: A concise derivation of the orbit equation in celestial mechanics. Eur. J. Phys. 2004, 25, 369–372. [Google Scholar] [CrossRef]
- Lynden-Bell, D. Hamilton’s eccentricity vector generalized to Newton wonders. Observatory 2006, 126, 176–182. [Google Scholar]
- Hey, J.D. On the Runge–Lenz–Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 185701. [Google Scholar] [CrossRef]
- Martínez y romero, R.P.; Núñez-Yépez, H.N.; Salas-Brito, A.L. The Hamilton vector as an extra constant of motion in the Kepler problem. Eur. J. Phys. 1993, 14, 71–73. [Google Scholar] [CrossRef]
- Martinez-y-Romero, R.P.; Nuñez-Yépez, H.N.; Salas-Brito, A.L. Closed orbits and constants of motion in classical mechanics. Eur. J. Phys. 1992, 13, 26–31. [Google Scholar] [CrossRef]
- Sivardière, J. Comments on the dynamical invariants of the Kepler and harmonic motions. Eur. J. Phys. 1992, 13, 64–69. [Google Scholar] [CrossRef]
- Sivardière, J. Precession of elliptic orbits. Am. J. Phys. 1984, 52, 909–912. [Google Scholar] [CrossRef]
- Sivardière, J. Perturbed elliptic motion. Eur. J. Phys. 1986, 2, 283. [Google Scholar] [CrossRef]
- Santos, F.C.; Soares, V.; Tort, A.C. An English translation of Bertrand’s theorem. Lat.-Am. J. Phys. Educ. 2011, 5, 694–696. [Google Scholar]
- Brown, L.S. Forces giving no orbit precession. Am. J. Phys. 1978, 46, 930–931. [Google Scholar] [CrossRef]
- Goldstein, H. Classical Mechanics; Addison Wesley: New York, NY, USA, 1981; pp. 601–605. [Google Scholar]
- Tikochinsky, Y. A simplified proof of Bertrand’s theorem. Am. J. Phys. 1988, 56, 1073–1075. [Google Scholar] [CrossRef]
- Castro-Quilantán, J.L.; Del Río-Correa, J.L.; Medina, M.A.R. Alternative proof of Bertrand’s theorem using a phase space approach. Rev. Mex. FÍsica 1996, 42, 867–877. [Google Scholar]
- Zarmi, Y. The Bertrand theorem revisited. Am. J. Phys. 2002, 70, 446–449. [Google Scholar] [CrossRef]
- Fasano, A.; Marni, S. Analytic Mechanics—An Introduction; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Grandati, Y.; Bérard, A.; Ménas, F. Inverse problem and Bertrand’s theorem. Am. J. Phys. 2008, 76, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Soares, V.; Tort, A. Determination of the apsidal angle and Bertrand’s theorem. Phys. Rev. E 2009, 79, 036605. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.A. A truly elementary proof of Bertrand’s theorem. Am. J. Phys. 2015, 83, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, J.; Williams, J. An even simpler “truly elementary” proof of Bertrand’s theorem. J. Undergrad. Rep. Phys. 2019, 29, 100005. [Google Scholar] [CrossRef] [Green Version]
- Binet, J.P. Mémoire sur l’intégration des équations linéaires aux différences finies, d’un ordre quelconque, à coefficients variables. C. R. Hebd. Séances L’académie Sci. 1843, 17, 559–567. (In French) [Google Scholar]
- Rax, J.-M. Mécanique Analytique—Adiabaticité, Résonances, Chaos; Dunod: Paris, France, 2020. (In French) [Google Scholar]
- Schiff, L.I. Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1968; Volume 1. [Google Scholar]
- Maclay, G.J. Dynamical symmetries of the H atom, one of the most important tools of modern physics: SO(4) to SO(4, 2), background, theory, and use in calculating radiative shifts. Symmetry 2020, 12, 1323. [Google Scholar] [CrossRef]
- Pain, J.-C. Sum rules for Clebsch–Gordan coefficients from group theory and Runge–Lenz-Pauli vector. J. Phys. Commun. 2022, 6, 055007. [Google Scholar] [CrossRef]
- Greenberg, D.F. Accidental degeneracy. Am. J. Phys. 1966, 34, 1101–1109. [Google Scholar] [CrossRef]
