The Hidden Burden: Gastrointestinal Involvement in Lysosomal Storage Disorders
Abstract
:1. Introduction
2. Relevant Sections
2.1. Fabry Disease
2.2. Gaucher Disease
2.3. Pompe Disease
2.4. Niemann–Pick Type C
2.5. Mucopolysaccharidoses
2.6. Wolman Disease
3. Conclusions and Future Directions
- -
- Identify specific biomarkers for the early detection of GI involvement in LSDs.
- -
- Enhance ERT targeting and develop alternative therapies for life-threatening symptoms that are currently difficult to manage (e.g., intestinal lymphangiectasia in GD).
- -
- Evaluate the efficacy of anti-inflammatory and antioxidant therapies in LSDs with an inflammatory pathogenesis (e.g., Crohn’s-like in NPC) or where inflammation exacerbates symptoms (e.g., in Fabry and Gaucher diseases).
- -
- Assess targeted microbiome interventions in FD, NPC and MPS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal Storage Diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Toyooka, K. Fabry Disease. Curr. Opin. Neurol. 2011, 24, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P. Fabry Disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Burlina, A.P.; Polo, G.; Giuliani, A.; Salviati, L.; Duro, G.; Cazzorla, C.; Rubert, L.; Maines, E.; Germain, D.P.; et al. Newborn Screening for Fabry Disease in Northeastern Italy: Results of Five Years of Experience. Biomolecules 2021, 11, 951. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Commone, A.; Gueraldi, D.; Puma, A.; Porcù, E.; Stornaiuolo, M.; Cazzorla, C.; Burlina, A.B. Newborn Screening for Fabry Disease: Current Status of Knowledge. Int. J. Neonatal Screen. 2023, 9, 31. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Puma, A.; Loro, C.; Porcù, E.; Stornaiuolo, M.; Miglioranza, P.; Salviati, L.; Burlina, A.P.; et al. Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy. Int. J. Neonatal Screen. 2023, 10, 3. [Google Scholar] [CrossRef]
- Politei, J.; Thurberg, B.L.; Wallace, E.; Warnock, D.; Serebrinsky, G.; Durand, C.; Schenone, A.B. Gastrointestinal Involvement in Fabry Disease. So Important, yet Often Neglected. Clin. Genet. 2016, 89, 5–9. [Google Scholar] [CrossRef]
- Wilcox, W.R.; Feldt-Rasmussen, U.; Martins, A.M.; Ortiz, A.; Lemay, R.M.; Jovanovic, A.; Germain, D.P.; Varas, C.; Nicholls, K.; Weidemann, F.; et al. Improvement of Fabry Disease-Related Gastrointestinal Symptoms in a Significant Proportion of Female Patients Treated with Agalsidase Beta: Data from the Fabry Registry. In JIMD Reports, Volume 38; Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 38, pp. 45–51. [Google Scholar] [CrossRef]
- Mehta, A.; Clarke, J.T.R.; Giugliani, R.; Elliott, P.; Linhart, A.; Beck, M.; Sunder-Plassmann, G.; on behalf of the FOS Investigators. Natural Course of Fabry Disease: Changing Pattern of Causes of Death in FOS—Fabry Outcome Survey. J. Med. Genet. 2009, 46, 548–552. [Google Scholar] [CrossRef]
- Ries, M.; Ramaswami, U.; Parini, R.; Lindblad, B.; Whybra, C.; Willers, I.; Gal, A.; Beck, M. The Early Clinical Phenotype of Fabry Disease: A Study on 35 European Children and Adolescents. Eur. J. Pediatr. 2003, 162, 767–772. [Google Scholar] [CrossRef]
- Hopkin, R.J.; Bissler, J.; Banikazemi, M.; Clarke, L.; Eng, C.M.; Germain, D.P.; Lemay, R.; Tylki-Szymanska, A.; Wilcox, W.R. Characterization of Fabry disease in 352 pediatric patients in the Fabry Registry. Pediatr. Res. 2008, 64, 550–555. [Google Scholar] [CrossRef]
- Laney, D.A.; Peck, D.S.; Atherton, A.M.; Manwaring, L.P.; Christensen, K.M.; Shankar, S.P.; Grange, D.K.; Wilcox, W.R.; Hopkin, R.J. Fabry Disease in Infancy and Early Childhood: A Systematic Literature Review. Genet. Med. 2015, 17, 323–330. [Google Scholar] [CrossRef]
- Hilz, M.J.; Arbustini, E.; Dagna, L.; Gasbarrini, A.; Goizet, C.; Lacombe, D.; Liguori, R.; Manna, R.; Politei, J.; Spada, M.; et al. Non-Specific Gastrointestinal Features: Could It Be Fabry Disease? Dig. Liver Dis. 2018, 50, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Francini-Pesenti, F.; Ravarotto, V.; Bertoldi, G.; Spinella, P.; Calò, L.A. Could Nutritional Therapy Take Us Further in Our Approaches to Fabry Disease? Nutrition 2020, 72, 110664. [Google Scholar] [CrossRef]
- Zar-Kessler, C.; Karaa, A.; Sims, K.B.; Clarke, V.; Kuo, B. Understanding the Gastrointestinal Manifestations of Fabry Disease: Promoting Prompt Diagnosis. Ther. Adv. Gastroenterol. 2016, 9, 626–634. [Google Scholar] [CrossRef]
- Rydzewska-Rosołowska, A.; Hryszko, T. Fabry disease—What a gastroenterologist should know. Prz. Gastroenterol. 2023, 18, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Beck, M.; Sunder-Plassmann, G.; Borsini, W.; Ricci, R.; Mehta, A. Nature and Prevalence of Pain in Fabry Disease and Its Response to Enzyme Replacement Therapy—A Retrospective Analysis From the Fabry Outcome Survey. Clin. J. Pain. 2007, 23, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Bar, N.; Karaa, A.; Kiser, K.; Zar-Kessler, C.; Kuo, B. Gastrointestinal Sensory Neuropathy and Dysmotility in Fabry Disease: Presentations and Effect on Patient’s Quality of Life. Clin. Transl. Gastroenterol. 2023, 14, e00633. [Google Scholar] [CrossRef]
