The History of Galaxy Mergers in IllustrisTNG
Abstract
1. Introduction
Galaxy Mergers
2. Methods
2.1. IllustrisTNG
2.2. Galaxies and the Merger Tree
3. Results
3.1. Position of the Galaxies in the TNG300-1
3.2. Star Formation Rate and Gas
3.3. Massive Subhalos
4. Discussion
Comparison with JWST Observations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Figures to the Three Investigated Massive Galaxies
Appendix B. Mass Cuts for r5 Distances
Appendix C. Parameters of the TNG Simulations
TNG50 | TNG100 | TNG300 | ||
---|---|---|---|---|
V | [] | |||
[Mpc/h] | 35 | 75 | 205 | |
- | ||||
- | ||||
- | 2 × | |||
[] | 8.5 × | 1.4 × | 1.1 × | |
[] | 4.5 × | 7.5 × | 5.9 × |
Parameter | Value |
---|---|
side length of simulation box [ckpc/h] | 2.05 × |
average gas cell mass [ /h] | 7.43 × |
dark matter particle mass [ /h] | 3.98 × |
number of dark matter particles | 1.5625 × |
number of gas tracer particles | 1.5625 × |
starting redshift | 127.0 |
ending redshift | 0.0 |
References
- Hwang, H.S.; Shin, J.; Song, H. Evolution of star formation rate–density relation over cosmic time in a simulated universe: The observed reversal reproduced. Mon. Not. R. Astron. Soc. 2019, 489, 339–348. [Google Scholar] [CrossRef]
- Mihos, J.C.; Hernquist, L. Gasdynamics and Starbursts in Major Mergers. Astrophys. J. 1996, 464, 641. [Google Scholar] [CrossRef]
- Shah, E.A.; Kartaltepe, J.S.; Magagnoli, C.T.; Cox, I.G.; Wetherell, C.T.; Vanderhoof, B.N.; Cooke, K.C.; Calabro, A.; Chartab, N.; Conselice, C.J.; et al. Investigating the Effect of Galaxy Interactions on Star Formation at 0.5 < z < 3.0. Astrophys. J. 2022, 940, 4. [Google Scholar] [CrossRef]
- Nath, B.B.; Chiba, M. Dwarf Galaxies and the Origin of the Intracluster Medium. Astrophys. J. 1995, 454, 604. [Google Scholar] [CrossRef]
- Moustakas, J.; Coil, A.L.; Aird, J.; Blanton, M.R.; Cool, R.J.; Eisenstein, D.J.; Mendez, A.J.; Wong, K.C.; Zhu, G.; Arnouts, S. PRIMUS: Constraints on Star Formation Quenching and Galaxy Merging, and the Evolution of the Stellar Mass Function from z = 0–1. Astrophys. J. 2013, 767, 50. [Google Scholar] [CrossRef]
- Ellison, S.L.; Wilkinson, S.; Woo, J.; Leung, H.H.; Wild, V.; Bickley, R.W.; Patton, D.R.; Quai, S.; Gwyn, S. Galaxy mergers can rapidly shut down star formation. Mon. Not. R. Astron. Soc. Lett. 2022, 517, L92–L96. [Google Scholar] [CrossRef]
- Pontzen, A.; Tremmel, M.; Roth, N.; Peiris, H.V.; Saintonge, A.; Volonteri, M.; Quinn, T.; Governato, F. How to quench a galaxy. Mon. Not. R. Astron. Soc. 2017, 465, 547–558. [Google Scholar] [CrossRef]
- Gabor, J.M.; Davé, R.; Finlator, K.; Oppenheimer, B.D. How is star formation quenched in massive galaxies? Mon. Not. R. Astron. Soc. 2010, 407, 749–771. [Google Scholar] [CrossRef]
- Pearson, W.J.; Wang, L.; Alpaslan, M.; Baldry, I.; Bilicki, M.; Brown, M.J.I.; Grootes, M.W.; Holwerda, B.W.; Kitching, T.D.; Kruk, S.; et al. Effect of galaxy mergers on star-formation rates. Astron. Astrophys. 2019, 631, A51. [Google Scholar] [CrossRef]
