Magnetized Black Holes: Interplay between Charge and Rotation
Abstract
1. Introduction
2. Magnetized Kerr–Newman Black Hole in Charge Equilibrium
3. Weak Magnetic Field and Particle Acceleration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- DeWitt, C.; DeWitt, B.S. Black Holes. Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Punsly, B. Black Hole Gravito-Hydromagnetics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ruffini, R.; Wilson, J.R. Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D 1975, 12, 2959. [Google Scholar] [CrossRef]
- Newman, E.T.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating, charged mass. J. Math. Phys. 1965, 6, 918. [Google Scholar] [CrossRef]
- Baez, N.B.; García Díaz, A.G. The most general magnetized Kerr-Newman metric. J. Math. Phys. 1986, 27, 562. [Google Scholar] [CrossRef]
- Ernst, F.J.; Wild, W.J. Kerr black holes in a magnetic universe. J. Math. Phys. 1976, 12, 1845. [Google Scholar] [CrossRef]
- Kramer, D.; Stephani, H.; MacCallum, M.; Herlt, E. Exact Solutions of the Einstein’s Field Equations; Deutscher Verlag der Wissenschaften: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Romero, G.E.; Vila, G.S. Introduction to Black Hole Astrophysics; Lecture Notes in Physics; Springer: Berlin, Germany, 2014; Volume 876. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Gal’tsov, D.V. Particles and Fields around Black Holes; Moscow University Press: Moscow, Russia, 1986. [Google Scholar]
- Christodoulou, D.; Ruffini, R. On the electrodynamics of collapsed objects. In Black Holes; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1973; p. R151. [Google Scholar]
- Kinnersley, W. Generation of stationary Einstein-Maxwell fields. J. Math. Phys. 1973, 14, 651. [Google Scholar] [CrossRef]
- García Díaz, A. Magnetic generalization of the Kerr-Newman metric. J. Math. Phys. 1985, 26, 155. [Google Scholar] [CrossRef]
- Hiscock, W.A. On black holes in magnetic universes. J. Math. Phys. 1981, 22, 1828. [Google Scholar] [CrossRef]
- Karas, V.; Vokrouhlický, D. On interpretation of the magnetized Kerr-Newman black hole. J. Math. Phys. 1990, 32, 714. [Google Scholar] [CrossRef]
- Karas, V.; Budínová, Z. Magnetic fluxes across black holes in a strong magnetic field regime. Phys. Scr. 2000, 61, 253. [Google Scholar] [CrossRef]
- Karas, V. Magnetic fluxes across black holes. Exact models. Bull. Astron. Inst. Czechoslov. 1988, 39, 30. [Google Scholar]
- Ruffini, R. On gravitationally collapsed objects. In Relativity, Quanta and Cosmology in the Development of the Scientific Thought of Albert Einstein; Pantaleo, M., de Finis, F., Eds.; Johnson Reprint Corp.: New York, NY, USA, 1979; pp. 599–658. [Google Scholar]
- Damour, T.; Hanni, R.S.; Ruffini, R.; Wilson, J.R. Regions of magnetic support of a plasma around a black hole. Phys. Rev. D 1978, 17, 1518. [Google Scholar] [CrossRef]
- Hanni, R.S.; Valdarnini, R. Magnetic support near a charged rotating black hole. Phys. Lett. A 1979, 70, 92. [Google Scholar] [CrossRef]
- Lyutikov, M. Schwarzschild black holes as unipolar inductors: Expected electromagnetic power of a merger. Phys. Rev. D 2011, 83, 064001. [Google Scholar] [CrossRef]
- Morozova, V.S.; Rezzolla, L.; Ahmedov, B.J. Nonsingular electrodynamics of a rotating black hole moving in an asymptotically uniform magnetic test field. Phys. Rev. D 2014, 89, 104030. [Google Scholar] [CrossRef]
- Karas, V.; Vokrouhlický, D. Dynamics of charged particles near a black hole in a magnetic field. J. Phys. I France 1991, 1, 1005. [Google Scholar] [CrossRef]
- Bičák, J.; Dvořák, L. Stationary electromagnetic fields around black holes. III. Phys. Rev. D 1980, 22, 2933. [Google Scholar] [CrossRef]
- King, A.R.; Lasota, J.P.; Kundt, W. Black holes and magnetic fields. Phys. Rev. D 1975, 12, 3037. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M.; Kovář, J.; Slaný, P.; Tursunov, A. Influence of cosmic repulsion and magnetic fields on accretion disks rotating around Kerr black holes. Universe 2020, 6, 26. [Google Scholar] [CrossRef]
- Ruffini, R. On the energetics of black holes. In Black Holes (Les Astres Occlus), Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 451–546. [Google Scholar]
- Carter, B. Black hole equilibrium states. In Black Holes (Les Astres Occlus), Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 57–214. [Google Scholar]
- Wald, R.M. On uniqueness of the Kerr-Newman black holes. J. Math. Phys. 1972, 13, 490. [Google Scholar] [CrossRef]
- Lukes-Gerakopoulos, G. Adjusting chaotic indicators to curved spacetimes. Phys. Rev. D 2014, 89, 043002. [Google Scholar] [CrossRef]