- Beck, M. The Mainz Severity Score Index (MSSI): Development and validation of a system for scoring the signs and symptoms of Fabry disease. Acta Paediatr. Suppl. 2006, 95, 43–46. [Google Scholar] [CrossRef]
- Shields, A.L.; Lamoureux, R.E.; Taylor, F.; Barth, J.A.; Mulberg, A.E.; Kessler, V.; Skuban, N. FABry Disease Patient-Reported Outcome-GastroIntestinal (FABPRO-GI): A New Fabry Disease-Specific Gastrointestinal Outcomes Instrument. Qual. Life Res. 2021, 30, 2983–2994. [Google Scholar] [CrossRef]
- Di Toro, A.; Narula, N.; Giuliani, L.; Concardi, M.; Smirnova, A.; Favalli, V.; Urtis, M.; Alvisi, C.; Antoniazzi, E.; Arbustini, E. Pathologic Substrate of Gastropathy in Anderson-Fabry Disease. Orphanet J. Rare Dis. 2020, 15, 156. [Google Scholar] [CrossRef]
- Marchesoni, C.L.; Roa, N.; Pardal, A.M.; Neumann, P.; Cáceres, G.; Martínez, P.; Kisinovsky, I.; Bianchi, S.; Tarabuso, A.L.; Reisin, R.C. Misdiagnosis in Fabry Disease. J. Pediatr. 2010, 156, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Brand, E. Fabry Disease—A Multisystemic Disease with Gastrointestinal Manifestations. Gut Microbes 2022, 14, 2027852. [Google Scholar] [CrossRef]
- Lenders, M.; Brand, E. Fabry Disease: The Current Treatment Landscape. Drugs 2021, 81, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Boutouyrie, P.; Laurent, S.; Laloux, B.; Lidove, O.; Grunfeld, J.; Germain, D. Arterial Remodelling in Fabry Disease. Acta Paediatr. 2002, 91, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Kleinert, J.; Dehout, F.; Schwarting, A.; De Lorenzo, A.G.; Ricci, R.; Kampmann, C.; Beck, M.; Ramaswami, U.; Linhart, A.; Gal, A.; et al. Anemia Is a New Complication in Fabry Disease: Data from the Fabry Outcome Survey. Kidney Int. 2005, 67, 1955–1960. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Niño, M.D.; Aguilera-Correa, J.-J.; Politei, J.; Esteban, J.; Requena, T.; Ortiz, A. Unraveling the Drivers and Consequences of Gut Microbiota Disruption in Fabry Disease: The Lyso-Gb3 Link. Future Microbiol. 2020, 15, 227–231. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.-J.; Madrazo-Clemente, P.; Martínez-Cuesta, M.D.C.; Peláez, C.; Ortiz, A.; Sánchez-Niño, M.D.; Esteban, J.; Requena, T. Lyso-Gb3 Modulates the Gut Microbiota and Decreases Butyrate Production. Sci. Rep. 2019, 9, 12010. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic Kidney Disease Alters Intestinal Microbial Flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef]
- Zhao, J.; Ning, X.; Liu, B.; Dong, R.; Bai, M.; Sun, S. Specific Alterations in Gut Microbiota in Patients with Chronic Kidney Disease: An Updated Systematic Review. Ren. Fail. 2021, 43, 102–112. [Google Scholar] [CrossRef]
- Delprete, C.; Rimondini Giorgini, R.; Lucarini, E.; Bastiaanssen, T.F.S.; Scicchitano, D.; Interino, N.; Formaggio, F.; Uhlig, F.; Ghelardini, C.; Hyland, N.P.; et al. Disruption of the microbiota-gut-brain axis is a defining characteristic of the α-Gal A (-/0) mouse model of Fabry disease. Gut Microbes 2023, 15, 2256045. [Google Scholar] [CrossRef]
- Tøndel, C.; Thurberg, B.L.; DasMahapatra, P.; Lyn, N.; Maski, M.; Batista, J.L.; George, K.; Patel, H.; Hariri, A. Clinical Relevance of Globotriaosylceramide Accumulation in Fabry Disease and the Effect of Agalsidase Beta in Affected Tissues. Mol. Genet. Metab. 2022, 137, 328–341. [Google Scholar] [CrossRef]
- Biegstraaten, M.; Arngrímsson, R.; Barbey, F.; Boks, L.; Cecchi, F.; Deegan, P.B.; Feldt-Rasmussen, U.; Geberhiwot, T.; Germain, D.P.; Hendriksz, C.; et al. Recommendations for Initiation and Cessation of Enzyme Replacement Therapy in Patients with Fabry Disease: The European Fabry Working Group Consensus Document. Orphanet J. Rare Dis. 2015, 10, 36. [Google Scholar] [CrossRef]
- Frustaci, A.; Najafian, B.; Donato, G.; Verardo, R.; Chimenti, C.; Sansone, L.; Belli, M.; Vernucci, E.; Russo, M.A. Divergent Impact of Enzyme Replacement Therapy on Human Cardiomyocytes and Enterocytes Affected by Fabry Disease: Correlation with Mannose-6-Phosphate Receptor Expression. J. Clin. Med. 2022, 11, 1344. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Bichet, D.G.; Jovanovic, A.; Hughes, D.A.; Giugliani, R.; Feldt-Rasmussen, U.; Shankar, S.P.; Barisoni, L.; Colvin, R.B.; Jennette, J.C.; et al. Migalastat Improves Diarrhea in Patients with Fabry Disease: Clinical-Biomarker Correlations from the Phase 3 FACETS Trial. Orphanet J. Rare Dis. 2018, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Nicholls, K.; Giugliani, R.; Bichet, D.G.; Hughes, D.A.; Barisoni, L.M.; Colvin, R.B.; Jennette, J.C.; Skuban, N.; Castelli, J.P.; et al. Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: Data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study. Genet. Med. 2019, 21, 1987–1997. [Google Scholar] [CrossRef] [PubMed]