- Sivardière, J. Comparaison entre le mouvement de Kepler et le mouvement elliptique harmonique. Bull. Union Phys. 1993, 87, 165–194. (In French) [Google Scholar]
- Fradkin, D.M. Three-dimensional isotropic oscillator and SU(3). Am. J. Phys. 1965, 3, 207–211. [Google Scholar] [CrossRef]
- Sivardière, J. Laplace vectors for the harmonic oscillator. Am. J. Phys. 1989, 57, 524–525. [Google Scholar] [CrossRef]
- Buch, L.H.; Denman, H.H. Conserved and piecewise-conserved Runge vectors for the isotropic harmonic oscillator. Am. J. Phys. 1975, 43, 1046–1048. [Google Scholar] [CrossRef]
- Zhou, G. Tensor-product representation of Laplace–Runge–Lenz vector for two-body Kepler systems. Wuhan Univ. J. Nat. Sci. 2017, 22, 51–56. [Google Scholar] [CrossRef]
- Dyson, F.J. Mathematics in the physical sciences. Sci. Am. 1964, 211, 128–147. [Google Scholar] [CrossRef]
- Stedman, G.E. Visualising higher continuous symmetries in the Jahn-Teller effect. Eur. J. Phys. 1983, 4, 156–161. [Google Scholar] [CrossRef]
- Grant, A.K.; Rosner, J.L. Classical orbits in power-law potentials. Am. J. Phys. 1994, 62, 310–315. [Google Scholar] [CrossRef]
- Bateman, S. The mapping of the Coulomb problem into the oscillator. Am. J. Phys. 1992, 60, 833–836. [Google Scholar] [CrossRef]
- Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 1965, 218, 204–219. [Google Scholar] [CrossRef]
- Kibler, M.; Négadi, T. Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator. Lett. Nuovo Cim. 1984, 39, 319–323. [Google Scholar] [CrossRef]
- Chen, A.C.; Kibler, M. Connection between the hydrogen atom and the four-dimensional oscillator. Phys. Rev. A 1985, 31, 3960–3963. [Google Scholar] [CrossRef]
- Lambert, D.; Kibler, M. An algebraic and geometric approach to non-bijective quadratic transformations. J. Phys. A Math. Gen. 1988, 21, 307–343. [Google Scholar] [CrossRef]
- Iwai, T. On reduction of two degrees of freedom Hamiltonian system by an action, and as a dynamical group. J. Math. Phys. 1985, 26, 885–893. [Google Scholar] [CrossRef]
- Boiteux, M. Theory of nonbijective canonical transformations in mechanics: Application to the Coulomb problem. J. Math. Phys. 1982, 3, 1311–1314. [Google Scholar] [CrossRef]
- Chen, A.C. Theoretical basis for Coulomb matrix elements in the oscillator representation. J. Math. Phys. 1982, 23, 412–416. [Google Scholar] [CrossRef]
- Cahill, E. The Kustaanheimo–Stiefel transformation applied to the hydrogen atom: Using the constraint equation and resolving a wavefunction discrepancy. J. Phys. A Math. Gen. 1990, 23, 1519–1522. [Google Scholar] [CrossRef]
- Saha, P. Interpreting the Kustaanheimo–Stiefel transform in gravitational dynamics. Mon. Not. R. Astron. Soc. 2009, 400, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H. A new derivation of the Kustaanheimo–Stiefel variable. Celest. Mech. 1982, 28, 239–242. [Google Scholar] [CrossRef]
- Weigert, S.; Thomas, H. Classical degeneracy and the existence of additional constants of motion. Am. J. Phys. 1981, 61, 272–277. [Google Scholar] [CrossRef]
- Prince, G.E.; Eliezer, C.J. On the Lie symmetries of the classical Kepler problem. J. Phys. A 1981, 14, 587–596. [Google Scholar] [CrossRef]
- Campuzano-Cardonata, O.J.; Nuñez-Yepez, H.N.; Salas-Brito, A.L.; Sanchez-Ortiz, G.I. Constant of motion for the hydrogen atom in an external field: A classical view. Eur. J. Phys. 1995, 16, 220–222. [Google Scholar] [CrossRef]
- Hughes, J.W.B. Stark states and O(4) symmetry of hydrogenic atoms. Proc. Phys. Soc. 1967, 91, 810–818. [Google Scholar] [CrossRef]