- Pánis, R.; Kološ, M.; Stuchlík, Z. Determination of chaotic behaviour in time series generated by charged particle motion around magnetized Schwarzschild black holes. Eur. Phys. J. C 2019, 79, 479. [Google Scholar] [CrossRef]
- Karas, V.; Vokrouhlický, D. Chaotic motion of test particles in the Ernst space-time. Gen. Relativ. Gravit. 1992, 24, 729–743. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M.; Tursunov, A. Large-scale magnetic fields enabling fitting of the high-frequency QPOs observed around supermassive black holes. Publ. Astron. Soc. Jpn. 2022, 74, 1220. [Google Scholar] [CrossRef]
- Kopáček, O.; Karas, V.; Kovář, J.; Stuchlík, Z. Transition from regular to chaotic circulation in magnetized coronae near compact objects. Astrophys. J. 2010, 722, 1240. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field. Eur. Phys. J. C 2016, 76, 32. [Google Scholar] [CrossRef]
- Karas, V.; Kopáček, O. Near horizon structure of escape zones of electrically charged particles around weakly magnetized rotating black hole: Case of oblique magnetosphere. Astron. Nachrichten 2021, 342, 357. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M.; Tursunov, A. Penrose process: Its variants and astrophysical applications. Universe 2021, 7, 416. [Google Scholar] [CrossRef]
- Tursunov, A.; Stuchlík, Z.; Kološ, M. Supermassive black holes as possible sources of ultrahigh-energy cosmic rays. Astrophys. J. 2020, 895, 14. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of General Relativity. Riv. Nuovo C. 1969, 1, 252. [Google Scholar]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433. [Google Scholar] [CrossRef]
- Dadhich, N.; Tursunov, A.; Ahmedov, B.; Stuchlík, Z. The distinguishing signature of magnetic Penrose process. Mon. Not. R. Astron. Soc. Lett. 2018, 478, L89. [Google Scholar] [CrossRef]
- Dai, Z.G. Inspiral of a spinning black hole-magnetized neutron star binary: Increasing charge and electromagnetic emission. Astrophys. J. Lett. 2019, 873, L13. [Google Scholar] [CrossRef]
- Adari, P.; Berens, R.; Levin, J. Charging up boosted black holes. Phys. Rev. D 2023, 107, 044055. [Google Scholar] [CrossRef]
- Okamoto, I.; Song, Y. Energy self-extraction of a Kerr black hole through its frame-dragged force-free magnetosphere. arXiv 2023, arXiv:1904.11978. [Google Scholar]
- Santos, J.; Cardoso, V.; Natário, J. Electromagnetic radiation reaction and energy extraction from black holes: The tail term cannot be ignored. Phys. Rev. D 2023, 107, 064046. [Google Scholar] [CrossRef]
- Ruffini, R.; Bernardini, M.G.; Bianco, C.L. On gamma-ray bursts. In Proceedings of the Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Berlin, Germany, 23–29 July 2006; Kleinert, H., Jantzen, R.T., Ruffini, R., Eds.; World Scientific Publishing Co.: Singapore, 2008. [Google Scholar]
- Fryer, C.L.; Rueda, J.A.; Ruffini, R. Hypercritical accretion, induced gravitational collapse, and binary-driven hypernovae. Astrophys. J. Lett. 2014, 793, L36. [Google Scholar] [CrossRef]
- Komissarov, S.S. Electrically charged black holes and the Blandford-Znajek mechanism. Mon. Not. R. Astron. Soc. 2022, 512, 2798. [Google Scholar] [CrossRef]
- Metzger, B.D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/Black hole mergers. Astrophys. J. 2022, 932, 84. [Google Scholar] [CrossRef]
- Rueda, J.A.; Ruffini, R. On the induced gravitational collapse of a neutron star to a black hole by a type Ib/c supernova. Astrophys. J. Lett. 2012, 758, L7. [Google Scholar] [CrossRef]
- Ruffini, R.; Wang, Y.; Aimuratov, Y.; de Almeida, U.B.; Becerra, L.; Bianco, C.L.; Xue, S.S. Early X-ray flares in GRBs. Astrophys. J. 2018, 852, 53. [Google Scholar] [CrossRef]
- Ruffini, R.; Treves, A. On a magnetized rotating sphere. Astrophys. Lett. 1973, 13, 109. [Google Scholar]
- Tursunov, A.; Zajaček, M.; Eckart, A.; Kološ, M.; Britzen, S.; Stuchlík, Z.; Karas, V. Effect of electromagnetic interaction on Galactic center flare components. Astrophys. J. 2020, 897, 99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karas, V.; Stuchlík, Z. Magnetized Black Holes: Interplay between Charge and Rotation. Universe 2023, 9, 267. https://doi.org/10.3390/universe9060267
Karas V, Stuchlík Z. Magnetized Black Holes: Interplay between Charge and Rotation. Universe. 2023; 9(6):267. https://doi.org/10.3390/universe9060267
Chicago/Turabian StyleKaras, Vladimír, and Zdeněk Stuchlík. 2023. "Magnetized Black Holes: Interplay between Charge and Rotation" Universe 9, no. 6: 267. https://doi.org/10.3390/universe9060267
APA StyleKaras, V., & Stuchlík, Z. (2023). Magnetized Black Holes: Interplay between Charge and Rotation. Universe, 9(6), 267. https://doi.org/10.3390/universe9060267