- Nelson, D.; Pillepich, A.; Springel, V.; Weinberger, R.; Hernquist, L.; Pakmor, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Kauffmann, G.; et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Mon. Not. R. Astron. Soc. 2017, 475, 624–647. [Google Scholar] [CrossRef]
- Marinacci, F.; Vogelsberger, M.; Pakmor, R.; Torrey, P.; Springel, V.; Hernquist, L.; Nelson, D.; Weinberger, R.; Pillepich, A.; Naiman, J.; et al. First results from the IllustrisTNG simulations: Radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 2018. [Google Scholar] [CrossRef]
- Pillepich, A.; Nelson, D.; Hernquist, L.; Springel, V.; Pakmor, R.; Torrey, P.; Weinberger, R.; Genel, S.; Naiman, J.P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: The stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 2017, 475, 648–675. [Google Scholar] [CrossRef]
- Springel, V.; Pakmor, R.; Pillepich, A.; Weinberger, R.; Nelson, D.; Hernquist, L.; Vogelsberger, M.; Genel, S.; Torrey, P.; Marinacci, F.; et al. First results from the IllustrisTNG simulations: Matter and galaxy clustering. Mon. Not. R. Astron. Soc. 2017, 475, 676–698. [Google Scholar] [CrossRef]
- Naiman, J.P.; Pillepich, A.; Springel, V.; Ramirez-Ruiz, E.; Torrey, P.; Vogelsberger, M.; Pakmor, R.; Nelson, D.; Marinacci, F.; Hernquist, L.; et al. First results from the IllustrisTNG simulations: A tale of two elements—Chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 2018, 477, 1206–1224. [Google Scholar] [CrossRef]
- Cutri, R.M.; McAlary, C.W. A statistical study of the relationship between galaxy interactions and nuclear activity. Astrophys. J. 1985, 296, 90–105. [Google Scholar] [CrossRef]
- Ellison, S.L.; Patton, D.R.; Mendel, J.T.; Scudder, J.M. Galaxy pairs in the Sloan Digital Sky Survey—IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 2011, 418, 2043–2053. [Google Scholar] [CrossRef]
- Moreno, J.; Torrey, P.; Ellison, S.L.; Patton, D.R.; Hopkins, P.F.; Bueno, M.; Hayward, C.C.; Narayanan, D.; Kereš, D.; Bluck, A.F.L.; et al. Interacting galaxies on FIRE-2: The connection between enhanced star formation and interstellar gas content. Mon. Not. R. Astron. Soc. 2019, 485, 1320–1338. [Google Scholar] [CrossRef]
- Joseph, R.D.; Wright, G.S. Recent star formation in interacting galaxies—II. Super starbursts in merging galaxies. Mon. Not. R. Astron. Soc. 1985, 214, 87–95. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion. Astrophys. J. Suppl. Ser. 2005, 160, 115–148. [Google Scholar] [CrossRef]
- Strickland, D.K.; Heckman, T.M. Supernova Feedback Efficiency and Mass Loading in the Starburst and Galactic Superwind Exemplar M82. Astrophys. J. 2009, 697, 2030–2056. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies. Astrophys. J. 2005, 632, 751–780. [Google Scholar] [CrossRef]
- Woo, J.H.; Son, D.; Bae, H.J. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III. Astrophys. J. 2017, 839, 120. [Google Scholar] [CrossRef]
- Luo, W.; Yang, X.; Zhang, Y. Connections between Galaxy Mergers and Starburst: Evidence from the Local Universe. Astrophys. J. Lett. 2014, 789, L16. [Google Scholar] [CrossRef]