- Gurarie, D. Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications; North Holland Mathematics Studies; North Holland: Amsterdam, The Netherlands, 1992; Volume 174, p. 390. [Google Scholar]
- Krivchenkov, V.D.; Liberman, M.A. Quantum numbers for the problem of two coulomb centers. Sov. Phys. J. 1968, 11, 14–17. [Google Scholar] [CrossRef]
- Sanders, P.; Oks, E. Correcting the input data for calculating the asymmetry of hydrogenic spectral lines in plasmas. Atoms 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Sholin, G.V.; Demura, A.V.; Lisitsa, V.S. Electron Impact Broadening of Stark Sublevels of a Hydrogen Atom in a Plasma; Preprint IAE-2232; Moscow Institute of Atomic Energy: Moscow, Russia, 1972. (In Russian) [Google Scholar]
- Gavrilenko, V.P. Resonant modification of quasistatic profiles of spectral lines of hydrogen in a plasma under the influence of noncollinear harmonic electric fields. Sov. Phys. JETP 1991, 92, 624–630. [Google Scholar]
- Clark, C.W. Case of broken symmetry in the quadratic Zeeman effect. Phys. Rev. A 1981, 24, 605–607. [Google Scholar] [CrossRef]
- Sholin, G.V. On the nature of the asymmetry of the spectra line profiles of hydrogen in a dense plasma. Opt. Spectrosc. 1969, 26, 275–282. [Google Scholar]
- Liberman, M.A. Hydrogen atom in a magnetic field as an exactly solvable system without dynamical symmetries. Phys. Lett. A 2022, 445, 128250. [Google Scholar] [CrossRef]
- Avron, Y. Harmonic motions. Am. J. Phys. 1986, 54, 659–660. [Google Scholar] [CrossRef]
- Davey, K.R.; Karras, M. On the constants of motion governing an electron in a magnetic field constrained by an electrostatic central force. Eur. J. Phys. 1983, 4, 165–169. [Google Scholar] [CrossRef]
- Ritter, O.M. Symmetries and invariants for some cases involving charged particles and general electromagnetic fields: A brief review. Braz. J. Phys. 2000, 30, 438–445. [Google Scholar] [CrossRef]
- Kerner, R. Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. Henri Poincaré Sect. A 1968, 9, 143–152. [Google Scholar]
- Jackiw, R. Dynamical symmetry of the magnetic monopole. Ann. Phys. 1980, 129, 183–200. [Google Scholar] [CrossRef]
- Sivardière, J. On the classical motion of a charge in the field of a magnetic monopole. Eur. J. Phys. 2000, 21, 183–190. [Google Scholar] [CrossRef]
- Solov’ev, E.A. Approximate motion integral for a hydrogen atom in a magnetic field. JETP Lett. 1981, 54, 265–268. [Google Scholar]
- Solov’ev, E.A. The hydrogen atom in a weak magnetic field. Sov. Phys. JETP 1982, 55, 1017–1022. [Google Scholar]
- Herrick, D.R. Symmetry of the quadratic Zeeman effect for hydrogen. Phys. Rev. A 1982, 26, 323–329. [Google Scholar] [CrossRef]
- Sivardière, J. On the motion of a charge in a magnetic field. Eur. J. Phys. 1988, 9, 61–63. [Google Scholar] [CrossRef]
- Yuzbashyan, E.A.; Happer, W.; Altshuler, B.L.; Shastry, S.B. Extracting hidden symmetry from the energy spectrum. J. Phys. A Math. Gen. 2003, 2577–2588. [Google Scholar] [CrossRef] [Green Version]
- Demura, A.; Oks, E. New method for polarization measurements of magnetic fields in dense plasmas. Trans. Plasma Sci. 1998, 26, 1251–1258. [Google Scholar] [CrossRef]
- Doron, R.; Arad, R.; Tsigutkin, K.; Osin, D.; Weingarten, A.; Starobinets, A.; Bernshtam, V.A.; Stambulchik, E.; Ralchenko, Y.V.; Maron, Y.; et al. Plasma dynamics in pulsed strong magnetic fields. Phys. Plasmas 2004, 11, 2411–2418. [Google Scholar] [CrossRef]
