New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model
Abstract
1. Introduction
2. Antecedents
2.1. Thermodynamic Effects of Evaporation
2.2. Concerning the Thermodynamic Limit
2.3. Thermodynamics of Fermionic King Model at Constant Total Mass
- The region I: the interval (black curves). The gravitational collapse of fermionic King model represents a discontinuous microcanonical phase transition, and its thermodynamics exhibits a branch with negative heat capacities. The classical King model that appears when corresponds to the infinite mass limit . In terms of the total mass M, this region corresponds to situations with high total masses, the interval , where .
- The region II: the interval (red curves). The gravitational collapse of fermionic King model turns a continuous microcanonical phase transition, and its thermodynamics exhibits a branch with negative heat capacities. In terms of the total mass M, this region corresponds to situations with intermediate total masses, the interval , where .
- The region III: the interval (green curves). The gravitational collapse of fermionic King model is a continuous microcanonical phase transition, and its thermodynamics does not exhibit negative heat capacities. In terms of the total mass M, this region corresponds to situations with low total mass, the interval , where ¼.
3. Application to Dark Matter Halos
3.1. Incidence of Evaporation Effects
3.2. New Bounds of WDM Particles Mass m from Fermionic King Model
3.3. The keV Scale and the Masses of Large Galaxies
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Notes
References
- Padmanabhan, T. Statistical mechanics of gravitating systems. Phys. Rep. 1990, 188, 285–362. [Google Scholar] [CrossRef]
- Antonov, V.A. English translation in: Dynamics of Globular Clusters, IAU Symp. 113. Vestn. Leningr. Gos. Univ. 1962, 7, 135. [Google Scholar]
- Lynden-Bell, D. Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 1967, 136, 101–121. [Google Scholar] [CrossRef]
- De Vega, H.J.; Sanchez, N.G. The statistical mechanics of the self-gravitating gas: Equation of state and fractal dimension. Phys. Lett. B 2000, 490, 180–186. [Google Scholar] [CrossRef]
- De Vega, H.J.; Sanchez, N.G. Statistical mechanics of the self-gravitating gas: I. Thermodynamic limit and phase diagrams. Nucl. Phys. B 2002, 625, 409–459. [Google Scholar] [CrossRef]
- De Vega, H.J.; Sanchez, N.G. Statistical mechanics of the self-gravitating gas: II. Local physical magnitudes and fractal structures. Nucl. Phys. B 2002, 625, 460–494. [Google Scholar] [CrossRef]
- Katz, J. Thermodynamics and Self-Gravitating Systems. Found. Phys. 2003, 33, 223–269. [Google Scholar] [CrossRef]
- Chavanis, P.H. Phase transitions in self-gravitating systems. Int. J. Mod. Phys. B 2006, 20, 3113–3198. [Google Scholar] [CrossRef]
- Velazquez, L.; Guzman, F. Alternative model of the Antonov problem. Phys. Rev. E 2003, 68, 066116. [Google Scholar] [CrossRef]
- Velazquez, L.; Garcia, S.G.; Guzman, F. Alternative model of the Antonov problem: Generalization with the presence of a mass spectrum. Phys. Rev. E 2009, 79, 011120. [Google Scholar] [CrossRef]
- King, I.A. The structure of star clusters. I. an empirical density law. Astron. J. 1962, 67, 471–485. [Google Scholar] [CrossRef]
- King, I.A. The structure of star clusters. II. Steady-state velocity distributions. Astron. J. 1965, 70, 376–383. [Google Scholar] [CrossRef]
- King, I.A. The structure of star clusters. III. Some simple dynamical models. Astron. J. 1966, 71, 64–75. [Google Scholar] [CrossRef]
- King, I.A. The structure of star clusters. IV. Photoelectric surface photometry in nine globular clusters. Astron. J. 1966, 71, 276–282. [Google Scholar] [CrossRef]
- Gomez-Leyton, Y.J.; Velazquez, L. Truncated γ-exponential models for tidal stellar systems. J. Stat. Mech. 2014, P04006. [Google Scholar] [CrossRef]
- Woolley, R.V.D.R. A study of the equilibrium of globular clusters. Mon. Not. R. Astron. Soc. 1954, 114, 191–209. [Google Scholar] [CrossRef]
