Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation and Sample Preparation of Anaerobic Gut Fungi for GC-MS and Proteomics
2.2. GC-MS Sample Derivatization and Data Acquisition
2.3. Identification of Known Compounds and Molecular Networking
2.4. Proteomics Mass Spectrometry and Data Analysis
3. Results and Discussion
3.1. Anaerobic Gut Fungi A. robustus and C. churrovis Produce Distinct Metabolites
3.2. Genome Mining and Molecular Networking Highlight a Putative Terpene and Terpenoid Produced by Anaerobic Gut Fungi
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC-MS | gas chromatography–mass spectrometry |
MPLEx | Metabolite, Protein, and Lipid Extraction |
LC-MS/MS | liquid chromatography–tandem mass spectrometry |
GNPS | Global Natural Products Social Molecular Networking |
PBS | phosphate buffered saline |
PNNL | Pacific Northwest National Laboratory |
MSTFA | N-methyl-N-trimethylsilyltrifluoroacetamide |
TMS | trimethylsilylated |
FAMEs | fatty acid methyl esters |
RI | retention index |
pPCA | probabilistic principal component analysis |
SQS | squalene synthase |
STC | squalene tetrahymanol cyclase |
antiSMASH | antibiotics and Secondary Metabolite Analysis Shell |
TIC | total ion chromatogram |
GABA | gamma-aminobutyric acid |
References
- Liggenstoffer, A.S.; Youssef, N.H.; Couger, M.B.; Elshahed, M.S. Phylogenetic Diversity and Community Structure of Anaerobic Gut Fungi (Phylum Neocallimastigomycota) in Ruminant and Non-Ruminant Herbivores. ISME J. 2010, 4, 1225–1235. [Google Scholar] [CrossRef]
- Swift, C.L.; Louie, K.B.; Bowen, B.P.; Olson, H.M.; Purvine, S.O.; Salamov, A.; Mondo, S.J.; Solomon, K.V.; Wright, A.T.; Northen, T.R.; et al. Anaerobic Gut Fungi Are an Untapped Reservoir of Natural Products. Proc. Natl. Acad. Sci. USA 2021, 118, e2019855118. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.V.; Haitjema, C.H.; Henske, J.K.; Gilmore, S.P.; Borges-Rivera, D.; Lipzen, A.; Brewer, H.M.; Purvine, S.O.; Wright, A.T.; Theodorou, M.K.; et al. Early-Branching Gut Fungi Possess a Large, Comprehensive Array of Biomass-Degrading Enzymes. Science 2016, 351, 1192–1195. [Google Scholar] [CrossRef] [PubMed]
- Lankiewicz, T.S.; Choudhary, H.; Gao, Y.; Amer, B.; Lillington, S.P.; Leggieri, P.A.; Brown, J.L.; Swift, C.L.; Lipzen, A.; Na, H.; et al. Lignin Deconstruction by Anaerobic Fungi. Nat. Microbiol. 2023, 8, 596–610. [Google Scholar] [CrossRef] [PubMed]
- Swift, C.L.; Louie, K.B.; Bowen, B.P.; Hooker, C.A.; Solomon, K.V.; Singan, V.; Daum, C.; Pennacchio, C.P.; Barry, K.; Shutthanandan, V.; et al. Cocultivation of Anaerobic Fungi with Rumen Bacteria Establishes an Antagonistic Relationship. mBio 2021, 12, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Kar, B.; Özköse, E.; Ekinci, M.S. The Comparisons of Fatty Acid Composition in Some Anaerobic Gut Fungi Neocallimastix, Orpinomyces, Piromyces, and Caecomyces. An. Acad. Bras. Cienc. 2021, 93, e20200896. [Google Scholar] [CrossRef]
- Kemp, P.; Lander, D.J.; Orpin, C.G. The Lipids of the Rumen Fungus Piromonas Communis. J. Gen. Microbiol. 1984, 130, 27–37. [Google Scholar] [CrossRef]
- Body, D.R.; Bauchop, T. Lipid Composition of an Obligately Anaerobic Fungus Neocallimastix Frontalis Isolated from a Bovine Rumen. Can. J. Microbiol. 1985, 31, 463–466. [Google Scholar] [CrossRef]
