A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei
Abstract
1. Introduction
2. Theoretical Framework
3. Results and Discussion
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Jia, J.; Giacalone, G.; Bally, B.; Brandenburg, J.D.; Heinz, U.; Huang, S.; Lee, D.; Lee, Y.J.; Loizides, C.; Li, W.; et al. Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart. Nucl. Sci. Tech. 2024, 35, 220. [Google Scholar] [CrossRef]
- Jia, J. Shape of atomic nuclei in heavy ion collisions. Phys. Rev. C 2022, 105, 014905. [Google Scholar] [CrossRef]
- Jia, J. Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions. Phys. Rev. C 2022, 105, 044905. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, J. Evidence of Quadrupole and Octupole Deformations in Zr96+Zr96 and Ru96+Ru96 Collisions at Ultrarelativistic Energies. Phys. Rev. Lett. 2022, 128, 022301. [Google Scholar] [CrossRef]
- Giacalone, G.; Jia, J.; Zhang, C. Impact of Nuclear Deformation on Relativistic Heavy-Ion Collisions: Assessing Consistency in Nuclear Physics across Energy Scales. Phys. Rev. Lett. 2021, 127, 242301. [Google Scholar] [CrossRef]
- STAR Collaboration. Imaging shapes of atomic nuclei in high-energy nuclear collisions. Nature 2024, 635, 67–72. [Google Scholar] [CrossRef]
- Bally, B.; Bender, M.; Giacalone, G.; Somà, V. Evidence of the triaxial structure of 129Xe at the Large Hadron Collider. Phys. Rev. Lett. 2022, 128, 082301. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Hoffman, A.C.A.; et al. Correlations between flow and transverse momentum in Xe+Xe and Pb+Pb collisions at the LHC with the ATLAS detector: A probe of the heavy-ion initial state and nuclear deformation. Phys. Rev. C 2023, 107, 054910. [Google Scholar] [CrossRef]
- Acharya, S.; Agarwal, A.; AglieriRinella, G.; Aglietta, L.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Ahuja, I.; et al. Exploring nuclear structure with multiparticle azimuthal correlations at the LHC. arXiv 2024, arXiv:2409.04343. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Cao, B.; Xu, H.j.; Song, H. Exploring the compactness of α clusters in O16 nuclei with relativistic O16+O16 collisions. Phys. Rev. C 2024, 109, L051904. [Google Scholar] [CrossRef]
- Giacalone, G.; Bally, B.; Nijs, G.; Shen, S.; Duguet, T.; Ebran, J.P.; Elhatisari, S.; Frosini, M.; Lahde, T.A.; Lee, D.; et al. The unexpected uses of a bowling pin: Exploiting 20Ne isotopes for precision characterizations of collectivity in small systems. arXiv 2024, arXiv:2402.05995. [Google Scholar]
- Giacalone, G.; Zhao, W.; Bally, B.; Shen, S.; Duguet, T.; Ebran, J.P.; Elhatisari, S.; Frosini, M.; Lahde, T.A.; Lee, D.; et al. Anisotropic Flow in Fixed-Target Pb208+Ne20 Collisions as a Probe of Quark-Gluon Plasma. Phys. Rev. Lett. 2025, 134, 082301. [Google Scholar] [CrossRef]
- Prasad, S.; Mallick, N.; Sahoo, R.; Barnaföldi, G.G. Anisotropic flow fluctuation as a possible signature of clustered nuclear geometry in O–O collisions at the Large Hadron Collider. Phys. Lett. B 2025, 860, 139145. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, M.; Nielsen, E.G.D.; Li, X.; Zhou, Y. Signature of the α-clustering structure of Light Nuclei in Relativistic Nuclear Collisions. arXiv 2025, arXiv:2501.14852. [Google Scholar]
- Zhao, X.L.; Ma, G.L.; Zhou, Y.; Lin, Z.W.; Zhang, C. Nuclear cluster structure effect in 16O+16O collisions at the top RHIC energy. arXiv 2024, arXiv:2404.09780. [Google Scholar]