- Bellini, M.; Tonarelli, S.; Nagy, A.; Pancetti, A.; Costa, F.; Ricchiuti, A.; De Bortoli, N.; Mosca, M.; Marchi, S.; Rossi, A. Low FODMAP Diet: Evidence, Doubts, and Hopes. Nutrients 2020, 12, 148. [Google Scholar] [CrossRef]
- Gugelmo, G.; Vitturi, N.; Francini-Pesenti, F.; Fasan, I.; Lenzini, L.; Valentini, R.; Carraro, G.; Avogaro, A.; Spinella, P. Gastrointestinal Manifestations and Low-FODMAP Protocol in a Cohort of Fabry Disease Adult Patients. Nutrients 2023, 15, 658. [Google Scholar] [CrossRef]
- Lenders, M.; Boutin, M.; Auray-Blais, C.; Brand, E. Effects of Orally Delivered Alpha-Galactosidase A on Gastrointestinal Symptoms in Patients With Fabry Disease. Gastroenterology 2020, 159, 1602–1604. [Google Scholar] [CrossRef]
- Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef]
- Zimran, A.; Belmatoug, N.; Bembi, B.; Deegan, P.; Elstein, D.; Fernandez-Sasso, D.; Giraldo, P.; Goker-Alpan, O.; Lau, H.; Lukina, E.; et al. Demographics and Patient Characteristics of 1209 Patients with Gaucher Disease: Descriptive Analysis from the Gaucher Outcome Survey (GOS). Am. J. Hematol. 2018, 93, 205–212. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Manara, R.; Cazzorla, C.; Rubert, L.; Gueraldi, D.; Toniolli, E.; Quaia, E.; Burlina, A.B. Bone Disease in Early Detected Gaucher Type I Disease: A Case Report. JIMD Rep. 2022, 63, 414–419. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Loro, C.; Massa, P.; Puma, A.; Cananzi, M.; Salviati, L.; Burlina, A.P.; Burlina, A.B. Long-Term Follow-up of a Patient with Neonatal Form of Gaucher Disease. Am. J. Med. Genet. A 2023, 191, 1917–1922. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Cobián, D.A.; Guzmán-Silahua, S.; García-Hernández, D.; Conde-Sánchez, J.; Castañeda-Borrayo, Y.; Duey, K.L.; Zavala-Cerna, M.G.; Rubio-Jurado, B.; Nava-Zavala, A.H. An Overview of Gaucher Disease. Diagnostics 2024, 14, 2840. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.-Y.; Niu, D.-M.; Chu, T.-H.; Yeh, Y.-C.; Huang, M.-H.; Yang, T.-F.; Liao, H.-C.; Chiang, C.-C.; Ho, H.-C.; Soong, W.-J.; et al. Very Rare Condition of Multiple Gaucheroma: A Case Report and Review of the Literature. Mol. Genet. Metab. Rep. 2019, 20, 100473. [Google Scholar] [CrossRef]
- Tantawy, A.A.G.; Adly, A.A.M.; Atif, H.M.; Madkour, S.S.; Salah, N.Y. Abdominal Lymphadenopathy in Children with Gaucher Disease: Relation to Disease Severity and Glucosylsphingosine. Pediatr. Hematol. Oncol. 2022, 39, 304–317. [Google Scholar] [CrossRef]
- Lim, A.K.; Vellodi, A.; McHugh, K. Mesenteric Mass in a Young Girl—An Unusual Site for Gaucher’s Disease. Pediatr. Radiol. 2002, 32, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Göktaş, M.A.; Gümüş, E.; Demir, H.; Gülşen, H.H.; Saltık-Temizel, İ.N.; Özen, H.; Güçer, Ş.; Yüce, A. A Very Rare Cause of Protein Losing Enteropathy: Gaucher Disease. Turk. J. Pediatr. 2021, 63, 708–715. [Google Scholar] [CrossRef]
- Burrow, T.A.; Cohen, M.B.; Bokulic, R.; Deutsch, G.; Choudhary, A.; Falcone, R.A.; Grabowski, G.A. Gaucher Disease: Progressive Mesenteric and Mediastinal Lymphadenopathy Despite Enzyme Therapy. J. Pediatr. 2007, 150, 202–206. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, D.-Y.; Kim, G.-H.; Cho, K.-J.; Yoon, H.-K.; Yoo, H.-W. Progressive Mesenteric Lymphadenopathy with Protein-Losing Enteropathy; a Devastating Complication in Gaucher Disease. Mol. Genet. Metab. 2012, 105, 522–524. [Google Scholar] [CrossRef]
- Mhanni, A.A.; Kozenko, M.; Hartley, J.N.; Deneau, M.; El-Matary, W.; Rockman-Greenberg, C. Successful Therapy for Protein-Losing Enteropathy Caused by Chronic Neuronopathic Gaucher Disease. Mol. Genet. Metab. Rep. 2016, 6, 13–15. [Google Scholar] [CrossRef]
- Kewcharoen, J.; Mekraksakit, P.; Limpruttidham, N.; Kanitsoraphan, C.; Charoenpoonsiri, N.; Poonsombudlert, K.; Pattison, R.J.; Rattanawong, P. Budesonide for Protein Losing Enteropathy in Patients with Fontan Circulation: A Systematic Review and Meta-Analysis. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 85–91. [Google Scholar] [CrossRef]
- Ramaswami, U.; Mengel, E.; Berrah, A.; AlSayed, M.; Broomfield, A.; Donald, A.; Seif El Dein, H.M.; Freisens, S.; Hwu, W.-L.; Peterschmitt, M.J.; et al. Throwing a Spotlight on Under-Recognized Manifestations of Gaucher Disease: Pulmonary Involvement, Lymphadenopathy and Gaucheroma. Mol. Genet. Metab. 2021, 133, 335–344. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, X.; Zhang, N.; Yan, J.; Wang, L.; Yan, W.; Yu, Z.; Zhang, Y.; Duan, Y.; Zhang, R. A Case of Gaucher Disease with a Rare Complication of Gaucheroma and Protein-Losing Enteropathy. Mol. Genet. Metab. Rep. 2024, 39, 101075. [Google Scholar] [CrossRef]