- Stambulchik, E.; Tsigutkin, K.; Maron, Y. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett. 2007, 98, 225001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D.A.; Jacobs, V.L.; Seely, J.F.; Oliver, B.V.; et al. Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes. Phys. Plasmas 2011, 18, 093301. [Google Scholar] [CrossRef] [Green Version]
- Kieu, N.; Rosato, J.; Stamm, R.; Kovačević-Dojcinović, J.; Dimitrijević, M.S.; Popović, L.Č; Simić, Z. A New Analysis of Stark and Zeeman Effects on hydrogen lines in magnetized DA white dwarfs. Atoms 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Dalimier, E.; Oks, E. X-ray spectroscopy based diagnostic of gigaGauss magnetic fields during relativistic laser-plasma interactions. Atoms 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, S. Line shapes in a magnetic field: Trajectory modifications I: Electrons. Atoms 2019, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Alexiou, S. Line shapes in a magnetic field: Trajectory modifications II: Full collision-time statistics. Atoms 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Rosato, J. Hydrogen line shapes in plasmas with large magnetic fields. Atoms 2020, 8, 74. [Google Scholar] [CrossRef]
- Ferri, S.; Peyrusse, O.; Calisti, A. Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields. Matter Radiat. Extrem. 2022, 7, 015901. [Google Scholar] [CrossRef]
- Demkov, Y.N.; Monozon, B.S.; Ostrovskii, V.N. Energy levels of a hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP 1970, 30, 775–776. [Google Scholar]
- Braun, P.A.; Solov’ev, E.A. Transformation of the spectrum of atomic hydrogen in crossed electric and magnetic fields. J. Phys. B At. Mol. Opt. Phys. 1984, 17, L211–L216. [Google Scholar] [CrossRef]
- Solov’ev, E.A. Second order perturbation theory for the hydrogen atom in crossed electric and magnetic fields. Sov. Phys. JETP 1983, 58, 63–66. [Google Scholar]
- Poincaré, H. Remarques sur une expérience de M. Birkeland. C. R. Acad. Sci. 1896, 123, 530–533. (In French) [Google Scholar]
- ’t Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 1974, 79, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.M. Particle Spectrum in the Quantum Field Theory. JETP Lett. 1974, 20, 194–195. [Google Scholar]
- Mardoyan, L.G.; Petrosyan, L.S.; Sarkisyan, H.A. Charge-dyon bound system in the spherical quantum well. Phys. Rev. A 2003, 68, 014103. [Google Scholar] [CrossRef] [Green Version]
- Zwanziger, D. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys. Rev. 1968, 176, 1480–1488. [Google Scholar] [CrossRef]
- McIntosh, H.; Cisneros, A. Degeneracy in the presence of a magnetic monopole. J. Math. Phys. 1970, 11, 896–916. [Google Scholar] [CrossRef]
- Rabson, D.A.; Huesman, J.F.; Fisher, B.N. Cohomology for anyone. Found. Phys. 2003, 33, 1769–1796. [Google Scholar] [CrossRef]
- McDuff, D.; Salamon, D. Introduction to Symplectic Topology; Oxford Mathematical Monographs: Oxford, UK, 1998. [Google Scholar]
- Iwai, T.; Katayama, N. Two classes of dynamical systems all of whose bounded trajectories are closed. J. Math. Phys. 1994, 35, 2914–2933. [Google Scholar] [CrossRef]
- Nersessian, A.; Ter-Antonyan, V. Charge-Dyon system as the reduced oscillator. Mod. Phys. Lett. 1994, 9, 2431–2436. [Google Scholar] [CrossRef] [Green Version]
- Iwai, T.; Uwano, Y. The quantized MIC–Kepler problem and its symmetry group for negative energies. J. Phys. A 1988, 21, 4083–4104. [Google Scholar] [CrossRef]
- Nersessian, A.; Ter-Antonyan, V. Quantum oscillator and a bound system of two dyons. Mod. Phys. Lett. 1995, 10, 2633–2638. [Google Scholar]