- Zhang, C.; Chen, J.; Giacalone, G.; Huang, S.; Jia, J.; Ma, Y.G. Ab-initio nucleon-nucleon correlations and their impact on high energy 16O+16O collisions. Phys. Lett. B 2025, 862, 139322. [Google Scholar] [CrossRef]
- Freer, M.; Horiuchi, H.; Kanada-En’yo, Y.; Lee, D.; Meißner, U.G. Microscopic Clustering in Light Nuclei. Rev. Mod. Phys. 2018, 90, 035004. [Google Scholar] [CrossRef]
- Bijker, R.; Iachello, F. Cluster structure of light nuclei. Prog. Part. Nucl. Phys. 2020, 110, 103735. [Google Scholar] [CrossRef]
- Tohsaki, A.; Horiuchi, H.; Schuck, P.; Roepke, G. Status of α-particle condensate structure of the Hoyle state. Rev. Mod. Phys. 2017, 89, 011002. [Google Scholar] [CrossRef]
- Zhou, B.; Funaki, Y.; Horiuchi, H.; Ma, Y.G.; Röpke, G.; Schuck, P.; Tohsaki, A.; Yamada, T. The 5α condensate state in 20Ne. Nature Commun. 2023, 14, 8206. [Google Scholar] [CrossRef]
- Röpke, G.; Xu, C.; Zhou, B.; Ren, Z.Z.; Funaki, Y.; Horiuchi, H.; Lyu, M.; Tohsaki, A.; Yamada, T. Alpha-like correlations in Ne, comparison of quartetting wave function and THSR approaches. Eur. Phys. J. A 2024, 60, 89. [Google Scholar] [CrossRef]
- Wang, H.C.; Li, S.J.; Liu, L.M.; Xu, J.; Ren, Z.Z. Deformation probes for light nuclei in their collisions at relativistic energies. Phys. Rev. C 2024, 110, 034909. [Google Scholar] [CrossRef]
- Liu, L.M.; Wang, H.C.; Li, S.J.; Zhang, C.; Xu, J.; Ren, Z.Z.; Jia, J.; Huang, X.G. Directly probing existence of α-cluster structure in Ne20 by relativistic heavy-ion collisions. Phys. Rev. C 2025, 111, L021901. [Google Scholar] [CrossRef]
- Huang, S. Measurements of azimuthal anisotropies in 16O+16O and γ+Au collisions from STAR. arXiv 2023, arXiv:2312.12167. [Google Scholar]
- Mariani, S. Fixed-Target Physics with the LHCb Experiment at CERN. Ph.D. Thesis, University of Florence, Florence, Italy, 1 December 2021. [Google Scholar]
- Aaij, R.; Abdelmotteleb, A.S.W.; Beteta, C.A.; Abudinen, F.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Agapopoulou, C.; Aidala, C.A.; et al. J/ψ and D0 production in sNN=68.5GeV PbNe collisions. Eur. Phys. J. C 2023, 83, 658. [Google Scholar] [CrossRef]
- Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C.A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; et al. Centrality determination in heavy-ion collisions with the LHCb detector. J. Instrum. 2022, 17, P05009. [Google Scholar] [CrossRef]
- Liu, L.M.; Li, S.J.; Wang, Z.; Xu, J.; Ren, Z.Z.; Huang, X.G. Probing configuration of α clusters with spectator particles in relativistic heavy-ion collisions. Phys. Lett. B 2024, 854, 138724. [Google Scholar] [CrossRef]
- Wang, X.N.; Gyulassy, M. HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 1991, 44, 3501–3516. [Google Scholar] [CrossRef]
- Xu, J.; Ko, C.M. Pb-Pb collisions at sNN=2.76 TeV in a multiphase transport model. Phys. Rev. C 2011, 83, 034904. [Google Scholar] [CrossRef]
- Xu, J.; Ko, C.M. Triangular flow in heavy ion collisions in a multiphase transport model. Phys. Rev. C 2011, 84, 014903. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Schenke, B.; Shen, C.; Tribedy, P. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 2017, 772, 681–686. [Google Scholar] [CrossRef]
