Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment
Abstract
1. Introduction
2. Materials and Methods
3. Cell Death Mechanisms and Autophagy
3.1. Apoptosis and Necroptosis
3.2. Autophagy
4. Cytokines and Growth Factors in Regulating the Inflammatory Response After RD
4.1. Interleukin-6 (IL-6)
4.2. C-X-C Motif Chemokine Ligand 8 (CXCL8)
4.3. Monocyte Chemoattractant Protein (MCP-1)
4.4. Tumor Necrosis Factor Alpha (TNF-α)
4.5. Growth Factors
4.5.1. Vascular Endothelial Growth Factor (VEGF)
4.5.2. Basic Fibroblast Growth Factor (bFGF)
4.5.3. Transforming Growth Factor-β (TGF-β)
5. Oxidative Stress in RD
6. Chronic Inflammation
7. Glial Activation: Müller Cells and Microglia
8. Genetic Modulation of Inflammatory and Apoptotic Responses: Implications for Personalized Therapies After RD
8.1. Genetic Variants Associated with Apoptosis, Inflammation, and Oxidative Stress Genes: Clinical Examples
8.2. Complex Genetic Architecture: Interplay Between Genetic and Environmental Factors
8.3. Implications for Clinical Management
9. Inflammatory and Neurodegenerative Effects of Intraocular Tamponade in RD
9.1. Long-Term Structural Impact of Tamponade Agents
9.2. Complications of Silicone Oil Tamponade
9.2.1. Inflammatory Response Mechanisms
9.2.2. Retinal Damage and Visual Acuity Loss
9.2.3. Silicon Oil Migration as a Long-Term Neuronal Complications
10. Current Treatments and Future Perspectives
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-HNE | 4-hydroxynonenal |
AIF | Apoptosis-inducing factor |
bFGF | Basic fibroblast growth factor |
BSS | Balanced salt solution |
C2F6 | Hexafluoroethane |
C3F8 | Octafluoropropane |
CTGF | Connective tissue growth factor |
CXCL8 | C-X-C Motif Chemokine Ligand 8 |
EMC | Extracellular matrix |
EMT | Epithelial–mesenchymal transition |
FGF | Fibroblast growth factor |
Fox0 | Forkhead box 0 |
GCL | Ganglion cell layer |
GFAP | Glial fibrillary acidic protein |
GSDM | Gasdermin D |
GTE | Green tea extract |
GWAS | Genome-wide association studies |
HIF-1α | Hypoxia-inducible factor 1α |
HtrA1 | High temperature requirement factor A1 |
IL-1 | Interleukin-1 |
IL-10 | Interleukin-10 |
IL-6 | Interleukin-6 |
ILs | Interleukins |
INL | Inner nuclear layer |
IPL | Inner plexiform layer |
MCP-1 | Monocyte Chemoattractant Protein |
MIF | Macrophage migration inhibitory factor |
MTX | Methotrexate |
MYO1F | Myosin 1F |
NOX | NADPH oxidase |
ONL | Outer nuclear layer |
OPL | Outer plexiform layer |
OPN | Osteopontin |
Par-2 | Proteinase-activated receptor |
PDGFR-α | Platelet-derived growth factor receptor Alpha |
PFCL | Perfluorocarbon liquid |
PPV | Pars plana vitrectomy |
PR | Photoreceptors |
PVR | Proliferative vitreoretinopathy |
RD | Retinal detachment |
RIP | Receptor-interacting protein kinases |
ROS | Reactive oxygen species |
RPE | Retinal pigment epithelium |
RRD | Rhegmatogenous retinal detachment |
SF6 | Sulfur hexafluoride |
TGF-β | Transforming growth factor-beta |
TNF-α | Tumor necrosis factor alpha |
VEGF | Vascular endothelial growth factor |
References
- Kuhn, F.; Aylward, B. Rhegmatogenous Retinal Detachment: A Reappraisal of Its Pathophysiology and Treatment. Ophthalmic Res. 2014, 51, 15–31. [Google Scholar] [CrossRef]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Holz, F.G.; Finger, R.P. Incidence of Rhegmatogenous Retinal Detachment in Europe—A Systematic Review and Meta-Analysis. Ophthalmologica 2019, 242, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Adachi, K.; Suzuki, Y.; Maeno, A.; Nakazawa, M. Profiles of Inflammatory Cytokines in the Vitreous Fluid from Patients with Rhegmatogenous Retinal Detachment and Their Correlations with Clinical Features. BioMed Res. Int. 2016, 2016, 4256183. [Google Scholar] [CrossRef]
- Mitry, D.; Charteris, D.G.; Fleck, B.W.; Campbell, H.; Singh, J. The Epidemiology of Rhegmatogenous Retinal Detachment: Geographical Variation and Clinical Associations. Br. J. Ophthalmol. 2010, 94, 678–684. [Google Scholar] [CrossRef]
- Nielsen, B.R.; Alberti, M.; Bjerrum, S.S.; la Cour, M. The Incidence of Rhegmatogenous Retinal Detachment Is Increasing. Acta Ophthalmol. 2020, 98, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Ross, W.H. Visual Recovery after Macula-off Retinal Detachment. Eye 2002, 16, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Uhr, J.; Patel, S.N.; Pandit, R.R.; Jenkins, T.L.; Khan, M.A.; Ho, A.C. Sociodemographic Factors Influencing Rhegmatogenous Retinal Detachment Presentation and Outcome. Ophthalmol. Retin. 2021, 5, 337–341. [Google Scholar] [CrossRef]
- Chang, J.S.; Smiddy, W.E. Cost-Effectiveness of Retinal Detachment Repair. Ophthalmology 2014, 121, 946–951. [Google Scholar] [CrossRef]