- Koppová, I.; Novotná, Z.; Štrosová, L.; Fliegerová, K. Analysis of Fatty Acid Composition of Anaerobic Rumen Fungi. Folia Microbiol. 2008, 53, 217–220. [Google Scholar] [CrossRef]
- Comlekcioglu, U.; Ozkose, E.; Akyol, I.; Ekinci, M.S. Fatty Acid Analysis of Anaerobic Ruminal Fungi Neocallimastix, Caecomyces and Orpinomyces. Int. J. Agric. Biol. 2010, 12, 635–637. [Google Scholar]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 2016, mb3004s114. [Google Scholar] [CrossRef]
- Breton, A.; Bernalier, A.; Dusser, M.; Fonty, G.; Gaillard-Martinie, B.; Guillot, J. Anaeromyces Mucronatus Nov. Gen., Nov. Sp. A New Strictly Anaerobic Rumen Fungus with Polycentric Thallus. FEMS Microbiol. Lett. 2006, 70, 177–182. [Google Scholar] [CrossRef]
- Henske, J.K.; Gilmore, S.P.; Knop, D.; Cunningham, F.J.; Sexton, J.A.; Smallwood, C.R.; Shutthanandan, V.; Evans, J.E.; Theodorou, M.K.; O’Malley, M.A. Transcriptomic Characterization of Caecomyces Churrovis: A Novel, Non-Rhizoid-Forming Lignocellulolytic Anaerobic Fungus. Biotechnol. Biofuels 2017, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.J.; Brent Heath, I.; Bauchop, T. Ultrastructural Description of a New Chytrid Genus of Caecum Anaerobe, Caecomyces Equi Gen. Nov., Sp. Nov., Assigned to the Neocallimasticaceae. Biosystems 1988, 21, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Wauthoz, P.; Lioui, M.E.; Decallonne, J. Gas Chromatographic Analysis of Cellular Fatty Acids in the Identification of Foodborne Bacteria. J. Food Prot. 1995, 58, 1234–1240. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, J. Untargeted Metabolomics Sensitively Differentiates Gut Bacterial Species in Single Culture and Co-Culture Systems. ACS Omega 2022, 7, 14643–14652. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.A.; Laponogov, I.; Zhang, Z.; Doran, S.L.F.; Belluomo, I.; Veselkov, D.; Bittremieux, W.; Nothias, L.F.; Nothias-Esposito, M.; Maloney, K.N.; et al. Auto-Deconvolution and Molecular Networking of Gas Chromatography–Mass Spectrometry Data. Nat. Biotechnol. 2021, 39, 169–173. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Murphy, C.L.; Youssef, N.H.; Hanafy, R.A.; Couger, M.B.; Stajich, J.E.; Wang, Y.; Baker, K.; Dagar, S.S.; Griffith, G.W.; Farag, I.F.; et al. Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl. Environ. Microbiol. 2019, 85, e00988-19. [Google Scholar] [CrossRef]
- Takishita, K.; Chikaraishi, Y.; Leger, M.M.; Kim, E.; Yabuki, A.; Ohkouchi, N.; Roger, A.J. Lateral Transfer of Tetrahymanol-Synthesizing Genes Has Allowed Multiple Diverse Eukaryote Lineages to Independently Adapt to Environments without Oxygen. Biol. Direct 2012, 7, 5. [Google Scholar] [CrossRef]
- Makkar, H.P.; McSweeney, C.S. Methods in Gut Microbial Ecology for Ruminants; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 1-4020-3791-0. [Google Scholar]
- Nakayasu, E.; Nicora, C.; Sims, A.; Burnum-Johnson, K.; Kim, Y.-M.; Kyle, J.; Matzke, M.; Shukla, A.; Chu, R.; Schepmoes, A.A.; et al. MPLEx: A Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses. mSystems 2016, 1, 00043-16. [Google Scholar] [CrossRef] [PubMed]
