# Stark Broadening of Lyman-α in the Presence of a Strong Magnetic Field

## Abstract

**:**

## 1. Introduction

## 2. Analytical Model

## 3. Computer Simulations

## 4. Results and Conclusions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Bohr, N.I. On the constitution of atoms and molecules. Lond. Edinburgh Dublin Philos. Mag. J. Sci.
**1913**, 26, 1–25. [Google Scholar] [CrossRef] - Schrödinger, E. Quantisierung als Eigenwertproblem. Annalen Physik
**1926**, 384, 361–376. [Google Scholar] [CrossRef] - Stambulchik, E. Review of the 1st Spectral Line Shapes in Plasmas code comparison workshop. High Energy Density Phys.
**2013**, 9, 528–534. [Google Scholar] [CrossRef] - Calisti, A.; Demura, A.; Gigosos, M.A.; González-Herrero, D.; Iglesias, C.A.; Lisitsa, V.S.; Stambulchik, E. Influence of microfield directionality on line shapes. Atoms
**2014**, 2, 259–276. [Google Scholar] [CrossRef] - Griem, H.R. Spectral Line Broadening by Plasmas; Academic: New York, NY, USA, 1974. [Google Scholar]
- Stambulchik, E.; Demura, A.V. Dynamic Stark broadening of Lyman-α. J. Phys. B At. Mol. Opt. Phys.
**2016**, 49, 035701. [Google Scholar] [CrossRef] - Rosato, J.; Marandet, Y.; Capes, H.; Ferri, S.; Mosse, C.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. Stark broadening of hydrogen lines in low-density magnetized plasmas. Phys. Rev. E
**2009**, 79, 046408-7. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. Zeeman effect induced by intense laser light. Phys. Rev. Lett.
**2014**, 113, 083002. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. Stark effect of high-n hydrogen-like transitions: Quasi-contiguous approximation. J. Phys. B At. Mol. Opt. Phys.
**2008**, 41, 095703. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. Quasicontiguous frequency-fluctuation model for calculation of hydrogen and hydrogenlike Stark-broadened line shapes in plasmas. Phys. Rev. E
**2013**, 87, 053108. [Google Scholar] [CrossRef] - Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L.A.; Lisitsa, V.S. Dynamic Stark broadening as the Dicke narrowing effect. Phys. Rev. E
**2010**, 81, 016406. [Google Scholar] [CrossRef] - Bureeva, L.A.; Kadomtsev, M.B.; Levashova, M.G.; Lisitsa, V.S.; Calisti, A.; Talin, B.; Rosmej, F. Equivalence of the method of the kinetic equation and the fluctuating-frequency method in the theory of the broadening of spectral lines. JETP Lett.
**2010**, 90, 647–650. [Google Scholar] [CrossRef] - Ferri, S.; Calisti, A.; Mossé, C.; Mouret, L.; Talin, B.; Gigosos, M.A.; González, M.A.; Lisitsa, V. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas. Phys. Rev. E
**2011**, 84, 026407. [Google Scholar] [CrossRef] [PubMed] - Stambulchik, E.; Maron, Y. Plasma Formulary Interactive. J. Instrum.
**2011**, 6, P10009. [Google Scholar] [CrossRef] - Holtsmark, J. Über die Verbreiterung von Spektrallinien. Ann. Phys.
**1919**, 363, 577–630. [Google Scholar] [CrossRef] - Dzierżęga, K.; Sobczuk, F.; Stambulchik, E.; Pokrzywka, B. Studies of spectral line merging in a laser-induced hydrogen plasma diagnosed with two-color Thomson scattering. Phys. Rev. E
**2021**, 103, 063207. [Google Scholar] [CrossRef] - Mossé, C.; Calisti, A.; Ferri, S.; Talin, B.; Bureyeva, L.A.; Lisitsa, V.S. Universal FFM hydrogen spectral line shapes applied to ions and electrons. AIP Conf. Proc.
**2008**, 1058, 63–65. [Google Scholar] [CrossRef] - Stambulchik, E.; Maron, Y. A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines. J. Quant. Spectrosc. Radiat. Transfer
**2006**, 99, 730–749. [Google Scholar] [CrossRef] - Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev.
**1967**, 159, 98–103. [Google Scholar] [CrossRef] - Seidel, J.; Stamm, R. Effects of radiator motion on plasma-broadened hydrogen Lyman-β. J. Quant. Spectrosc. Radiat. Transfer
**1982**, 27, 499–503. [Google Scholar] [CrossRef] - Rosato, J.; Capes, H.; Stamm, R. Ideal Coulomb plasma approximation in line shape models: Problematic issues. Atoms
**2014**, 2, 253–258. [Google Scholar] [CrossRef] - Raji, A.; Rosato, J.; Stamm, R.; Marandet, Y. New analysis of Balmer line shapes in magnetic white dwarf atmospheres. Eur. Phys. J. D
**2021**, 75, 63. [Google Scholar] [CrossRef] - Falcon, R.E.; Rochau, G.A.; Bailey, J.E.; Gomez, T.A.; Montgomery, M.H.; Winget, D.E.; Nagayama, T. Laboratory measurements of white dwarf photospheric spectral lines: Hβ. Astrophys. J.
**2015**, 806, 214. [Google Scholar] [CrossRef]

**Figure 1.**Stark-broadened Lyman-$\alpha $ shapes assuming ${n}_{e}={10}^{14}\phantom{\rule{0.166667em}{0ex}}{\mathrm{cm}}^{-3}$, $T=1\phantom{\rule{0.166667em}{0ex}}\mathrm{eV}$, and a few values of the magnetic field as indicated in the legend.

**Figure 2.**Comparison of the Lyman-$\alpha $$\pi $ line shape calculated using the computer simulations (CS) and the analytical model. ${n}_{e}={10}^{14}\phantom{\rule{0.166667em}{0ex}}{\mathrm{cm}}^{-3}$, $T=1\phantom{\rule{0.166667em}{0ex}}\mathrm{eV}$, and $B=4\phantom{\rule{0.166667em}{0ex}}T$.

**Figure 3.**Same as Figure 2, but for ${n}_{e}={10}^{17}\phantom{\rule{0.166667em}{0ex}}{\mathrm{cm}}^{-3}$, $T=1\phantom{\rule{0.166667em}{0ex}}\mathrm{eV}$, and $B=400\phantom{\rule{0.166667em}{0ex}}T$.

**Figure 4.**Comparison of the Lyman-$\alpha $$\pi $ broadening as given by the computer simulations and the model over wide ranges of densities. $B=4\phantom{\rule{0.166667em}{0ex}}T$ (

**a**) and $B=400\phantom{\rule{0.166667em}{0ex}}T$ (

**b**) are assumed.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Stambulchik, E.
Stark Broadening of Lyman-*α* in the Presence of a Strong Magnetic Field. *Atoms* **2023**, *11*, 120.
https://doi.org/10.3390/atoms11090120

**AMA Style**

Stambulchik E.
Stark Broadening of Lyman-*α* in the Presence of a Strong Magnetic Field. *Atoms*. 2023; 11(9):120.
https://doi.org/10.3390/atoms11090120

**Chicago/Turabian Style**

Stambulchik, Evgeny.
2023. "Stark Broadening of Lyman-*α* in the Presence of a Strong Magnetic Field" *Atoms* 11, no. 9: 120.
https://doi.org/10.3390/atoms11090120