- Felfeli, T.; Teja, B.; Miranda, R.N.; Simbulan, F.; Sridhar, J.; Sander, B.; Naimark, D.M. Cost-Utility of Rhegmatogenous Retinal Detachment Repair With Pars Plana Vitrectomy, Scleral Buckle, and Pneumatic Retinopexy: A Microsimulation Model. Am. J. Ophthalmol. 2023, 255, 141–154. [Google Scholar] [CrossRef]
- Idrees, S.; Sridhar, J.; Kuriyan, A.E. Proliferative Vitreoretinopathy: A Review. Int. Ophthalmol. Clin. 2019, 59, 221–240. [Google Scholar] [CrossRef]
- Pastor, J.C.; Rojas, J.; Pastor-Idoate, S.; Di Lauro, S.; Gonzalez-Buendia, L.; Delgado-Tirado, S. Proliferative Vitreoretinopathy: A New Concept of Disease Pathogenesis and Practical Consequences. Prog. Retin. Eye Res. 2016, 51, 125–155. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Notomi, S.; Hisatomi, T.; Nakazawa, T.; Ishibashi, T.; Miller, J.W.; Vavvas, D.G. Photoreceptor Cell Death and Rescue in Retinal Detachment and Degenerations. Prog. Retin. Eye Res. 2013, 37, 114–140. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Sakamoto, T.; Murata, T.; Yamanaka, I.; Oshima, Y.; Hata, Y.; Ishibashi, T.; Inomata, H.; Susin, S.A.; Kroemer, G. Relocalization of Apoptosis-Inducing Factor in Photoreceptor Apoptosis Induced by Retinal Detachment in Vivo. Am. J. Pathol. 2001, 158, 1271–1278. [Google Scholar] [CrossRef]
- Melo, I.M.; Zhou, T.E.; Nagel, F.; Patil, N.S.; Faleel, F.A.; Popovic, M.; Muni, R.H. Histological Changes in Retinal Detachment: A Systematic Review for the Clinician. Surv. Ophthalmol. 2024, 69, 85–92. [Google Scholar] [CrossRef]
- Nakazawa, T.; Kayama, M.; Ryu, M.; Kunikata, H.; Watanabe, R.; Yasuda, M.; Kinugawa, J.; Vavvas, D.; Miller, J.W. Tumor Necrosis Factor-Alpha Mediates Photoreceptor Death in a Rodent Model of Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1384–1391. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, R.; Peng, Y.; Gao, W.; Du, J.; Zhao, L.; Chi, Y.; Yang, L. Tumor Necrosis Factor-Alpha Regulates Photoreceptor Cell Autophagy after Retinal Detachment. Sci. Rep. 2017, 7, 17108. [Google Scholar] [CrossRef]
- Besirli, C.G.; Chinskey, N.D.; Zheng, Q.-D.; Zacks, D.N. Inhibition of Retinal Detachment-Induced Apoptosis in Photoreceptors by a Small Peptide Inhibitor of the Fas Receptor. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2177–2184. [Google Scholar] [CrossRef]
- Thomas, C.N.; Berry, M.; Logan, A.; Blanch, R.J.; Ahmed, Z. Caspases in Retinal Ganglion Cell Death and Axon Regeneration. Cell Death Discov. 2017, 3, 17032. [Google Scholar] [CrossRef]
- Hisatomi, T.; Nakazawa, T.; Noda, K.; Almulki, L.; Miyahara, S.; Nakao, S.; Ito, Y.; She, H.; Kohno, R.; Michaud, N.; et al. HIV Protease Inhibitors Provide Neuroprotection through Inhibition of Mitochondrial Apoptosis in Mice. J. Clin. Investig. 2008, 118, 2025–2038. [Google Scholar] [CrossRef]
- Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a Well-Orchestrated Form of Cell Demise: Signalling Cascades, Important Mediators and Concomitant Immune Response. Biochim. Et Biophys. Acta (BBA)—Bioenerg. 2006, 1757, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Trichonas, G.; Murakami, Y.; Thanos, A.; Morizane, Y.; Kayama, M.; Debouck, C.M.; Hisatomi, T.; Miller, J.W.; Vavvas, D.G. Receptor Interacting Protein Kinases Mediate Retinal Detachment-Induced Photoreceptor Necrosis and Compensate for Inhibition of Apoptosis. Proc. Natl. Acad. Sci. USA 2010, 107, 21695–21700. [Google Scholar] [CrossRef] [PubMed]
- Sene, A.; Apte, R.S. Inflammation-Induced Photoreceptor Cell Death. In Proceedings of the Retinal Degenerative Diseases; Ash, J.D., Anderson, R.E., LaVail, M.M., Bowes Rickman, C., Hollyfield, J.G., Grimm, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 203–208. [Google Scholar]
- Ye, K.; Chen, Z.; Xu, Y. The Double-Edged Functions of Necroptosis. Cell Death Dis. 2023, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Dadar, M.; Munjal, A.; Dhama, K.; Karthik, K.; Tiwari, R.; Yatoo, M.I.; Iqbal, H.M.N.; Singh, K.P.; Joshi, S.K.; et al. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019, 8, 674. [Google Scholar] [CrossRef]
- Murakami, Y.; Matsumoto, H.; Roh, M.; Suzuki, J.; Hisatomi, T.; Ikeda, Y.; Miller, J.W.; Vavvas, D.G. Receptor Interacting Protein Kinase Mediates Necrotic Cone but Not Rod Cell Death in a Mouse Model of Inherited Degeneration. Proc. Natl. Acad. Sci. USA 2012, 109, 14598–14603. [Google Scholar] [CrossRef]
- Fernández-Albarral, J.A.; De Julián-López, E.; Soler-Domínguez, C.; De Hoz, R.; López-Cuenca, I.; Salobrar-García, E.; Ramírez, J.M.; Pinazo-Durán, M.D.; Salazar, J.J.; Ramírez, A.I. The Role of Autophagy in Eye Diseases. Life 2021, 11, 189. [Google Scholar] [CrossRef]