- Nersessian, A.; Ter-Antonyan, V.; Tsulaia, M.M. A note on quantum Bohlin transformation. Mod. Phys. Lett. 1996, A11, 1605–1610. [Google Scholar] [CrossRef] [Green Version]
- Nersessian, A.P.; Ter-Antonyan, V.M. Anyons, Monopole and Coulomb problem. Phys. Atom. Nucl. 1998, 61, 1756–1761. [Google Scholar]
- Iwai, T. The geometry of the SU(2) Kepler problem. J. Geom. Phys. 1990, 7, 507–535. [Google Scholar] [CrossRef]
- Mardoyan, L.G.; Sissakian, A.N.; Ter-Antonyan, V.M. 8D oscillator as a hidden SU(2) monopole. Phys. Atom. Nucl. 1998, 61, 1746–1750. [Google Scholar]
- Mardoyan, L.G.; Sissakian, A.N.; Ter-Antonyan, V.M. Hidden symmetry of the Yang–Coulomb monopole. Mod. Phys. Lett. A 1999, 14, 1303–1307. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.N. Generalization of Dirac’s monopole to SU2 gauge fields. J. Math. Phys. 1978, 19, 320–328. [Google Scholar] [CrossRef]
- Mardoyan, L.G.; Sissakian, A.N.; Ter-Antonyan, V.M. Park-Tarter matrix for a dyon–dyon system. Int. J. Mod. Phys. A 1997, 12, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Mardoyan, L.G.; Sissakian, A.N.; Ter-Antonyan, V.M. Bases and interbasis transformations for the SU(2) monopole. Theor. Math. Phys. 2000, 123, 451–462. [Google Scholar] [CrossRef]
- Mardoyan, L.G. Five-dimensional SU(2)-monopole: Continuous spectrum. Phys. Atom. Nucl. 2002, 65, 1063–1069. [Google Scholar] [CrossRef]
- Gritsev, V.V.; Kurochkin, Y.A.; Otchik, V.S. Nonlinear symmetry algebra of the MIC–Kepler problem on the sphere S3. J. Phys. A 2000, 33, 4903–4910. [Google Scholar] [CrossRef]
- Yoshida, T. Two methods of generalisation of the Laplace–Runge–Lenz vector. Eur. J. Phys. 1987, 8, 258–259. [Google Scholar] [CrossRef]
- Fradkin, D.M. Existence of the dynamic symmetries O(4) and SU(3) for all classical central potential problems. Prog. Theor. Phys. 1967, 37, 798–812. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. A classical constant of motion with discontinuities. J. Phys. A Math. Gen. 1979, 12, 1711–1713. [Google Scholar] [CrossRef]
- de Castro Moreira, I. A generalisation of the Landau vector. Eur. J. Phys. 1989, 10, 269–271. [Google Scholar] [CrossRef]
- Oks, E. Review of classical analytical results for the motion of a Rydberg electron around a polar molecule under magnetic or electric fields of arbitrary strengths in axially symmetric configurations. Symmetry 2021, 13, 2171. [Google Scholar] [CrossRef]
- Kazakov, K.V. A novel examination of the similarity between a perturbed hydrogen atom and an anharmonic oscillator. J. Math. Phys. 2019, 60, 102102. [Google Scholar] [CrossRef]
- Demkov, Y.N. The definition of the symmetry group of a quantum system. The anisotropic oscillator. Sov. Phys. JETP 1963, 17, 1349–1351. [Google Scholar]
- Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of One- and Two-Electron Atoms; Springer: Berlin/Heidelberg, Germany, 1957. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pain, J.-C. On Invariant Vectors in the Presence of Electric and Magnetic Fields. Atoms 2023, 11, 105. https://doi.org/10.3390/atoms11070105
Pain J-C. On Invariant Vectors in the Presence of Electric and Magnetic Fields. Atoms. 2023; 11(7):105. https://doi.org/10.3390/atoms11070105
Chicago/Turabian StylePain, Jean-Christophe. 2023. "On Invariant Vectors in the Presence of Electric and Magnetic Fields" Atoms 11, no. 7: 105. https://doi.org/10.3390/atoms11070105
APA StylePain, J. -C. (2023). On Invariant Vectors in the Presence of Electric and Magnetic Fields. Atoms, 11(7), 105. https://doi.org/10.3390/atoms11070105