- Welsh, K.; Singer, J.; Heinz, U.W. Initial state fluctuations in collisions between light and heavy ions. Phys. Rev. C 2016, 94, 024919. [Google Scholar] [CrossRef]
- Schenke, B.; Venugopalan, R. Eccentric protons? Sensitivity of flow to system size and shape in p + p, p + Pb and Pb + Pb collisions. Phys. Rev. Lett. 2014, 113, 102301. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, G.H.; Liu, Y.F.; Lin, Z.W.; Shou, Q.Y.; Yin, Z.B. Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. Eur. Phys. J. C 2021, 81, 755. [Google Scholar] [CrossRef]
- Zhao, X.L.; Lin, Z.W.; Zheng, L.; Ma, G.L. A transport model study of multiparticle cumulants in p + p collisions at 13 TeV. Phys. Lett. B 2023, 839, 137799. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, L.G.; Wang, X.N. Impact of Initial-State Nuclear and Sub-Nucleon Structures on Ultra-Central Puzzle in Heavy Ion Collisions. arXiv 2025, arXiv:2504.19208. [Google Scholar]
- Wang, H.C.; Li, S.J.; Xu, J.; Ren, Z.Z. Disentangling effects of nucleon size and nucleus structure in relativistic heavy-ion collisions. Phys. Lett. B 2025, 866, 139516. [Google Scholar] [CrossRef]
- Giacalone, G.; Schenke, B.; Shen, C. Constraining the Nucleon Size with Relativistic Nuclear Collisions. Phys. Rev. Lett. 2022, 128, 042301. [Google Scholar] [CrossRef]
- Alvioli, M.; Strikman, M. Color fluctuation effects in proton-nucleus collisions. Phys. Lett. B 2013, 722, 347–354. [Google Scholar] [CrossRef]
- Uzhinsky, V.; Galoyan, A. Gribov’s inelastic screening in high energy nucleus-nucleus interaction. Phys. Lett. B 2013, 721, 68–73. [Google Scholar] [CrossRef]
- Alvioli, M.; Frankfurt, L.; Perepelitsa, D.; Strikman, M. Global analysis of color fluctuation effects in proton– and deuteron–nucleus collisions at RHIC and the LHC. Phys. Rev. D 2018, 98, 071502. [Google Scholar] [CrossRef]
- Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206. [Google Scholar] [CrossRef]
- Li, B.A.; Ko, C.M. Formation of superdense hadronic matter in high-energy heavy ion collisions. Phys. Rev. C 1995, 52, 2037–2063. [Google Scholar] [CrossRef]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. [Google Scholar] [CrossRef]
- Schenke, B.; Shen, C.; Teaney, D. Transverse momentum fluctuations and their correlation with elliptic flow in nuclear collisions. Phys. Rev. C 2020, 102, 034905. [Google Scholar] [CrossRef]
- Hu, J.Y.; Xu, H.j.; Wang, X.; Pu, S. Probing the tetrahedral α clusters in relativistic 16O + 16O collisions. arXiv 2025, arXiv:2507.01493. [Google Scholar]
(fm) | d (fm) | |||
---|---|---|---|---|
16O | 1.973 | 0.507 | 0 | 0.223 |
20Ne | 2.160 | 0.580 | 0.666 | 0.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-C.; Li, S.-J.; Xu, J.; Ren, Z.-Z. A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe 2025, 11, 296. https://doi.org/10.3390/universe11090296
Wang H-C, Li S-J, Xu J, Ren Z-Z. A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe. 2025; 11(9):296. https://doi.org/10.3390/universe11090296
Chicago/Turabian StyleWang, Hai-Cheng, Song-Jie Li, Jun Xu, and Zhong-Zhou Ren. 2025. "A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei" Universe 11, no. 9: 296. https://doi.org/10.3390/universe11090296
APA StyleWang, H.-C., Li, S.-J., Xu, J., & Ren, Z.-Z. (2025). A Comparison Study of Collisions at Relativistic Energies Involving Light Nuclei. Universe, 11(9), 296. https://doi.org/10.3390/universe11090296