- Guo, R.; Wang, H.; Cui, N. Autophagy Regulation on Pyroptosis: Mechanism and Medical Implication in Sepsis. Mediat. Inflamm. 2021, 2021, 9925059. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and Diseases. Sig. Transduct. Target. Ther. 2021, 6, 128. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Sun, M.; Gao, M.; Li, T.; Liang, J.; Zhai, Y.; Xu, M.; She, X.; Yang, S.; et al. Photoreceptors Degenerate Through Pyroptosis After Experimental Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2020, 61, 31. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Du, Y.; Yan, B. Ocular Immune Privilege and Retinal Pigment Epithelial Cells. J. Leukoc. Biol. 2023, 113, 288–304. [Google Scholar] [CrossRef]
- Holan, V.; Hermankova, B.; Krulova, M.; Zajicova, A. Cytokine Interplay among the Diseased Retina, Inflammatory Cells and Mesenchymal Stem Cells—A Clue to Stem Cell-Based Therapy. World J. Stem Cells 2019, 11, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, L.; Bruttini, C.; Micheletti, E.; Konstas, A.G.P.; Michelessi, M.; Oddone, F.; Katsanos, A.; Sbardella, D.; De Angelis, G.; Riva, I. Glaucoma and Neuroinflammation: An Overview. Surv. Ophthalmol. 2021, 66, 693–713. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, T.; Zuo, W.; Chen, W.; Lei, M.; Ai, M. Changes of Retinal Ganglion Cell Complex after Vitrectomy in Rhegmatogenous Retinal Detachment Patients and Its Correlation with Inflammatory Blood Biomarkers. BMC Ophthalmol. 2022, 22, 290. [Google Scholar] [CrossRef]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The Role of Interleukin-6 Signaling in Nervous Tissue. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Res. 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Tamhane, M.; Cabrera-Ghayouri, S.; Abelian, G.; Viswanath, V. Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm. Res. 2019, 36, 40. [Google Scholar] [CrossRef]
- Conart, J.-B.; Augustin, S.; Remen, T.; Sahel, J.-A.; Guillonneau, X.; Delarasse, C.; Sennlaub, F.; Berrod, J.-P. Vitreous Cytokine Expression Profiles in Patients with Retinal Detachment. J. Français D’ophtalmologie 2021, 44, 1349–1357. [Google Scholar] [CrossRef]
- Nezu, N.; Usui, Y.; Saito, A.; Shimizu, H.; Asakage, M.; Yamakawa, N.; Tsubota, K.; Wakabayashi, Y.; Narimatsu, A.; Umazume, K.; et al. Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles. Ophthalmology 2021, 128, 1197–1208. [Google Scholar] [CrossRef]
- Symeonidis, C.; Rotsos, T.; Matsou, A.; Dermenoudi, M.; Georgalas, I.; Tsinopoulos, I.; Makri, O.; Souliou, E.; Dimitrakos, S.A. Comparison of Chemokine CXCL-1 and Interleukin-6 Concentrations in the Subretinal Fluid and Vitreous in Rhegmatogenous Retinal Detachment. Ocul. Immunol. Inflamm. 2021, 29, 355–361. [Google Scholar] [CrossRef]
- Garweg, J.G.; Zandi, S.; Pfister, I.; Rieben, R.; Skowronska, M.; Tappeiner, C. Cytokine Profiles of Phakic and Pseudophakic Eyes with Primary Retinal Detachment. Acta Ophthalmol. 2019, 97, e580–e588. [Google Scholar] [CrossRef]
- Symeonidis, C.; Androudi, S.; Tsaousis, K.T.; Tsinopoulos, I.; Brazitikos, P.; Diza, E.; Dimitrakos, S.A. Comparison of Interleukin IL-6 Levels in the Subretinal Fluid and the Vitreous during Rhegmatogenous Retinal Detachment. Cytokine 2012, 57, 17–18. [Google Scholar] [CrossRef]
- Kiang, L.; Ross, B.X.; Yao, J.; Shanmugam, S.; Andrews, C.A.; Hansen, S.; Besirli, C.G.; Zacks, D.N.; Abcouwer, S.F. Vitreous Cytokine Expression and a Murine Model Suggest a Key Role of Microglia in the Inflammatory Response to Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3767–3778. [Google Scholar] [CrossRef] [PubMed]
- La Heij, E.C.; van de Waarenburg, M.P.H.; Blaauwgeers, H.G.T.; Kessels, A.G.H.; Liem, A.T.A.; Theunissen, C.; Steinbusch, H.; Hendrikse, F. Basic Fibroblast Growth Factor, Glutamine Synthetase, and Interleukin-6 in Vitreous Fluid from Eyes with Retinal Detachment Complicated by Proliferative Vitreoretinopathy. Am. J. Ophthalmol. 2002, 134, 367–375. [Google Scholar] [CrossRef]
- Qi, T.; Jing, R.; Wen, C.; Hu, C.; Wang, Y.; Pei, C.; Ma, B. Interleukin-6 Promotes Migration and Extracellular Matrix Synthesis in Retinal Pigment Epithelial Cells. Histochem. Cell Biol. 2020, 154, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Noma, H.; Funatsu, H.; Mimura, T.; Harino, S.; Hori, S. Vitreous Levels of Interleukin-6 and Vascular Endothelial Growth Factor in Macular Edema with Central Retinal Vein Occlusion. Ophthalmology 2009, 116, 87–93. [Google Scholar] [CrossRef]