- Hiller, K.; Hangebrauk, J.; Jäger, C.; Spura, J.; Schreiber, K.; Schomburg, D. Metabolite Detector: Comprehensive Analysis Tool for Targeted and Nontargeted GC/MS Based Metabolome Analysis. Anal. Chem. 2009, 81, 3429–3439. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying Metabolites by Integrating Metabolome Databases with Mass Spectrometry Cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Haitjema, C.H.; Gilmore, S.P.; Henske, J.K.; Solomon, K.V.; De Groot, R.; Kuo, A.; Mondo, S.J.; Salamov, A.A.; LaButti, K.; Zhao, Z.; et al. A Parts List for Fungal Cellulosomes Revealed by Comparative Genomics. Nat. Microbiol. 2017, 2, 17087. [Google Scholar] [CrossRef]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; et al. AntiSMASH 3.0-A Comprehensive Resource for the Genome Mining of Biosynthetic Gene Clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef]
- Kim, S.; Pevzner, P.A. MS-GF+ Makes Progress towards a Universal Database Search Tool for Proteomics. Nat. Commun. 2014, 5, 5277. [Google Scholar] [CrossRef]
- Pruett, S.T.; Bushnev, A.; Hagedorn, K.; Adiga, M.; Haynes, C.A.; Sullards, M.C.; Liotta, D.C.; Merrill, A.H. Thematic Review Series: Sphingolipids. Biodiversity of Sphingoid Bases (“Sphingosines”) and Related Amino Alcohols. J. Lipid Res. 2008, 49, 1621–1639. [Google Scholar] [CrossRef]
- Wilken, S.E.; Monk, J.M.; Leggieri, P.A.; Lawson, C.E.; Lankiewicz, T.S.; Seppälä, S.; Daum, C.G.; Jenkins, J.; Lipzen, A.M.; Mondo, S.J.; et al. Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus. mSystems 2021, 6, 1–22. [Google Scholar] [CrossRef]
- Leggieri, P.A.; Valentine, M.T.; O’Malley, M.A. Biofilm Disruption Enhances Growth Rate and Carbohydrate-Active Enzyme Production in Anaerobic Fungi. Bioresour. Technol. 2022, 358, 127361. [Google Scholar] [CrossRef]
- Würsch, P.; Koellreutter, B. Maltotriitol Inhibition of Maltose Metabolism in Streptococcus Mutans via Maltose Transport, Amylomaltase and Phospho-α-Glucosidase Activities. Caries Res. 1985, 19, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Mountfort, D.; Asher, R. Production of Alpha-Amylase by the Ruminal Anaerobic Fungus Neocallimastix frontalis. Appl. Environ. Microbiol. 1988, 54, 2293–2299. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, G.-L.; Jia, S.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Pullulan Biosynthesis and Its Regulation in Aureobasidium spp. Carbohydr. Polym. 2021, 251, 117076. [Google Scholar] [CrossRef]
- Brethauer, S.; Shahab, R.L.; Studer, M.H. Impacts of Biofilms on the Conversion of Cellulose. Appl. Microbiol. Biotechnol. 2020, 104, 5201–5212. [Google Scholar] [CrossRef]
- Chandrasekar, P.H.; Manavathu, E.K. Do Aspergillus Species Produce Biofilm? Future Microbiol. 2008, 3, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.W.; Gordon, G.L.R. Sugar and Polysaccharide Fermentation by Rumen Anaerobic Fungi from Australia, Britain and New Zealand. Biosystems 1988, 21, 377–383. [Google Scholar] [CrossRef]
- Culp, E.J.; Goodman, A.L. Cross-Feeding in the Gut Microbiome: Ecology and Mechanisms. Cell Host Microbe 2023, 31, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Tetali, S.D. Terpenes and Isoprenoids: A Wealth of Compounds for Global Use. Planta 2019, 249, 1–8. [Google Scholar] [CrossRef]
- Bui, T.T.; Suga, K.; Umakoshi, H. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems. Langmuir 2016, 32, 6176–6184. [Google Scholar] [CrossRef]
- Ourisson, G.; Rohmer, M.; Poralla, K. Prokaryotic Hopanoids and Other Polyterpenoid Sterol Surrogates. Annu. Rev. Microbiol. 1987, 41, 301–333. [Google Scholar] [CrossRef]