- Wilson, C.P. Dynamical models of elliptical galaxies. Astron. J. 1975, 80, 175–187. [Google Scholar] [CrossRef]
- Katz, J. Stability limits for ’isothermal’ cores in globular clusters. Mon. Not. R. Astron. Soc. 1980, 190, 497–507. [Google Scholar] [CrossRef]
- Gomez-Leyton, Y.J.; Velazquez, L. Truncated γ-exponential models: Evaporation and mass-segregation effects in the bi-component system. Mon. Not. R. Astron. Soc. 2019, 488, 362–380. [Google Scholar] [CrossRef]
- Ruffini, R.; Stella, L. On semi-degenerate equilibrium configurations of a collisionless self-gravitating Fermi gas. Astron. Astrophys. 1983, 119, 35–41. [Google Scholar]
- Chavanis, P.H. On the coarse-grained evolution of collisionless stellar systems. Mon. Not. R. Astron. Soc. 1998, 300, 981–991. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Lemou, M.; Mehats, F. The Fermionic King Model. arXiv 2014, arXiv:1411.6154. [Google Scholar]
- Chavanis, P.H.; Lemou, M.; Mehats, F. Models of dark matter halos based on statistical mechanics: The classical King model. Phys. Rev. D 2015, 91, 063531. [Google Scholar] [CrossRef]
- Chavanis, P.H.; Lemou, M.; Mehats, F. Models of dark matter halos based on statistical mechanics: The fermionic King model. Phys. Rev. D 2015, 92, 123527. [Google Scholar] [CrossRef]
- Velazquez, L.; Espinoza-Soliz, I. Fermionic King model: Critical masses resulting from the competition of quantum and evaporation effects. J. Stat. Mech. under review.
- Chandrasekhar, S. On Stars, Their Evolution and Their Stability (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1984, 23, 679–689. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Milne, E.A. The Highly Collapsed Configurations of a Stellar Mass. Mon. Not. R. Astron. Soc. 1931, 91, 456–466. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The Highly Collapsed Configurations of a Stellar Mass (second paper). Mon. Not. R. Astron. Soc. 1935, 95, 207–225. [Google Scholar] [CrossRef]
- Oppenheimer, J.R.; Volkoff, G.M. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Tolman, R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Quantum WDM fermions and gravitation determine the observed galaxy structures. Astropart. Phys. 2013, 46, 14–22. [Google Scholar] [CrossRef]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Fermionic warm dark matter produces galaxy cores in the observed scales because of quantum mechanics. New Astron. 2013, 22, 39–50. [Google Scholar] [CrossRef]
- De Vega, H.J.; Salucci, P.; Sanchez, N.G. Observational rotation curves and density profiles versus the Thomas–Fermi galaxy structure theory. Mon. Not. R. Astron. Soc. 2014, 442, 2717–2727. [Google Scholar] [CrossRef]
- Davoust, E. Analytical models for spherical stellar systems. Astron. Astrophys. 1977, 61, 391–396. [Google Scholar]
- Binney, J.; Tremaire, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1984. [Google Scholar]
- Chandrasekhar, S. Principles of Stellar Dynamics; Dover: New York, NY, USA, 1960. [Google Scholar]
- Plummer, H.C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 1911, 71, 460–470. [Google Scholar] [CrossRef]
- Gieles, M.; Zocchi, A. A family of lowered isothermal models. Mon. Not. R. Astron. Soc. 2015, 454, 576–592. [Google Scholar] [CrossRef]
- Velazquez, L. Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions. J. Stat. Mech. 2016, 2016, P033105. [Google Scholar] [CrossRef]
- Hertel, P.; Thirring, W. Free energy of gravitating fermions. Commun. Math. Phys. 1971, 24, 22–36. [Google Scholar] [CrossRef]
- Alberti, G.; Chavanis, P.H. Caloric curves of self-gravitating fermions in general relativity. Eur. Phys. J. B 2020, 93, 208. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563–575. [Google Scholar] [CrossRef]
- De Martino, I.; Chakrabarty, S.S.; Cesare, V.; Gallo, A.; Ostorero, L.; Diaferio, A. Dark Matters on the Scale of Galaxies. Universe 2020, 6, 107. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P.; Stel, F. The universal rotation curve of spiral galaxies—I. The dark matter connection. Mon. Not. R. Astron. Soc. 1996, 281, 27–47. [Google Scholar] [CrossRef]