- Noma, H.; Funatsu, H.; Mimura, T. Vascular Endothelial Growth Factor and Interleukin-6 Are Correlated with Serous Retinal Detachment in Central Retinal Vein Occlusion. Curr. Eye Res. 2012, 37, 62–67. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yong, H.; Zeng, S.; Zuo, L. Biochemical and Microstructural Determinants of the Development of Serous Retinal Detachment Secondary to Retinal Vein Occlusion. Heliyon 2024, 10, e23716. [Google Scholar] [CrossRef]
- Sanchez, R.N.; Chan, C.K.; Garg, S.; Kwong, J.M.K.; Wong, M.J.; Sadun, A.A.; Lam, T.T. Interleukin-6 in Retinal Ischemia Reperfusion Injury in Rats. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4006–4011. [Google Scholar] [CrossRef]
- Chong, D.Y.; Boehlke, C.S.; Zheng, Q.-D.; Zhang, L.; Han, Y.; Zacks, D.N. Interleukin-6 as a Photoreceptor Neuroprotectant in an Experimental Model of Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3193–3200. [Google Scholar] [CrossRef]
- Ricker, L.J.A.G.; Kijlstra, A.; Kessels, A.G.H.; de Jager, W.; Liem, A.T.A.; Hendrikse, F.; La Heij, E.C. Interleukin and Growth Factor Levels in Subretinal Fluid in Rhegmatogenous Retinal Detachment: A Case-Control Study. PLoS ONE 2011, 6, e19141. [Google Scholar] [CrossRef]
- Zandi, S.; Pfister, I.B.; Traine, P.G.; Tappeiner, C.; Despont, A.; Rieben, R.; Skowronska, M.; Garweg, J.G. Biomarkers for PVR in Rhegmatogenous Retinal Detachment. PLoS ONE 2019, 14, e0214674. [Google Scholar] [CrossRef]
- Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a Chemotactic and Inflammatory Cytokine. FEBS Lett. 1992, 307, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 Chemokine Family and Its Receptors in Inflammatory Diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, H.; Ghazanfari, T.; Yaraee, R.; Faghihzadeh, S.; Hassan, Z.M. Roles of IL-8 in Ocular Inflammations: A Review. Ocul. Immunol. Inflamm. 2011, 19, 401–412. [Google Scholar] [CrossRef]
- Ananikas, K.; Stavrakas, P.; Kroupis, C.; Christou, E.E.; Brouzas, D.; Petrou, P.; Papakonstantinou, D. Molecular Biologic Milieu in Rhegmatogenous Retinal Detachment and Proliferative Vitreoretinopathy: A Literature Review. Ophthalmic Res. 2022, 65, 637–646. [Google Scholar] [CrossRef]
- Rasier, R.; Gormus, U.; Artunay, O.; Yuzbasioglu, E.; Oncel, M.; Bahcecioglu, H. Vitreous Levels of VEGF, IL-8, and TNF-α in Retinal Detachment. Curr. Eye Res. 2010, 35, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Forooghian, F.; Kertes, P.J.; Eng, K.T.; Agrón, E.; Chew, E.Y. Alterations in the Intraocular Cytokine Milieu after Intravitreal Bevacizumab. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2388–2392. [Google Scholar] [CrossRef]
- Harada, C.; Harada, T.; Mitamura, Y.; Quah, H.-M.A.; Ohtsuka, K.; Kotake, S.; Ohno, S.; Wada, K.; Takeuchi, S.; Tanaka, K. Diverse NF-kappaB Expression in Epiretinal Membranes after Human Diabetic Retinopathy and Proliferative Vitreoretinopathy. Mol. Vis. 2004, 10, 31–36. [Google Scholar]
- Goczalik, I.; Ulbricht, E.; Hollborn, M.; Raap, M.; Uhlmann, S.; Weick, M.; Pannicke, T.; Wiedemann, P.; Bringmann, A.; Reichenbach, A.; et al. Expression of CXCL8, CXCR1, and CXCR2 in Neurons and Glial Cells of the Human and Rabbit Retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4578–4589. [Google Scholar] [CrossRef]
- Ricker, L.J.A.G.; Kijlstra, A.; De Jager, W.; Liem, A.T.A.; Hendrikse, F.; La Heij, E.C. Chemokine Levels in Subretinal Fluid Obtained during Scleral Buckling Surgery after Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4143–4150. [Google Scholar] [CrossRef]
- Nakazawa, T.; Hisatomi, T.; Nakazawa, C.; Noda, K.; Maruyama, K.; She, H.; Matsubara, A.; Miyahara, S.; Nakao, S.; Yin, Y.; et al. Monocyte Chemoattractant Protein 1 Mediates Retinal Detachment-Induced Photoreceptor Apoptosis. Proc. Natl. Acad. Sci. USA 2007, 104, 2425–2430. [Google Scholar] [CrossRef]
- Ozaki, K.; Hanazawa, S.; Takeshita, A.; Chen, Y.; Watanabe, A.; Nishida, K.; Miyata, Y.; Kitano, S. Interleukin-1β and Tumor Necrosis Factor-α Stimulate Synergistically the Expression of Monocyte Chemoattractant Protein-1 in Fibroblastic Cells Derived from Human Periodontal Ligament. Oral Microbiol. Immunol. 1996, 11, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hui, Y.; Han, Q.; Hou, X.; Chen, L.; Ma, J. [Effects of mechanical stress on expressions of monocyte chemoattractant protein-1 and interleukin-8 of cultured human retinal pigment epithelial cells]. Zhonghua Yi Xue Za Zhi 2005, 85, 2264–2268. [Google Scholar]
- Abu El-Asrar, A.M.; Van Damme, J.; Put, W.; Veckeneer, M.; Dralands, L.; Billiau, A.; Missotten, L. Monocyte Chemotactic Protein-1 in Proliferative Vitreoretinal Disorders. Am. J. Ophthalmol. 1997, 123, 599–606. [Google Scholar] [CrossRef]