- Cibinel, A.; Daddi, E.; Sargent, M.T.; Le Floc’h, E.; Liu, D.; Bournaud, F.; Oesch, P.A.; Amram, P.; Calabrò, A.; Duc, P.A.; et al. Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 ≤ z ≤ 2. Mon. Not. R. Astron. Soc. 2019, 485, 5631–5651. [Google Scholar] [CrossRef]
- Ma, W.; Liu, K.; Guo, H.; Cui, W.; Jones, M.G.; Wang, J.; Zhang, L.; Davé, R. Effects of Active Galactic Nucleus Feedback on Cold Gas Depletion and Quenching of Central Galaxies. Astrophys. J. 2022, 941, 205. [Google Scholar] [CrossRef]
- Lequeux, J.; Peimbert, M.; Rayo, J.F.; Serrano, A.; Torres-Peimbert, S. Chemical Composition and Evolution of Irregular and Blue Compact Galaxies. Astron. Astrophys. 1979, 80, 155. [Google Scholar]
- Kinman, T.D.; Davidson, K. Spectroscopic observations of 10 emission-line dwarf galaxies. Astrophys. J. 1981, 243, 127–139. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K., Jr.; Whitmore, B.C. Luminosity-dependent line ratios in disks of spiral galaxies. Astrophys. J. 1984, 281, L21–L24. [Google Scholar] [CrossRef]
- Kewley, L.J.; Geller, M.J.; Barton, E.J. Metallicity and Nuclear Star Formation in Nearby Galaxy Pairs: Evidence for Tidally Induced Gas Flows. Astron. J. 2006, 131, 2004–2017. [Google Scholar] [CrossRef]
- Ellison, S.L.; Patton, D.R.; Simard, L.; McConnachie, A.W. Galaxy pairs in the sloan digital sky survey. i. star formation, active galactic nucleus fraction, and the luminosity/mass–metallicity relation. Astron. J. 2008, 135, 1877. [Google Scholar] [CrossRef]
- Chamberlain, K.; Patel, E.; Besla, G.; Torrey, P.; Rodriguez-Gomez, V. A Physically Motivated Framework to Compare the Merger Timescales of Isolated Low- and High-mass Galaxy Pairs Across Cosmic Time. Astrophys. J. 2024, 975, 104. [Google Scholar] [CrossRef]
- Bottrell, C.; Yesuf, H.M.; Popping, G.; Omori, K.C.; Tang, S.; Ding, X.; Pillepich, A.; Nelson, D.; Eisert, L.; Gao, H.; et al. IllustrisTNG in the HSC-SSP: Image data release and the major role of mini mergers as drivers of asymmetry and star formation. Mon. Not. R. Astron. Soc. 2024, 527, 6506–6539. [Google Scholar] [CrossRef]
- Montenegro-Taborda, D.; Rodriguez-Gomez, V.; Pillepich, A.; Avila-Reese, V.; Sales, L.V.; Rodríguez-Puebla, A.; Hernquist, L. The growth of brightest cluster galaxies in the TNG300 simulation: Dissecting the contributions from mergers and in situ star formation. Mon. Not. R. Astron. Soc. 2023, 521, 800–817. [Google Scholar] [CrossRef]
- Ferreira, L.; Bickley, R.W.; Ellison, S.L.; Patton, D.R.; Byrne-Mamahit, S.; Wilkinson, S.; Bottrell, C.; Fabbro, S.; Gwyn, S.D.J.; McConnachie, A. Galaxy mergers in UNIONS - I. A simulation-driven hybrid deep learning ensemble for pure galaxy merger classification. Mon. Not. R. Astron. Soc. 2024, 533, 2547–2569. [Google Scholar] [CrossRef]