- Colín, P.; Valenzuela, O.; Avila-Reese, V. Substructure and halo density profiles in a Warm Dark Matter Cosmology. Astrophys. J. 2000, 542, 622–630. [Google Scholar] [CrossRef]
- Sommer-Larsen, J.; Dolgov, A. Formation of Disk Galaxies: Warm Dark Matter and the Angular Momentum problem. Astrophys. J. 2001, 551, 608–623. [Google Scholar] [CrossRef]
- Gao, L.; Theuns, T. Lighting the Universe with filaments. Science 2007, 317, 1527–1530. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, A.V.; Gottlöber, S.; Yepes, G.; Hoffman, Y. The sizes of minivoids in the local Universe: An argument in favour of a warm dark matter model? Mon. Not. R. Astron. Soc. 2009, 399, 1611–1621. [Google Scholar] [CrossRef]
- Zavala, J.; Jing, Y.P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottlöber, S.; Catinella, B. The velocity function in the local environment from λcdm and λwdm constrained simulations. Astrophys. J. 2009, 700, 1779–1793. [Google Scholar] [CrossRef]
- Papastergis, E.; Martin, A.M.; Giovanelli, R.; Haynes, M.P. The velocity width function of galaxies from the 40% ALFALFA survey: Shedding light on the cold dark matter overabundance problem. Astrophys. J. 2011, 739, 38. [Google Scholar] [CrossRef]
- Lovell, M.R.; Eke, V.; Frenk, C.S.; Gao, L.; Jenkins, A.; Theuns, T.; Wang, J.; White, S.D.M.; Boyarsky, A. Oleg Ruchayskiy The haloes of bright satellite galaxies in a warm dark matter universe. Mon. Not. R. Astron. Soc. 2012, 420, 2318–2324. [Google Scholar] [CrossRef]
- Adhikari, R.; Agostini, M.; Ky, N.A.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Dev, P.S.B.; et al. A White Paper on keV sterile neutrino Dark Matter. JCAP 2017, 01, 025. [Google Scholar] [CrossRef]
- Walker, M.; Peñarrubia, J. A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. Astrophys. J. 2011, 742, 20. [Google Scholar] [CrossRef]
- Salucci, P.; Lapi, A.; Tonini, C.; Gentile, G.; Yegorova, I.; Klein, U. The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. Mon. Not. R. Astron. Soc. 2007, 378, 41–47. [Google Scholar] [CrossRef]
- De Vega, H.J.; Salucci, P.; Sanchez, N.G. The mass of the dark matter particle: Theory and galaxy observations. New Astron. 2012, 17, 653–666. [Google Scholar] [CrossRef]
- Gilmore, G.; Wilkinson, M.I.; Wyse, R.F.; Kleyna, J.T.; Koch, A.; Evans, N.W.; Grebel, E.K. The Observed Properties of Dark Matter on Small Spatial Scales. Astrophys. J. 2007, 663, 948–959. [Google Scholar] [CrossRef]
- Simon, J.D.; Geha, M. The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J. 2007, 670, 313–331. [Google Scholar] [CrossRef]
- Simon, J.D.; Geha, M.; Minor, Q.E.; Martinez, G.D.; Kirby, E.N.; Bullock, J.S.; Kaplinghat, M.; Strigari, L.E.; Willman, B.; Choi, P.I.; et al. A Complete spectroscopy survey of the Milky Way satellite Segue 1: The Darkest galaxy. Astrophys. J. 2011, 733, 46. [Google Scholar] [CrossRef]
- Wolf, J.; Martinez, G.D.; Bullock, J.S.; Kaplinghat, M.; Geha, M.; Muñoz, R.R.; Simon, J.D.; Avedo, F.F. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 2010, 406, 1220–1237. [Google Scholar] [CrossRef]
- Brodie, J.P.; Romanowsky, A.J.; Strader, J.; Forbes, D.A. The Relationships among Compact Stellar Systems: A Fresh View of Ultracompact Dwarfs. Astron. J. 2011, 142, 199. [Google Scholar] [CrossRef]
- Willman, B.; Strader, J. Galaxy, Defined. Astron. J. 2012, 76, 144. [Google Scholar] [CrossRef]
- Martinez, G.D.; Minor, Q.E.; Bullock, J.; Kaplinghat, M.; Simon, J.D.; Geha, M. A Complete Spectroscopic Survey of the Milky Way satellite Segue 1: Dark matter content, stellar membership and binary properties from a Bayesian analysis. Astrophys. J. 2011, 738, 55. [Google Scholar] [CrossRef]
- Bilic, N.; Munyaneza, F.; Tupper, G.B.; Viollier, R.D. The dynamics of stars near Sgr A* and dark matter at the center and in the halo of the galaxy. Prog. Part. Nucl. Phys. 2002, 48, 291–300. [Google Scholar] [CrossRef]