- Nakazawa, T.; Matsubara, A.; Noda, K.; Hisatomi, T.; She, H.; Skondra, D.; Miyahara, S.; Sobrin, L.; Thomas, K.L.; Chen, D.F.; et al. Characterization of Cytokine Responses to Retinal Detachment in Rats. Mol. Vis. 2006, 12, 867–878. [Google Scholar]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; Garcia-Gutierrez, M.T.; Sanabria, M.R.; Brion, M.; Coco, R.M.; Ruiz-Moreno, J.M.; Garcia-Arumi, J.; Elizalde, J.; et al. A Strong Genetic Association between the Tumor Necrosis Factor Locus and Proliferative Vitreoretinopathy: The Retina 4 Project. Ophthalmology 2010, 117, 2417–2423.e2. [Google Scholar] [CrossRef] [PubMed]
- Gesslein, B.; Håkansson, G.; Gustafsson, L.; Ekström, P.; Malmsjö, M. Tumor Necrosis Factor and Its Receptors in the Neuroretina and Retinal Vasculature after Ischemia-Reperfusion Injury in the Pig Retina. Mol. Vis 2010, 16, 2317–2327. [Google Scholar] [PubMed]
- Tanihara, H.; Inatani, M.; Honda, Y. Growth Factors and Their Receptors in the Retina and Pigment Epithelium. Prog. Retin. Eye Res. 1997, 16, 271–301. [Google Scholar] [CrossRef]
- Wiedemann, P. Growth Factors in Retinal Diseases: Proliferative Vitreoretinopathy, Proliferative Diabetic Retinopathy, and Retinal Degeneration. Surv. Ophthalmol. 1992, 36, 373–384. [Google Scholar] [CrossRef]
- Hinton, D.R.; He, S.; Jin, M.L.; Barron, E.; Ryan, S.J. Novel Growth Factors Involved in the Pathogenesis of Proliferative Vitreoretinopathy. Eye 2002, 16, 422–428. [Google Scholar] [CrossRef]
- Beheshtizadeh, N.; Baradaran-Rafii, A.; Sistani, M.S.; Azami, M. An In-Silico Study on the Most Effective Growth Factors in Retinal Regeneration Utilizing Tissue Engineering Concepts. J. Ophthalmic. Vis. Res. 2021, 16, 56–67. [Google Scholar] [CrossRef]
- Sui, A.; Zhong, Y.; Demetriades, A.M.; Lu, Q.; Cai, Y.; Gao, Y.; Zhu, Y.; Shen, X.; Xie, B. Inhibition of Integrin A5β1 Ameliorates VEGF-Induced Retinal Neovascularization and Leakage by Suppressing NLRP3 Inflammasome Signaling in a Mouse Model. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Tuuminen, R.; Haukka, J.; Loukovaara, S. Statins in Rhegmatogenous Retinal Detachment Are Associated with Low Intravitreal Angiopoietin-2, VEGF and MMP-2 Levels, and Improved Visual Acuity Gain in Vitrectomized Patients. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 1685–1693. [Google Scholar] [CrossRef]
- Harju, N.; Hytti, M.; Kolari, O.; Nisula, H.; Loukovaara, S.; Kauppinen, A. Anti-Inflammatory Potential of Simvastatin and Amfenac in ARPE-19 Cells; Insights in Preventing Re-Detachment and Proliferative Vitreoretinopathy after Rhegmatogenous Retinal Detachment Surgery. Int. Ophthalmol. 2024, 44, 158. [Google Scholar] [CrossRef]
- Zhao, Q.; Ji, M.; Wang, X. IL-10 Inhibits Retinal Pigment Epithelium Cell Proliferation and Migration through Regulation of VEGF in Rhegmatogenous Retinal Detachment. Mol. Med. Rep. 2018, 17, 7301–7306. [Google Scholar] [CrossRef]
- Sitaras, N.; Rivera, J.C.; Noueihed, B.; Bien-Aimé, M.; Zaniolo, K.; Omri, S.; Hamel, D.; Zhu, T.; Hardy, P.; Sapieha, P.; et al. Retinal Neurons Curb Inflammation and Enhance Revascularization in Ischemic Retinopathies via Proteinase-Activated Receptor-2. Am. J. Pathol. 2015, 185, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.-H.; Shin, U.S.; Kim, H.-W. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. J. Tissue Eng. 2010, 1, 218142. [Google Scholar] [CrossRef]
- Zittermann, S.I.; Issekutz, A.C. Basic Fibroblast Growth Factor (bFGF, FGF-2) Potentiates Leukocyte Recruitment to Inflammation by Enhancing Endothelial Adhesion Molecule Expression. Am. J. Pathol. 2006, 168, 835–846. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.C. Proliferative Vitreoretinopathy. Surv. Ophthalmol. 1998, 43, 3–18. [Google Scholar] [CrossRef]
- Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E. Vascular Endothelial Growth Factor in Eye Disease. Prog. Retin. Eye Res. 2008, 27, 331–371. [Google Scholar] [CrossRef]
- Okamoto, N.; Tobe, T.; Hackett, S.F.; Ozaki, H.; Vinores, M.A.; LaRochelle, W.; Zack, D.J.; Campochiaro, P.A. Transgenic Mice with Increased Expression of Vascular Endothelial Growth Factor in the Retina: A New Model of Intraretinal and Subretinal Neovascularization. Am. J. Pathol. 1997, 151, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.K.; Yam, G.H.F.; Chen, W.Q.; Lee, V.Y.W.; Chen, H.; Chen, L.J.; Choy, K.W.; Yang, Z.; Pang, C.P. Interactive Expressions of HtrA1 and VEGF in Human Vitreous Humors and Fetal RPE Cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3706–3712. [Google Scholar] [CrossRef]
- Yafai, Y.; Iandiev, I.; Lange, J.; Yang, X.M.; Wiedemann, P.; Bringmann, A.; Eichler, W. Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells. PLoS ONE 2013, 8, e68773. [Google Scholar] [CrossRef] [PubMed]