- Sáenz, J.P.; Grosser, D.; Bradley, A.S.; Lagny, T.J.; Lavrynenko, O.; Broda, M.; Simons, K. Hopanoids as Functional Analogues of Cholesterol in Bacterial Membranes. Proc. Natl. Acad. Sci. USA 2015, 112, 11971–11976. [Google Scholar] [CrossRef]
- Nes, W.D.; Heftmann, E. A Comparison of Triterpenoids with Steroids as Membrane Components. J. Nat. Prod. 1981, 44, 377–400. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic Fungi (Phylum Neocallimastigomycota): Advances in Understanding Their Taxonomy, Life Cycle, Ecology, Role and Biotechnological Potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.H.; Couger, M.B.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Prade, R.A.; Najar, F.Z.; Atiyeh, H.K.; Wilkins, M.R.; Elshahed, M.S. The Genome of the Anaerobic Fungus Orpinomyces Sp. Strain C1a Reveals the Unique Evolutionary History of a Remarkable Plant Biomass Degrader. Appl. Environ. Microbiol. 2013, 79, 4620–4634. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, S.J.; Mooiman, C.; Giera, M.; Pronk, J.T. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2020, 86, e00672-20. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. AntiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef]
- Mondo, S.J.; Dannebaum, R.O.; Kuo, R.C.; Louie, K.B.; Bewick, A.J.; LaButti, K.; Haridas, S.; Kuo, A.; Salamov, A.; Ahrendt, S.R.; et al. Widespread Adenine N6-Methylation of Active Genes in Fungi. Nat. Genet. 2017, 49, 964–968. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Jin, W.; Sharpton, T.J.; Mackie, R.I.; Cann, I.; Cheng, Y.; Zhu, W. Combined Genomic, Transcriptomic, Proteomic, and Physiological Characterization of the Growth of Pecoramyces Sp. F1 in Monoculture and Co-Culture with a Syntrophic Methanogen. Front. Microbiol. 2019, 10, 435. [Google Scholar] [CrossRef]
- Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An Efficient Algorithm for Large-Scale Detection of Protein Families. Nucleic Acids Res. 2002, 30, 1575–1584. [Google Scholar] [CrossRef]
- Khaldi, N.; Seifuddin, F.T.; Turner, G.; Haft, D.; Nierman, W.C.; Wolfe, K.H.; Fedorova, N.D. SMURF: Genomic Mapping of Fungal Secondary Metabolite Clusters. Fungal Genet. Biol. 2010, 47, 736–741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butkovich, L.V.; Swift, C.L.; Clendinen, C.S.; Olson, H.M.; Purvine, S.O.; Vining, O.B.; O’Malley, M.A. Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites. Metabolites 2025, 15, 578. https://doi.org/10.3390/metabo15090578
Butkovich LV, Swift CL, Clendinen CS, Olson HM, Purvine SO, Vining OB, O’Malley MA. Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites. Metabolites. 2025; 15(9):578. https://doi.org/10.3390/metabo15090578
Chicago/Turabian StyleButkovich, Lazarina V., Candice L. Swift, Chaevien S. Clendinen, Heather M. Olson, Samuel O. Purvine, Oliver B. Vining, and Michelle A. O’Malley. 2025. "Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites" Metabolites 15, no. 9: 578. https://doi.org/10.3390/metabo15090578
APA StyleButkovich, L. V., Swift, C. L., Clendinen, C. S., Olson, H. M., Purvine, S. O., Vining, O. B., & O’Malley, M. A. (2025). Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites. Metabolites, 15(9), 578. https://doi.org/10.3390/metabo15090578