- Yano, S.; Moseley, K.; Mahajan, N.; Warren, M.; Vachon, L. Large Mesenteric Gaucheroma Responds to Substrate Reduction Therapy: A New Management of Gaucheromas. J. Pediatr. Genet. 2022, 11, 047–050. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.; Limgala, R.P.; Changsila, E.; Kamath, R.; Ioanou, C.; Goker-Alpan, O. Gaucheromas: When Macrophages Promote Tumor Formation and Dissemination. Blood Cells Mol. Dis. 2018, 68, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-X.; Gao, X.; Qu, Q.; Ye, X.; He, X.-D. Gaucher Disease with Mesenteric Lymphadenopathy: A Case with 13-Year Follow-Up. Chin. Med. J. 2016, 129, 2502–2503. [Google Scholar] [CrossRef] [PubMed]
- Burrow, T.A.; Sun, Y.; Prada, C.E.; Bailey, L.; Zhang, W.; Brewer, A.; Wu, S.W.; Setchell, K.D.R.; Witte, D.; Cohen, M.B.; et al. CNS, Lung, and Lymph Node Involvement in Gaucher Disease Type 3 after 11years of Therapy: Clinical, Histopathologic, and Biochemical Findings. Mol. Genet. Metab. 2015, 114, 233–241. [Google Scholar] [CrossRef]
- Braamskamp, M.J.; Dolman, K.M.; Tabbers, M.M. Clinical Practice. Protein-Losing Enteropathy in Children. Eur. J. Pediatr. 2010, 169, 1179–1185. [Google Scholar] [CrossRef]
- Nissley, P.; Kiess, W.; Sklar, M. Developmental expression of the IGF-II/mannose 6-phosphate receptor. Mol. Reprod. Dev. 1993, 35, 408–413. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Shin, D.H.; Park, S.B.; Cheon, C.K.; Yoo, H.-W. Case Report of Unexpected Gastrointestinal Involvement in Type 1 Gaucher Disease: Comparison of Eliglustat Tartrate Treatment and Enzyme Replacement Therapy. BMC Med. Genet. 2017, 18, 55. [Google Scholar] [CrossRef]
- Emanuel, A.J.; Holman, N.; Presnell, S.E.; Welsh, C.T.; Pai, S.; Sun, S. Small Bowel Mucosal Involvement and Mesenteric Mass Formation in a Young Female with Type 3 Gaucher Disease. A Case Report. J. Gastrointestin. Liver Dis. 2018, 27, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Rizk, T.M.; Ariganjoye, R.O.; Alsaeed, G.I. Gaucher Disease: Unusual Presentation and Mini-Review. Neurosciences 2015, 20, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Kocic, M.; Djuricic, S.M.; Djordjevic, M.; Savic, D.; Kecman, B.; Sarajlija, A. Appendiceal Involvement in a Patient with Gaucher Disease. Blood Cells Mol. Dis. 2018, 68, 109–111. [Google Scholar] [CrossRef]
- Jones, D.R.; Hoffman, J.; Downie, R.; Haqqani, M. Massive Gastrointestinal Haemorrhage Associated with Ileal Lymphoid Hyperplasia in Gaucher’s Disease. Postgrad. Med. J. 1991, 67, 479–481. [Google Scholar] [CrossRef]
- Henderson, J.M.; Gilinsky, N.H.; Lee, E.Y.; Greenwood, M.F. Gaucher’s disease complicated by bleeding esophageal varices and colonic infiltration by Gaucher cells. Am. J. Gastroenterol. 1991, 86, 346–348. [Google Scholar]
- Mccall, A.L.; Salemi, J.; Bhanap, P.; Strickland, L.M.; Elmallah, M.K. The Impact of Pompe Disease on Smooth Muscle: A Review. J. Smooth Muscle Res. 2018, 54, 100–118. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Pijnappel, P.W.W.M.; Burlina, A.P.; In ’T Groen, S.L.M.; Gueraldi, D.; Cazzorla, C.; Maines, E.; Polo, G.; Salviati, L.; Di Salvo, G.; et al. Newborn Screening for Pompe Disease in Italy: Long-Term Results and Future Challenges. Mol. Genet. Metab. Rep. 2022, 33, 100929. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Rizzardi, C.; Commone, A.; Gueraldi, D.; Maines, E.; Salviati, L.; Di Salvo, G.; Burlina, A.B. Unusual Evolution of Hypertrophic Cardiomyopathy in Non-Compaction Myocardium in a Pompe Disease Patient. J. Clin. Med. 2023, 12, 2365. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Hwu, W.-L.; Mandel, H.; Nicolino, M.; Yong, F.; Corzo, D. A Retrospective, Multinational, Multicenter Study on the Natural History of Infantile-Onset Pompe Disease. J. Pediatr. 2006, 148, 671–676.e2. [Google Scholar] [CrossRef]
- Parenti, G.; Fecarotta, S.; Alagia, M.; Attaianese, F.; Verde, A.; Tarallo, A.; Gragnaniello, V.; Ziagaki, A.; Guimaraes, M.J.; Aguiar, P.; et al. The European Reference Network for Metabolic Diseases (MetabERN) Clinical Pathway Recommendations for Pompe Disease (Acid Maltase Deficiency, Glycogen Storage Disease Type II). Orphanet J. Rare Dis. 2024, 19, 408. [Google Scholar] [CrossRef]
- Bijvoet, A.G.A.; Van Hirtum, H.; Vermey, M.; Van Leenen, D.; Van Der Ploeg, A.T.; Mooi, W.J.; Reuser, A.J.J. Pathological Features of Glycogen Storage Disease Type II Highlighted in the Knockout Mouse Model. J. Pathol. 1999, 189, 416–424. [Google Scholar] [CrossRef]
- Winkel, L.P.F.; Kamphoven, J.H.J.; Van Den Hout, H.J.M.P.; Severijnen, L.A.; Van Doorn, P.A.; Reuser, A.J.J.; Van Der Ploeg, A.T. Morphological Changes in Muscle Tissue of Patients with Infantile Pompe’s Disease Receiving Enzyme Replacement Therapy. Muscle Nerve 2003, 27, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Shimada, Y.; Ikegami, M.; Kawai, T.; Sakurai, K.; Urashima, T.; Ijima, M.; Fujiwara, M.; Kaneshiro, E.; Ohashi, T.; et al. Prognostic Factors for the Late Onset Pompe Disease with Enzyme Replacement Therapy: From Our Experience of 4 Cases Including an Autopsy Case. Mol. Genet. Metab. 2010, 100, 14–19. [Google Scholar] [CrossRef]