- Mudhar, H.S. A Brief Review of the Histopathology of Proliferative Vitreoretinopathy (PVR). Eye 2020, 34, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Geathers, J.S.; Grillo, S.L.; Weber, S.R.; Wang, W.; Zhao, Y.; Sundstrom, J.M. Role of Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Dysfunction. Front. Cell Dev. Biol. 2020, 8, 501. [Google Scholar] [CrossRef]
- Tsotridou, E.; Loukovitis, E.; Zapsalis, K.; Pentara, I.; Asteriadis, S.; Tranos, P.; Zachariadis, Z.; Anogeianakis, G. A Review of Last Decade Developments on Epiretinal Membrane Pathogenesis. Med. Hypothesis Discov. Innov. Ophthalmol. 2020, 9, 91–110. [Google Scholar]
- Palomares-Ordóñez, J.L.; Sánchez-Ramos, J.A.; Ramírez-Estudillo, J.A.; Robles-Contreras, A. Correlación de niveles del factor de crecimiento transformante β-1 con severidad de vitreorretinopatía proliferativa en pacientes con desprendimiento de retina regmatógeno. Arch. De La Soc. Española De Oftalmol. 2019, 94, 12–17. [Google Scholar] [CrossRef]
- Gao, S.; Li, N.; Wang, Y.; Zhong, Y.; Shen, X. Blockade of Adenosine A2A Receptor Protects Photoreceptors after Retinal Detachment by Inhibiting Inflammation and Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 7649080. [Google Scholar] [CrossRef]
- Li, T.; Yang, S.; She, X.; Yan, Q.; Zhang, P.; Zhu, H.; Wang, F.; Luo, X.; Sun, X. Modulation of A-adrenoceptor Signalling Protects Photoreceptors after Retinal Detachment by Inhibiting Oxidative Stress and Inflammation. Br. J. Pharmacol. 2019, 176, 801–813. [Google Scholar] [CrossRef]
- Roh, M.I.; Murakami, Y.; Thanos, A.; Vavvas, D.G.; Miller, J.W. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3825–3831. [Google Scholar] [CrossRef]
- Witzel, S.; Maier, A.; Steinbach, R.; Grosskreutz, J.; Koch, J.C.; Sarikidi, A.; Petri, S.; Günther, R.; Wolf, J.; Hermann, A.; et al. Safety and Effectiveness of Long-Term Intravenous Administration of Edaravone for Treatment of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol. 2022, 79, 121–130. [Google Scholar] [CrossRef]
- Chu, K.O.; Yip, Y.W.Y.; Chan, K.P.; Wang, C.C.; Ng, D.S.C.; Pang, C.P. Amelioration of Functional, Metabolic, and Morphological Deterioration in the Retina Following Retinal Detachment by Green Tea Extract. Antioxidants 2024, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Luo, L.; Xiang, X.; Feng, Y.; Cao, Y.; Zeng, J.; Lv, H. Comprehensive Exploration of Hub Genes Involved in Oxidative Stress in Rhegmatogenous Retinal Detachment Based on Bioinformatics Analysis. Exp. Eye. Res. 2024, 240, 109810. [Google Scholar] [CrossRef]
- Huang, W.; Li, G.; Qiu, J.; Gonzalez, P.; Challa, P. Protective Effects of Resveratrol in Experimental Retinal Detachment. PLoS ONE 2013, 8, e75735. [Google Scholar] [CrossRef]
- Abu El-Asrar, A.M.; De Hertogh, G.; Allegaert, E.; Nawaz, M.I.; Abouelasrar Salama, S.; Gikandi, P.W.; Opdenakker, G.; Struyf, S. Macrophage-Myofibroblast Transition Contributes to Myofibroblast Formation in Proliferative Vitreoretinal Disorders. Int. J. Mol. Sci. 2023, 24, 13510. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Dai, C.; Sun, T. Inflammatory Mediators of Proliferative Vitreoretinopathy: Hypothesis and Review. Int. Ophthalmol. 2020, 40, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Agrawal, S.; Christoforidis, J.B. Inflammatory Mechanisms of Idiopathic Epiretinal Membrane Formation. Mediat. Inflamm. 2013, 2013, 192582. [Google Scholar] [CrossRef]
- Zou, H.; Shan, C.; Ma, L.; Liu, J.; Yang, N.; Zhao, J. Polarity and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells in Proliferative Vitreoretinopathy. PeerJ 2020, 8, e10136. [Google Scholar] [CrossRef]
- Han, Q.; Hui, Y.; Du, H.; Zhang, W.; Ma, J.; Wang, S. Migration of Retinal Pigment Epithelial Cells in Vitro Modulated by Monocyte Chemotactic Protein-1: Enhancement and Inhibition. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 531–538. [Google Scholar] [CrossRef]
- Asaria, R.H.Y.; Kon, C.H.; Bunce, C.; Sethi, C.S.; Limb, G.A.; Khaw, P.T.; Aylward, G.W.; Charteris, D.G. Silicone Oil Concentrates Fibrogenic Growth Factors in the Retro-Oil Fluid. Br. J. Ophthalmol. 2004, 88, 1439–1442. [Google Scholar] [CrossRef]
- Lumi, X.; Confalonieri, F.; Ravnik-Glavač, M.; Goričar, K.; Blagus, T.; Dolžan, V.; Petrovski, G.; Hawlina, M.; Glavač, D. Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes 2023, 14, 804. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Qin, Y.; Huang, Z.; Liu, F.; Zhang, S.; Zhang, Z. Distinct Serum and Vitreous Inflammation-Related Factor Profiles in Patients with Proliferative Vitreoretinopathy. Adv. Ther. 2020, 37, 2550–2559. [Google Scholar] [CrossRef] [PubMed]