- Bilic, N.; Tupper, G.B.; Viollier, R.D. Dark Matter in the Galaxy. In Particle Physics in the New Millennium, Lecture Notes on Physics 616; Springer: Berlin/Heidelberg, Germany, 2003; pp. 24–38. [Google Scholar]
- Bilic, N.; Viollier, R.D. Dark Matter Concentration in the Galactic Center. Phys. Lett. B 1997, 408, 75. [Google Scholar]
- Tsiklauri, D.; Viollier, R.D. Dark Matter Concentration in the Galactic Center. Astrophys. J. 1998, 500, 591. [Google Scholar] [CrossRef]
- Bilic, N.; Viollier, R.D. Gravitational phase transition of fermionic matter in a general-relativistic framework. Eur. Phys. J. C 1999, 11, 173–180. [Google Scholar] [CrossRef][Green Version]
- Bilic, N.; Viollier, R.D. General relativistic Thomas-Fermi model. Gen. Rel. Grav. 1999, 31, 1105–1113. [Google Scholar] [CrossRef]
- Bilic, N.; Lindebaum, R.J.; Tupper, G.B.; Viollier, R.D. On the formation of degenerate heavy neutrino stars. Phys. Lett. B 2001, 515, 105–110. [Google Scholar] [CrossRef]
- Marconi, A.; Hunt, L. The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity. Astrophys. J. 2003, 589, L21–L24. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. 2000, 539, 13. [Google Scholar] [CrossRef]
- McMillan, P.J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 2017, 465, 76–94. [Google Scholar] [CrossRef]
- Chavanis, P.H. Statistical mechanics of self-gravitating systems in general relativity: I. The quantum Fermi gas. Eur. Phys. J. Plus 2020, 135, 290. [Google Scholar] [CrossRef]
- Alberti, G.; Chavanis, P.H. Caloric curves of classical self-gravitating systems in general relativity. Phys. Rev. E 2020, 101, 052105. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Chavanis, P.H. Gravitational phase transitions and instabilities of self-gravitating fermions in general relativity. Phys. Lett. B 2020, 801, 135155. [Google Scholar]
- Gebhardt, K.; Lauer, T.R.; Kormendy, J.; Pinkney, J.; Bower, G.A.; Green, R.; Gull, T.; Hutchings, J.B.; Kaiser, M.E.; Nelson, C.H.; et al. M33: A Galaxy with No Supermassive Black Hole. Astron. J. 2001, 122, 2469–2476. [Google Scholar] [CrossRef]
- Katz, J.; Horwitz, G. Thermodynamic stability of relativistic rotating stellar configurations and a maximum principle for the entropy. Astrophys. J. 1974, 194, 439–449. [Google Scholar] [CrossRef]
- Katz, J.; Horwitz, G. Steepest descent technique and stellar equilibrium statistical mechanics. II—Relativistic clusters in a box. Astrophys. J. Suppl. Ser. 1977, 33, 251–268. [Google Scholar] [CrossRef]
Galaxy | ||||||
---|---|---|---|---|---|---|
Willman 1 | 19 | |||||
Segue 1 | 48 | |||||
Coma-Berenices | 123 | |||||
Leo T | 170 | |||||
Canis Venatici II | 245 | |||||
Draco | 305 | |||||
Leo II | 320 | |||||
Hercules | 387 | |||||
Boötes I | 362 | |||||
Carina | 428 | |||||
Ursa Major I | 504 | |||||
Sculptor | 480 | |||||
Leo IV | 400 | 200 | ||||
Leo I | 518 | 96 | ||||
Ursa Minor | 750 | 193 | ||||
NGC 185 | 450 | 975 | ||||
Sextans | 1290 | 116 | ||||
Canis Venatici I | 1220 | 344 | ||||
Fornax | 1730 | 1750 | ||||
NGC 855 | 1063 | 8340 | ||||
NGC 4478 | 1890 | |||||
Small Spiral | 5100 | 6900 | ||||
NGC 3853 | 5220 | |||||
NGC 731 | 6160 | |||||
NGC 499 | 7700 | |||||
Medium Spiral | ||||||
Large Spiral |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velazquez, L. New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model. Universe 2021, 7, 308. https://doi.org/10.3390/universe7080308
Velazquez L. New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model. Universe. 2021; 7(8):308. https://doi.org/10.3390/universe7080308
Chicago/Turabian StyleVelazquez, Luisberis. 2021. "New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model" Universe 7, no. 8: 308. https://doi.org/10.3390/universe7080308
APA StyleVelazquez, L. (2021). New Bounds for the Mass of Warm Dark Matter Particles Using Results from Fermionic King Model. Universe, 7(8), 308. https://doi.org/10.3390/universe7080308