- Hobson-Webb, L.D.; Proia, A.D.; Thurberg, B.L.; Banugaria, S.; Prater, S.N.; Kishnani, P.S. Autopsy Findings in Late-Onset Pompe Disease: A Case Report and Systematic Review of the Literature. Mol. Genet. Metab. 2012, 106, 462–469. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, J.D.; Swash, M.; Leake, J.; Cox, E.L. The pattern of involvement of adult-onset acid maltase deficiency at autopsy. Muscle Nerve 1987, 10, 272–281. [Google Scholar] [CrossRef]
- McCall, A.L.; Dhindsa, J.S.; Bailey, A.M.; Pucci, L.A.; Strickland, L.M.; ElMallah, M.K. Glycogen Accumulation in Smooth Muscle of a Pompe Disease Mouse Model. J. Smooth Muscle Res. 2021, 57, 8–18. [Google Scholar] [CrossRef]
- Pena, L.D.M.; Proia, A.D.; Kishnani, P.S. Postmortem Findings and Clinical Correlates in Individuals with Infantile-Onset Pompe Disease. In JIMD Reports, Volume 23; Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 23, pp. 45–54. [Google Scholar] [CrossRef]
- Prater, S.N.; Banugaria, S.G.; DeArmey, S.M.; Botha, E.G.; Stege, E.M.; Case, L.E.; Jones, H.N.; Phornphutkul, C.; Wang, R.Y.; Young, S.P.; et al. The Emerging Phenotype of Long-Term Survivors with Infantile Pompe Disease. Genet. Med. 2012, 14, 800–810. [Google Scholar] [CrossRef]
- Jones, H.N.; Muller, C.W.; Lin, M.; Banugaria, S.G.; Case, L.E.; Li, J.S.; O’Grady, G.; Heller, J.H.; Kishnani, P.S. Oropharyngeal Dysphagia in Infants and Children with Infantile Pompe Disease. Dysphagia 2010, 25, 277–283. [Google Scholar] [CrossRef]
- Van Gelder, C.M.; Van Capelle, C.I.; Ebbink, B.J.; Moor-van Nugteren, I.; Den Van Hout, J.M.P.; Hakkesteegt, M.M.; Van Doorn, P.A.; De Coo, I.F.M.; Reuser, A.J.J.; De Gier, H.H.W.; et al. Facial-muscle Weakness, Speech Disorders and Dysphagia Are Common in Patients with Classic Infantile Pompe Disease Treated with Enzyme Therapy. J. Inher. Metab. Dis. 2012, 35, 505–511. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Steiner, R.D.; Bali, D.; Berger, K.; Byrne, B.J.; Case, L.E.; Crowley, J.F.; Downs, S.; Howell, R.R.; Kravitz, R.M.; et al. Pompe Disease Diagnosis and Management Guideline. Genet. Med. 2006, 8, 267–288. [Google Scholar] [CrossRef]
- Hirschburger, M.; Hecker, A.; Padberg, W.; Neubauer, B.A.; Motz, R.; Haase, C.; Marquardt, T.; Hahn, A. Treatment of Gastroesophageal Reflux with Nissen Fundoplication and Gastrostomy Tube Insertion in Infantile Pompe’s Disease. Neuropediatrics 2009, 40, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Remiche, G.; Herbaut, A.-G.; Ronchi, D.; Lamperti, C.; Magri, F.; Moggio, M.; Bresolin, N.; Comi, G.P. Incontinence in Late-Onset Pompe Disease: An Underdiagnosed Treatable Condition. Eur. Neurol. 2012, 68, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Karabul, N.; Skudlarek, A.; Berndt, J.; Kornblum, C.; Kley, R.A.; Wenninger, S.; Tiling, N.; Mengel, E.; Plöckinger, U.; Vorgerd, M.; et al. Urge Incontinence and Gastrointestinal Symptoms in Adult Patients with Pompe Disease: A Cross-Sectional Survey. In JIMD Reports, Volume 17; Zschocke, J., Gibson, K.M., Brown, G., Morava, E., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 17, pp. 53–61. [Google Scholar] [CrossRef]
- Bernstein, D.L.; Bialer, M.G.; Mehta, L.; Desnick, R.J. Pompe Disease: Dramatic Improvement in Gastrointestinal Function Following Enzyme Replacement Therapy. A Report of Three Later-Onset Patients. Mol. Genet. Metab. 2010, 101, 130–133. [Google Scholar] [CrossRef]
- Sacconi, S.; Bocquet, J.D.; Chanalet, S.; Tanant, V.; Salviati, L.; Desnuelle, C. Abnormalities of Cerebral Arteries Are Frequent in Patients with Late-Onset Pompe Disease. J. Neurol. 2010, 257, 1730–1733. [Google Scholar] [CrossRef]
- Pardo, J.; García-Sobrino, T.; López-Ferreiro, A. Gastrointestinal Symptoms in Late-Onset Pompe Disease: Early Response to Enzyme Replacement Therapy. J. Neurol. Sci. 2015, 353, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Gesquière-Dando, A.; Attarian, S.; Maues De Paula, A.; Pouget, J.; Salort-Campana, E. Fibromyalgia-like Symptoms Associated with Irritable Bowel Syndrome: A Challenging Diagnosis of Late-onset Pompe Disease. Muscle Nerve 2015, 52, 300–304. [Google Scholar] [CrossRef]
- Korlimarla, A.; Lim, J.-A.; McIntosh, P.; Zimmerman, K.; Sun, B.D.; Kishnani, P.S. New Insights into Gastrointestinal Involvement in Late-Onset Pompe Disease: Lessons Learned from Bench and Bedside. J. Clin. Med. 2021, 10, 3395. [Google Scholar] [CrossRef]
- Takahashi, J.; Mori-Yoshimura, M.; Ariga, H.; Sato, N.; Nishino, I.; Takahashi, Y. Diagnostic Yield of Chilaiditi’s Sign in Advanced-Phase Late-Onset Pompe Disease. J. Neuromuscul. Dis. 2022, 9, 619–627. [Google Scholar] [CrossRef]
- Tan, Q.K.-G.; Cheah, S.M.; Dearmey, S.M.; Kishnani, P.S. Low Anal Sphincter Tone in Infantile-Onset Pompe Disease: An Emerging Clinical Issue in Enzyme Replacement Therapy Patients Requiring Special Attention. Mol. Genet. Metab. 2013, 108, 142–144. [Google Scholar] [CrossRef]
- Bosch, M.; Fajardo, A.; Alcalá-Vida, R.; Fernández-Vidal, A.; Tebar, F.; Enrich, C.; Cardellach, F.; Pérez-Navarro, E.; Pol, A. Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease. Am. J. Pathol. 2016, 186, 517–523. [Google Scholar] [CrossRef]