- de Hoz, R.; Rojas, B.; Ramírez, A.I.; Salazar, J.J.; Gallego, B.I.; Triviño, A.; Ramírez, J.M. Retinal Macroglial Responses in Health and Disease. Biomed Res. Int. 2016, 2016, 2954721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, X.; Gao, M.; Wan, X.; Guo, Y.; Qu, Y.; Chen, Y.; Li, T.; Liu, H.; Jiang, M.; et al. Myosin 1f-Mediated Activation of Microglia Contributes to the Photoreceptor Degeneration in a Mouse Model of Retinal Detachment. Cell Death Dis. 2021, 12, 926. [Google Scholar] [CrossRef]
- Cao, M.; Huang, X.; Zou, J.; Peng, Y.; Wang, Y.; Zheng, X.; Tang, L.; Zhang, L. Attenuation of Microglial Activation and Pyroptosis by Inhibition of P2X7 Pathway Promotes Photoreceptor Survival in Experimental Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2023, 64, 34. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, Y.-S.; Paik, S.-S.; Kim, I.-B. Differential Response of Müller Cells and Microglia in a Mouse Retinal Detachment Model and Its Implications in Detached and Non-Detached Regions. Cells 2021, 10, 1972. [Google Scholar] [CrossRef]
- Govers, B.M.; Van Huet, R.A.C.; Roosing, S.; Keijser, S.; Los, L.I.; Den Hollander, A.I.; Klevering, B.J. The Genetics and Disease Mechanisms of Rhegmatogenous Retinal Detachment. Prog. Retin. Eye Res. 2023, 97, 101158. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef]
- Ghazi, N.G.; Green, W.R. Pathology and Pathogenesis of Retinal Detachment. Eye 2002, 16, 411–421. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodríguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.D.; Harsum, S.; MacLaren, R.E.; et al. BAX and BCL-2 Polymorphisms, as Predictors of Proliferative Vitreoretinopathy Development in Patients Suffering Retinal Detachment: The R Etina 4 Project. Acta Ophthalmol. 2015, 93, e541–e549. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodriguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.; Harsum, S.; MacLaren, R.E.; et al. The P53 Codon 72 Polymorphism (Rs1042522) Is Associated with Proliferative Vitreoretinopathy. Ophthalmology 2013, 120, 623–628. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodríguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutiérrez, M.T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.; Harsum, S.; MacLaren, R.E.; et al. The T309G MDM2 Gene Polymorphism Is a Novel Risk Factor for Proliferative Vitreoretinopathy. PLoS ONE 2013, 8, e82283. [Google Scholar] [CrossRef] [PubMed]
- Kirin, M.; Chandra, A.; Charteris, D.G.; Hayward, C.; Campbell, S.; Celap, I.; Bencic, G.; Vatavuk, Z.; Kirac, I.; Richards, A.J.; et al. Genome-Wide Association Study Identifies Genetic Risk Underlying Primary Rhegmatogenous Retinal Detachment. Hum. Mol. Genet. 2013, 22, 3174–3185. [Google Scholar] [CrossRef] [PubMed]
- Shettigar, M.P.; Dave, V.P.; Chou, H.-D.; Fung, A.; Iguban, E.; March de Ribot, F.; Zabala, C.; Hsieh, Y.-T.; Lalwani, G. Vitreous Substitutes and Tamponades—A Review of Types, Applications, and Future Directions. Indian J. Ophthalmol. 2024, 72, 1102–1111. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Flynn, H.W.; Wang, X.; Kuriyan, A.E.; Abariga, S.A.; Lee, W.-H. Tamponade in Surgery for Retinal Detachment Associated with Proliferative Vitreoretinopathy. Cochrane Database Syst. Rev. 2020, 5, CD006126. [Google Scholar] [CrossRef]
- Moussa, G.; Mathews, N.; Makhzoum, O.; Park, D.Y. Retinal Detachment Repair With Vitrectomy: Air Tamponade Integration to a Vitreoretinal Service, Comparison With Gas Tamponade, and Literature Review. Ophthalmic Surg. Lasers Imaging Retin. 2022, 53, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Inan, S.; Polat, O.; Ozcan, S.; Inan, U.U. Comparison of Long-Term Automated Retinal Layer Segmentation Analysis of the Macula between Silicone Oil and Gas Tamponade after Vitrectomy for Rhegmatogenous Retinal Detachment. Ophthalmic Res. 2020, 63, 524–532. [Google Scholar] [CrossRef]
- Lee, S.H.; Han, J.W.; Byeon, S.H.; Kim, S.S.; Koh, H.J.; Lee, S.C.; Kim, M. Retinal Layer Segmentation After Silicone Oil Or Gas Tamponade For Macula-On Retinal Detachment Using Optical Coherence Tomography. Retina 2018, 38, 310–319. [Google Scholar] [CrossRef]
- Gharbiya, M.; Albanese, G.M.; Plateroti, A.M.; Marcelli, M.; Marenco, M.; Lambiase, A. Macular Ganglion Cell Layer Thickness after Macula-Off Rhegmatogenous Retinal Detachment Repair: Scleral Buckling versus Pars Plana Vitrectomy. J. Clin. Med. 2020, 9, 1411. [Google Scholar] [CrossRef]