- Margalef-Bentabol, B.; Wang, L.; La Marca, A.; Blanco-Prieto, C.; Chudy, D.; Domínguez-Sánchez, H.; Goulding, A.D.; Guzmán-Ortega, A.; Huertas-Company, M.; Martin, G.; et al. Galaxy merger challenge: A comparison study between machine learning-based detection methods. Astron. Astrophys. 2024, 687, A24. [Google Scholar] [CrossRef]
- Jung, M.; Kim, J.h.; Oh, B.K.; Hong, S.E.; Lee, J.; Kim, J. Merger-tree-based Galaxy Matching: A Comparative Study across Different Resolutions. Astrophys. J. 2024, 965, 156. [Google Scholar] [CrossRef]
- Omori, K.C.; Bottrell, C.; Walmsley, M.; Yesuf, H.M.; Goulding, A.D.; Ding, X.; Popping, G.; Silverman, J.D.; Takeuchi, T.T.; Toba, Y. Galaxy mergers in Subaru HSC-SSP: A deep representation learning approach for identification, and the role of environment on merger incidence. Astron. Astrophys. 2023, 679, A142. [Google Scholar] [CrossRef]
- Patton, D.R.; Wilson, K.D.; Metrow, C.J.; Ellison, S.L.; Torrey, P.; Brown, W.; Hani, M.H.; McAlpine, S.; Moreno, J.; Woo, J. Interacting galaxies in the IllustrisTNG simulations—I: Triggered star formation in a cosmological context. Mon. Not. R. Astron. Soc. 2020, 494, 4969–4985. [Google Scholar] [CrossRef]
- Hani, M.H.; Gosain, H.; Ellison, S.L.; Patton, D.R.; Torrey, P. Interacting galaxies in the IllustrisTNG simulations—II: Star formation in the post-merger stage. Mon. Not. R. Astron. Soc. 2020, 493, 3716–3731. [Google Scholar] [CrossRef]
- Quai, S.; Hani, M.H.; Ellison, S.L.; Patton, D.R.; Woo, J. Interacting galaxies in the IllustrisTNG simulations—III. (The rarity of) quenching in post-merger galaxies. Mon. Not. R. Astron. Soc. 2021, 504, 1888–1901. [Google Scholar] [CrossRef]
- Byrne-Mamahit, S.; Hani, M.H.; Ellison, S.L.; Quai, S.; Patton, D.R. Interacting galaxies in the IllustrisTNG simulations—IV: Enhanced supermassive black hole accretion rates in post-merger galaxies. Mon. Not. R. Astron. Soc. 2023, 519, 4966–4981. [Google Scholar] [CrossRef]
- Brown, W.; Patton, D.R.; Ellison, S.L.; Faria, L. Interacting galaxies in the IllustrisTNG simulations—V. Comparing the influence of star-forming versus passive companions. Mon. Not. R. Astron. Soc. 2023, 522, 5107–5122. [Google Scholar] [CrossRef]
- Hopkins, A.M.; Beacom, J.F. On the Normalization of the Cosmic Star Formation History. Astrophys. J. 2006, 651, 142–154. [Google Scholar] [CrossRef]
- Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 2010, 401, 791–851. [Google Scholar] [CrossRef]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef]
- Weinberger, R.; Springel, V.; Hernquist, L.; Pillepich, A.; Marinacci, F.; Pakmor, R.; Nelson, D.; Genel, S.; Vogelsberger, M.; Naiman, J.; et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 2017, 465, 3291–3308. [Google Scholar] [CrossRef]
- Pillepich, A.; Nelson, D.; Springel, V.; Pakmor, R.; Torrey, P.; Weinberger, R.; Vogelsberger, M.; Marinacci, F.; Genel, S.; van der Wel, A.; et al. First results from the TNG50 simulation: The evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 2019, 490, 3196–3233. [Google Scholar] [CrossRef]