- Modin, L.; Ng, V.; Gissen, P.; Raiman, J.; Pfister, E.D.; Das, A.; Santer, R.; Faghfoury, H.; Santra, S.; Baumann, U. A Case Series on Genotype and Outcome of Liver Transplantation in Children with Niemann-Pick Disease Type C. Children 2021, 8, 819. [Google Scholar] [CrossRef]
- Vanier, M.T. Niemann-Pick Disease Type C. Orphanet J. Rare Dis. 2010, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Kawazoe, T.; Yamamoto, T.; Narita, A.; Ohno, K.; Adachi, K.; Nanba, E.; Noguchi, A.; Takahashi, T.; Maekawa, M.; Eto, Y.; et al. Phenotypic Variability of Niemann-Pick Disease Type C Including a Case with Clinically Pure Schizophrenia: A Case Report. BMC Neurol. 2018, 18, 117. [Google Scholar] [CrossRef]
- Horovitz, D.D.G.; Pessoa, A.; França Junior, M.C.; Giugliani, R.; Souza, C.F.M.; Embiruçu, E.K.; Braga-Neto, P.; Lourenço, C.M. Practical recommendations for diagnosis, management, and follow-up of Niemann-Pick type-C disease patients: A Brazilian perspective. Arq. Neuropsiquiatr. 2025, 83, s00451807714. [Google Scholar] [CrossRef] [PubMed]
- Schwerd, T.; Pandey, S.; Yang, H.-T.; Bagola, K.; Jameson, E.; Jung, J.; Lachmann, R.H.; Shah, N.; Patel, S.Y.; Booth, C.; et al. Impaired Antibacterial Autophagy Links Granulomatous Intestinal Inflammation in Niemann–Pick Disease Type C1 and XIAP Deficiency with NOD2 Variants in Crohn’s Disease. Gut 2017, 66, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Koshu, K.; Muramatsu, K.; Maru, T.; Kurokawa, Y.; Mizobe, Y.; Yamagishi, H.; Matsubara, D.; Yokoyama, K.; Jimbo, E.; Kumagai, H.; et al. Neonatal Onset of Niemann-Pick Disease Type C in a Patient with Cholesterol Re-Accumulation in the Transplanted Liver and Inflammatory Bowel Disease. Brain Dev. 2023, 45, 517–522. [Google Scholar] [CrossRef]
- Whybra, C.; Kampmann, C.; Krummenauer, F.; Ries, M.; Mengel, E.; Miebach, E.; Baehner, F.; Kim, K.; Bajbouj, M.; Schwarting, A.; et al. The Mainz Severity Score Index: A New Instrument for Quantifying the Anderson–Fabry Disease Phenotype, and the Response of Patients to Enzyme Replacement Therapy. Clin. Genet. 2004, 65, 299–307. [Google Scholar] [CrossRef]
- Dike, C.R.; Bernat, J.; Bishop, W.; DeGeeter, C. Niemann-Pick Disease Type C Presenting as Very Early Onset Inflammatory Bowel Disease. BMJ Case Rep. 2019, 12, e229780. [Google Scholar] [CrossRef]
- Steven, L.; Driver, C. Niemann-Pick Disease Type C and Crohn’s Disease. Scott. Med. J. 2005, 50, 80–81. [Google Scholar] [CrossRef]
- Chu, T.-T.; Tu, X.; Yang, K.; Wu, J.; Repa, J.J.; Yan, N. Tonic Prime-Boost of STING Signalling Mediates Niemann–Pick Disease Type C. Nature 2021, 596, 570–575. [Google Scholar] [CrossRef]
- Petersen, H.J.; Smith, A.M. The Role of the Innate Immune System in Granulomatous Disorders. Front. Immunol. 2013, 4, 140. [Google Scholar] [CrossRef] [PubMed]
- Azab, B.; Rabab’h, O.; Aburizeg, D.; Mohammad, H.; Dardas, Z.; Mustafa, L.; Khasawneh, R.A.; Awad, H.; Hatmal, M.M.; Altamimi, E. Potential Composite Digenic Contribution of NPC1 and NOD2 Leading to Atypical Lethal Niemann-Pick Type C with Initial Crohn’s Disease-like Presentation: Genotype-Phenotype Correlation Study. Genes 2022, 13, 973. [Google Scholar] [CrossRef]
- Williams, I.; Pandey, S.; Haller, W.; Huynh, H.Q.; Chan, A.; Düeker, G.; Bettels, R.; Peyrin-Biroulet, L.; Dike, C.R.; DeGeeter, C.; et al. Anti-TNF therapy for inflammatory bowel disease in patients with neurodegenerative Niemann-Pick disease Type C. Wellcome Open Res. 2022, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.S.; Almeida, P.; Huynh, H.Q. Dual Biologic Therapy in a Patient With Niemann-Pick Type C and Crohn Disease: A Case Report and Literature Review. JPGN Rep. 2022, 3, e225. [Google Scholar] [CrossRef]
- Jacob, R.; Zimmer, K.-P.; Schmitz, J.; Naim, H.Y. Congenital Sucrase-Isomaltase Deficiency Arising from Cleavage and Secretion of a Mutant Form of the Enzyme. J. Clin. Investig. 2000, 106, 281–287. [Google Scholar] [CrossRef]
- Amiri, M.; Naim, H.Y. Miglustat-induced intestinal carbohydrate malabsorption is due to the inhibition of α-glucosidases, but not β-galactosidases. J. Inherit. Metab. Dis. 2012, 35, 949–954. [Google Scholar] [CrossRef]
- Jacob, R.; Naim, H.Y. Apical Membrane Proteins Are Transported in Distinct Vesicular Carriers. Curr. Biol. 2001, 11, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Alfalah, M.; Jacob, R.; Naim, H.Y. Intestinal Dipeptidyl Peptidase IV Is Efficiently Sorted to the Apical Membrane through the Concerted Action of N- andO-Glycans as Well as Association with Lipid Microdomains. J. Biol. Chem. 2002, 277, 10683–10690. [Google Scholar] [CrossRef]
- Amiri, M.; Kuech, E.-M.; Shammas, H.; Wetzel, G.; Naim, H.Y. The Pathobiochemistry of Gastrointestinal Symptoms in a Patient with Niemann-Pick Type C Disease. In JIMD Reports, Volume 25; Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 25, pp. 25–29. [Google Scholar] [CrossRef]
- Amiri, M.; Naim, H.Y. Long Term Differential Consequences of Miglustat Therapy on Intestinal Disaccharidases. J. Inher. Metab. Dis. 2014, 37, 929–937. [Google Scholar] [CrossRef]
- Neufeld, E.F.; Muenzer, J. The Mucopolysaccharidoses. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill Co.: New York, NY, USA, 2001; pp. 3421–3452. [Google Scholar]
- Gragnaniello, V.; Gueraldi, D.; Rubert, L.; Manzoni, F.; Cazzorla, C.; Giuliani, A.; Polo, G.; Salviati, L.; Burlina, A. Report of Five Years of Experience in Neonatal Screening for Mucopolysaccharidosis Type I and Review of the Literature. Int. J. Neonatal Screen. 2020, 6, 85. [Google Scholar] [CrossRef]
- Burlina, A.B.; Gragnaniello, V. Newborn Screening of Mucopolysaccharidosis Type I. Crit. Rev. Clin. Lab. Sci. 2022, 59, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Ramaswami, U.; Cleary, M.; Yaqub, M.; Raebel, E.M. Gastrointestinal Manifestations in Mucopolysaccharidosis Type III: Review of Death Certificates and the Literature. J. Clin. Med. 2021, 10, 4445. [Google Scholar] [CrossRef] [PubMed]
- Cospain, A.; Dubourg, C.; Gastineau, S.; Pichard, S.; Gandemer, V.; Bonneau, J.; De Tayrac, M.; Moreau, C.; Odent, S.; Pasquier, L.; et al. Incidental Diagnosis of Mucopolysaccharidosis Type I in an Infant with Chronic Intestinal Pseudoobstruction by Exome Sequencing. Mol. Genet. Metab. Rep. 2020, 24, 100621. [Google Scholar] [CrossRef]
- Inuzuka, S.; Irie, A.; Iwai, I.; Matsuzaki, T.; Emura, T.; Koga, M.; Kofuji, K.; Takeuchi, K.; Sakisaka, S.; Abe, H.; et al. A case of chronic intestinal pseudo-obstruction complicated by mucopolysaccharidosis I Scheie type. Nihon Shokakibyo Gakkai Zasshi. 1986, 83, 2429–2434. [Google Scholar]
- Roberts, A.L.K.D.; Howarth, G.S.; Liaw, W.C.; Moretta, S.; Kritas, S.; Lymn, K.A.; Yazbeck, R.; Tran, C.; Fletcher, J.M.; Butler, R.N.; et al. Gastrointestinal Pathology in a Mouse Model of Mucopolysaccharidosis Type IIIA. J. Cell. Physiol. 2009, 219, 259–264. [Google Scholar] [CrossRef]
- Kurihara, M.; Kumagai, K.; Yagishita, S. Sanfilippo syndrome type C: A clinicopathological autopsy study of a long-term survivor. Pediatr. Neurol. 1996, 14, 317–321. [Google Scholar] [CrossRef]
- Węgrzyn, G.; Kurlenda, J.; Liberek, A.; Tylki-Szymańska, A.; Czartoryska, B.; Piotrowska, E.; Jakóbkiewicz-Banecka, J.; Węgrzyn, A. Atypical Microbial Infections of Digestive Tract May Contribute to Diarrhea in Mucopolysaccharidosis Patients: A MPS I Case Study. BMC Pediatr. 2005, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Cartmell, A.; Lowe, E.C.; Baslé, A.; Firbank, S.J.; Ndeh, D.A.; Murray, H.; Terrapon, N.; Lombard, V.; Henrissat, B.; Turnbull, J.E.; et al. How Members of the Human Gut Microbiota Overcome the Sulfation Problem Posed by Glycosaminoglycans. Proc. Natl. Acad. Sci. USA 2017, 114, 7037–7042. [Google Scholar] [CrossRef] [PubMed]
- Ndeh, D.; Baslé, A.; Strahl, H.; Yates, E.A.; McClurgg, U.L.; Henrissat, B.; Terrapon, N.; Cartmell, A. Metabolism of Multiple Glycosaminoglycans by Bacteroides Thetaiotaomicron Is Orchestrated by a Versatile Core Genetic Locus. Nat. Commun. 2020, 11, 646. [Google Scholar] [CrossRef]
- Rawat, P.S.; Seyed Hameed, A.S.; Meng, X.; Liu, W. Utilization of Glycosaminoglycans by the Human Gut Microbiota: Participating Bacteria and Their Enzymatic Machineries. Gut Microbes 2022, 14, 2068367. [Google Scholar] [CrossRef]
- Luis, A.S.; Jin, C.; Pereira, G.V.; Glowacki, R.W.P.; Gugel, S.R.; Singh, S.; Byrne, D.P.; Pudlo, N.A.; London, J.A.; Baslé, A.; et al. A single sulfatase is required to access colonic mucin by a gut bacterium. Nature 2021, 598, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Barbero-Herranz, R.; Garriga-García, M.; Moreno-Blanco, A.; Palacios, E.; Ruiz-Sala, P.; Vicente-Santamaría, S.; Stanescu, S.; Belanger-Quintana, A.; Pintos-Morell, G.; Arconada, B.; et al. The Role of the Gut Microbiota in Sanfilippo Syndrome’s Physiopathology: An Approach in Two Affected Siblings. Int. J. Mol. Sci. 2024, 25, 8856. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Ortiz, J.; Lorente-Ros, Á.; Briones-Figueroa, A.; Morán-Alvarez, P.; García-Fernández, A.; Garrote-Corral, S.; Amil-Casas, I.; Carrasco-Sayalero, Á.; Tejeda-Velarde, A.; Camino-López, A.; et al. Serological Short-Chain Fatty Acid and Trimethylamine N-Oxide Microbial Metabolite Imbalances in Young Adults with Acute Myocardial Infarction. Heliyon 2023, 9, e20854. [Google Scholar] [CrossRef]
- Hu, S.; Kuwabara, R.; De Haan, B.J.; Smink, A.M.; De Vos, P. Acetate and Butyrate Improve β-Cell Metabolism and Mitochondrial Respiration under Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 1542. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Sibilio, M.; Miele, E.; Ungaro, C.; Astarita, L.; Turco, R.; Di Natale, P.; Pontarelli, G.; Vecchione, R.; Andria, G.; Staiano, A.; et al. Chronic Diarrhea in Mucopolysaccharidosis IIIB. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 477–480. [Google Scholar] [CrossRef]