- Nelson, D.; Pillepich, A.; Springel, V.; Pakmor, R.; Weinberger, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Marinacci, F.; Hernquist, L. First results from the TNG50 simulation: Galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 2019, 490, 3234–3261. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, V.; Genel, S.; Vogelsberger, M.; Sijacki, D.; Pillepich, A.; Sales, L.V.; Torrey, P.; Snyder, G.; Nelson, D.; Springel, V.; et al. The merger rate of galaxies in the Illustris simulation: A comparison with observations and semi-empirical models. Mon. Not. R. Astron. Soc. 2015, 449, 49–64. [Google Scholar] [CrossRef]
- Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef]
- Koncz, B.; Joó, A.P.; Pintér, S. Investigating star formation in Illustris TNG galaxy mergers. Contrib. Astron. Obs. Skaln. Pleso 2023, 53, 153–163. [Google Scholar] [CrossRef]
- Das, A.; Pandey, B.; Sarkar, S. Galaxy Interactions in Filaments and Sheets: Effects of the Large-scale Structures Versus the Local Density. Res. Astron. Astrophys. 2023, 23, 025016. [Google Scholar] [CrossRef]
- Casertano, S.; Hut, P. Core radius and density measurements in N-body experiments Connections with theoretical and observational definitions. Astrophys. J. 1985, 298, 80–94. [Google Scholar] [CrossRef]
- Joó, A.P.; Koncz, B.; Pinter, S.; Tóth, L.V. Star Formation History in the Illustris TNG Simulation. In Resolving the Rise and Fall of Star Formation in Galaxies; Wong, T., Kim, W.T., Eds.; Cambridge University Press: Cambridge, UK, 2023; Volume 373, pp. 318–321. [Google Scholar] [CrossRef]
- Ilbert, O.; Arnouts, S.; Le Floc’h, E.; Aussel, H.; Bethermin, M.; Capak, P.; Hsieh, B.C.; Kajisawa, M.; Karim, A.; Le Fèvre, O.; et al. Evolution of the specific star formation rate function at z < 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS. Astron. Astrophys. 2015, 579, A2. [Google Scholar] [CrossRef]
- Kim, S.J.; Goto, T.; Ling, C.T.; Wu, C.K.W.; Hashimoto, T.; Kilerci, E.; Ho, S.C.C.; Uno, Y.; Wang, P.Y.; Lin, Y.W. Cosmic star-formation history and black hole accretion history inferred from the JWST mid-infrared source counts. Mon. Not. R. Astron. Soc. 2023, 527, 5525–5539. [Google Scholar] [CrossRef]
- Ling, C.T.; Kim, S.J.; Wu, C.K.W.; Goto, T.; Kilerci, E.; Hashimoto, T.; Lin, Y.W.; Wang, P.Y.; Ho, S.C.C.; Hsiao, T.Y.Y. Galaxy source counts at 7.7, 10, and 15 μm with the James Webb Space Telescope. Mon. Not. R. Astron. Soc. 2022, 517, 853–857. [Google Scholar] [CrossRef]
- Wu, C.K.W.; Ling, C.T.; Goto, T.; Kim, S.J.; Hashimoto, T.; Kilerci, E.; Lin, Y.W.; Wang, P.Y.; Uno, Y.; Ho, S.C.C.; et al. Source counts at 7.7–21 μm in CEERS field with JWST. Mon. Not. R. Astron. Soc. 2023, 523, 5187–5197. [Google Scholar] [CrossRef]
- Oliver, S.J.; Goldschmidt, P.; Franceschini, A.; Serjeant, S.B.G.; Efstathiou, A.; Verma, A.; Gruppioni, C.; Eaton, N.; Mann, R.G.; Mobasher, B.; et al. Observations of the Hubble Deep Field with the Infrared Space Observatory—III. Source counts and P(D) analysis. Mon. Not. R. Astron. Soc. 1997, 289, 471–481. [Google Scholar] [CrossRef]