- Ferrández, S.M.B.; Romero, R.G.; Delgado, R.P.; Sánchez-Monge, I.R.; Arnal, I.R.; Idoipe, N.T. Linfangiectasia intestinal en un paciente afectado de síndrome de Sanfilippo B. Arch. Argent. Pediat 2021, 119, E138–E141. [Google Scholar] [CrossRef]
- Low, G.; Irwin, G.J.; MacPhee, G.B.; Robinson, P.H. Characteristic Imaging Findings in Wolman’s Disease. Clin. Radiol. Extra. 2004, 59, 106–108. [Google Scholar] [CrossRef]
- Menon, J.; Shanmugam, N.; Srinivas, S.; Vij, M.; Jalan, A.; Srinivas Reddy, M.; Rela, M. Wolman’s Disease: A Rare Cause of Infantile Cholestasis and Cirrhosis. J. Pediatr. Genet. 2020, 11, 132–134. [Google Scholar] [CrossRef]
- Boldrini, R.; Devito, R.; Biselli, R.; Filocamo, M.; Bosman, C. Wolman Disease and Cholesteryl Ester Storage Disease Diagnosed by Histological and Ultrastructural Examination of Intestinal and Liver Biopsy. Pathol. Res. Pract. 2004, 200, 231–240. [Google Scholar] [CrossRef]
- Dao, T.V.; Mandell, G.A.; Jorgensen, S.A.; Patel, M.; Southard, R.; Taylor, S.; Jacobsen, J.; Towbin, A.J.; Towbin, R. Wolman Disease. Appl. Radiol. 2017, 46, 31–36. [Google Scholar] [CrossRef] [PubMed]
- de Las Heras, J.; Almohalla, C.; Blasco-Alonso, J.; Bourbon, M.; Couce, M.L.; de Castro López, M.J.; García Jiménez, M.C.; Gil Ortega, D.; González-Diéguez, L.; Meavilla, S.; et al. Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease. Nutrients 2024, 16, 4309. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.D.; Bonilha, D.Q.; Diaz, R.G.; De Carvalho, R.B.; Montes, C.G. A Rare Case of Lysosomal Acid Lipase Deficiency Diagnosed by Endoscopy. Gastrointest. Endosc. 2022, 95, 803–804. [Google Scholar] [CrossRef]
- Ozmen, M.N.; Aygün, N.; Kiliç, I.; Kuran, L.; Yalçin, B.; Besim, A. Wolman’s disease: Ultrasonographic and computed tomographic findings. Pediatr. Radiol. 1992, 22, 541–542. [Google Scholar] [CrossRef]
- Drebber, U. Severe Chronic Diarrhea and Weight Loss in Cholesteryl Ester Storage Disease: A Case Report. World J. Gastroenterol. 2005, 11, 2364. [Google Scholar] [CrossRef]
- Nchimi, A.; Rausin, L.; Khamis, J. Ultrasound Appearance of Bowel Wall in Wolman’s Disease. Pediatr. Radiol. 2003, 33, 284–285. [Google Scholar] [CrossRef]
- Yilmaz, M.M.; Martinez, M.; Ko, H.M. Gastrointestinal Manifestations of a Rare Lipid Storage Disorder. Gastroenterology 2021, 161, e5–e6. [Google Scholar] [CrossRef]
- Foladi, N.; Aien, M.T. CT Features of Wolman Disease (Lysosomal Acid Lipase Enzyme Deficiency)—A Case Report. Radiol. Case Rep. 2021, 16, 2857–2861. [Google Scholar] [CrossRef] [PubMed]
- Kyosen, S.O.; Geocze, S.; Yamamoto, M.H.; Martins, A.M. Endoscopic Findings in Lysosomal Acid Lipase Deficiency. J. Pediatr. Gastroenterol. Nutr. 2019, 68, E105. [Google Scholar] [CrossRef]
- AlAsmari, A.; AlEssa, R.; AlAjroush, W.; AlKhodair, R.; AlHaddad, S. Novel Association of Metastatic Crohn’s Disease and Wolman Disease. JAAD Case Rep. 2022, 20, 40–43. [Google Scholar] [CrossRef]
ClinicalTrials.gov ID | Drug | Route of Administration | Phase | Type of Therapy | Eligible Ages and Sexes | GI Endpoint | Study Completion |
---|---|---|---|---|---|---|---|
NCT06819514 | EXG110 | IV | Phase 1/2 | Gene therapy | Adult, M/F | Gastrointestinal Symptom Rating Scale | 2028-03 |
NCT06114329 | AL01211 | Orally | Phase 2 | SRT | Adult, M, classic form | Gastrointestinal symptom diary | 2026-06 |
NCT05710692 | PRX-102 (pegunigalsidase alfa) | IV | Phase 2/3 | ERT | Child (>13 yrs)/Adult, M/F | Gastrointestinal Symptom Rating Scale (GSRS) scores (adult), Gastrointestinal Symptoms (PedsQL-GI) Questionnaire scores (child) | 2028-03 |
GI Manifestations/When to Suspect | Pathophysiological Mechanisms | Diagnostic Approach | Disease-Specific Treatments | Symptomatic Management Approaches |
---|---|---|---|---|
Fabry disease | ||||
|
|
|
|
|
Gaucher disease | ||||
|
|
|
|
|
|
|
|
|
|
Pompe disease | ||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Niemann–Pick C | ||||
|
|
|
| |
|
|
|
| |
|
|
|
| |
Mucopolysaccharidoses | ||||
|
|
|
|
|
|
|
|
|
|
Wolman disease | ||||
|
|
|
| |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Puma, A.; Loro, C.; Burlina, A.B. The Hidden Burden: Gastrointestinal Involvement in Lysosomal Storage Disorders. Metabolites 2025, 15, 361. https://doi.org/10.3390/metabo15060361
Gragnaniello V, Cazzorla C, Gueraldi D, Puma A, Loro C, Burlina AB. The Hidden Burden: Gastrointestinal Involvement in Lysosomal Storage Disorders. Metabolites. 2025; 15(6):361. https://doi.org/10.3390/metabo15060361
Chicago/Turabian StyleGragnaniello, Vincenza, Chiara Cazzorla, Daniela Gueraldi, Andrea Puma, Christian Loro, and Alberto B. Burlina. 2025. "The Hidden Burden: Gastrointestinal Involvement in Lysosomal Storage Disorders" Metabolites 15, no. 6: 361. https://doi.org/10.3390/metabo15060361
APA StyleGragnaniello, V., Cazzorla, C., Gueraldi, D., Puma, A., Loro, C., & Burlina, A. B. (2025). The Hidden Burden: Gastrointestinal Involvement in Lysosomal Storage Disorders. Metabolites, 15(6), 361. https://doi.org/10.3390/metabo15060361