- Serjeant, S.; Oliver, S.; Rowan-Robinson, M.; Crockett, H.; Missoulis, V.; Sumner, T.; Gruppioni, C.; Mann, R.G.; Eaton, N.; Elbaz, D.; et al. The European Large Area ISO Survey—II. Mid-infrared extragalactic source counts. Mon. Not. R. Astron. Soc. 2000, 316, 768–778. [Google Scholar] [CrossRef]
- Pearson, C.P.; Oyabu, S.; Wada, T.; Matsuhara, H.; Lee, H.M.; Kim, S.J.; Takagi, T.; Goto, T.; Im, M.S.; Serjeant, S.; et al. Source counts at 15 microns from the AKARI NEP survey. Astron. Astrophys. 2010, 514, A8. [Google Scholar] [CrossRef]
- Takagi, T.; Matsuhara, H.; Goto, T.; Hanami, H.; Im, M.; Imai, K.; Ishigaki, T.; Lee, H.M.; Lee, M.G.; Malkan, M.; et al. The AKARI NEP-Deep survey: A mid-infrared source catalogue. Astron. Astrophys. 2011, 537, A24. [Google Scholar] [CrossRef]
- Pearson, C.P.; Serjeant, S.; Oyabu, S.; Matsuhara, H.; Wada, T.; Goto, T.; Takagi, T.; Lee, H.M.; Im, M.; Ohyama, Y.; et al. The first source counts at 18 μm from the AKARI NEP Survey. Mon. Not. R. Astron. Soc. 2014, 444, 846–859. [Google Scholar] [CrossRef]
- Davidge, H.; Serjeant, S.; Pearson, C.; Matsuhara, H.; Wada, T.; Dryer, B.; Barrufet, L. AKARI/IRC source catalogues and source counts for the IRAC Dark Field, ELAIS North and the AKARI Deep Field South. Mon. Not. R. Astron. Soc. 2017, 472, 4259–4286. [Google Scholar] [CrossRef]
- Suess, K.A.; Williams, C.C.; Robertson, B.; Ji, Z.; Johnson, B.D.; Nelson, E.; Alberts, S.; Hainline, K.; D’Eugenio, F.; Übler, H.; et al. Minor Merger Growth in Action: JWST Detects Faint Blue Companions around Massive Quiescent Galaxies at 0.5 ≤ z ≤ 3.0. Astrophys. J. Lett. 2023, 956, L42. [Google Scholar] [CrossRef]
- Atek, H.; Shuntov, M.; Furtak, L.J.; Richard, J.; Kneib, J.P.; Mahler, G.; Zitrin, A.; McCracken, H.J.; Charlot, S.; Chevallard, J.; et al. Revealing galaxy candidates out to z ∼ 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 2022, 519, 1201–1220. [Google Scholar] [CrossRef]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 2023, 616, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Springel, V.; Pillepich, A.; Rodriguez-Gomez, V.; Torrey, P.; Genel, S.; Vogelsberger, M.; Pakmor, R.; Marinacci, F.; Weinberger, R.; et al. The IllustrisTNG Simulations: Public Data Release. arXiv 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koncz, B.; Horvath, I.; Joó, A.P.; Burkert, A.; Tóth, L.V. The History of Galaxy Mergers in IllustrisTNG. Universe 2025, 11, 286. https://doi.org/10.3390/universe11090286
Koncz B, Horvath I, Joó AP, Burkert A, Tóth LV. The History of Galaxy Mergers in IllustrisTNG. Universe. 2025; 11(9):286. https://doi.org/10.3390/universe11090286
Chicago/Turabian StyleKoncz, Bendeguz, Istvan Horvath, András Péter Joó, Andreas Burkert, and L. Viktor Tóth. 2025. "The History of Galaxy Mergers in IllustrisTNG" Universe 11, no. 9: 286. https://doi.org/10.3390/universe11090286
APA StyleKoncz, B., Horvath, I., Joó, A. P., Burkert, A., & Tóth, L. V. (2025). The History of Galaxy Mergers in IllustrisTNG. Universe, 11(9), 286. https://doi.org/10.3390/universe11090286