- Du, J.; Landa, G. Development of Cystoid Macular Edema after Uneventful Cataract Surgery in Eyes with a History of Vitrectomy Using Silicone Oil versus Gas Tamponade. Eye 2024, 38, 1327–1332. [Google Scholar] [CrossRef]
- de Souza, E.V.; Aihara, T.; de Souza, N.V.; Coutinho Neto, J. Sulfur hexafluoride gas, perfluorocarbon liquid, air and balanced salt solution retinal toxicity in rabbit eyes. Arq. Bras. Oftalmol. 2005, 68, 511–515. [Google Scholar] [CrossRef]
- Doi, M.; Ning, M.; Semba, R.; Uji, Y.; Refojo, M.F. Histopathologic Abnormalities in Rabbit Retina after Intravitreous Injection of Expansive Gases and Air. Retina 2000, 20, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.S.; Mihalache, A.; Lau, T.H.A.; Popovic, M.M.; Kertes, P.J.; Muni, R.H. Pars Plana Vitrectomy With Silicone Oil or Gas Tamponade for Uncomplicated Retinal Detachment: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2024, 266, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Valentín-Bravo, F.J.; García-Onrubia, L.; Andrés-Iglesias, C.; Valentín-Bravo, E.; Martín-Vallejo, J.; Pastor, J.C.; Usategui-Martín, R.; Pastor-Idoate, S. Complications Associated with the Use of Silicone Oil in Vitreoretinal Surgery: A Systemic Review and Meta-Analysis. Acta Ophthalmol. 2022, 100, e864–e880. [Google Scholar] [CrossRef]
- Mackiewicz, J.; Mühling, B.; Hiebl, W.; Meinert, H.; Maaijwee, K.; Kociok, N.; Lüke, C.; Zagorski, Z.; Kirchhof, B.; Joussen, A.M. In Vivo Retinal Tolerance of Various Heavy Silicone Oils. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1873–1883. [Google Scholar] [CrossRef]
- Russo, A.; Morescalchi, F.; Donati, S.; Gambicorti, E.; Azzolini, C.; Costagliola, C.; Semeraro, F. Heavy and Standard Silicone Oil: Intraocular Inflammation. Int. Ophthalmol. 2018, 38, 855–867. [Google Scholar] [CrossRef]
- Morescalchi, F.; Costagliola, C.; Duse, S.; Gambicorti, E.; Parolini, B.; Arcidiacono, B.; Romano, M.R.; Semeraro, F. Heavy Silicone Oil and Intraocular Inflammation. BioMed Res. Int. 2014, 2014, 574825. [Google Scholar] [CrossRef]
- Semeraro, F.; Russo, A.; Morescalchi, F.; Gambicorti, E.; Vezzoli, S.; Parmeggiani, F.; Romano, M.R.; Costagliola, C. Comparative Assessment of Intraocular Inflammation Following Standard or Heavy Silicone Oil Tamponade: A Prospective Study. Acta Ophthalmol. 2019, 97, e97–e102. [Google Scholar] [CrossRef]
- Christensen, U.C.; la Cour, M. Visual Loss after Use of Intraocular Silicone Oil Associated with Thinning of Inner Retinal Layers. Acta Ophthalmol. 2012, 90, 733–737. [Google Scholar] [CrossRef]
- Caramoy, A.; Droege, K.M.; Kirchhof, B.; Fauser, S. Retinal Layers Measurements in Healthy Eyes and in Eyes Receiving Silicone Oil-Based Endotamponade. Acta Ophthalmol. 2014, 92, e292–e297. [Google Scholar] [CrossRef]
- Pichi, F.; Hay, S.; Abboud, E.B. Inner Retinal Toxicity Due to Silicone Oil: A Case Series and Review of the Literature. Int. Ophthalmol. 2020, 40, 2413–2422. [Google Scholar] [CrossRef] [PubMed]
- Tode, J.; Purtskhvanidze, K.; Oppermann, T.; Hillenkamp, J.; Treumer, F.; Roider, J. Vision Loss under Silicone Oil Tamponade. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1465–1471. [Google Scholar] [CrossRef]
- Purtskhvanidze, K.; Hillenkamp, J.; Tode, J.; Junge, O.; Hedderich, J.; Roider, J.; Treumer, F. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment. Ophthalmologica 2017, 238, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Raczyńska, D.; Mitrosz, K.; Raczyńska, K.; Glasner, L. The Influence of Silicone Oil on the Ganglion Cell Complex After Pars Plana Vitrectomy for Rhegmatogenous Retinal Detachment. Curr. Pharm. Des. 2018, 24, 3476–3493. [Google Scholar] [CrossRef]
- Grzybowski, A.; Pieczynski, J.; Ascaso, F.J. Neuronal Complications of Intravitreal Silicone Oil: An Updated Review. Acta Ophthalmol. 2014, 92, 201–204. [Google Scholar] [CrossRef]
- Budde, M.; Cursiefen, C.; Holbach, L.M.; Naumann, G.O.H. Silicone Oil–Associated Optic Nerve Degeneration. Am. J. Ophthalmol. 2001, 131, 392–394. [Google Scholar] [CrossRef]
- Klettner, A.; Harms, A.; Waetzig, V.; Tode, J.; Purtskhvanidze, K.; Roider, J. Emulsified Silicone Oil Is Taken up by and Induces Pro-Inflammatory Response in Primary Retinal Microglia. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1965–1974. [Google Scholar] [CrossRef]
- Bonfiglio, V.; Reibaldi, M.; Macchi, I.; Fallico, M.; Pizzo, C.; Patane, C.; Russo, A.; Longo, A.; Pizzo, A.; Cillino, G.; et al. Preoperative, Intraoperative and Postoperative Corticosteroid Use as an Adjunctive Treatment for Rhegmatogenous Retinal Detachment. J. Clin. Med. 2020, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yue, Y.K.; Tong, N.T.; Zheng, P.F.; Liu, W.; An, M. Anatomic Outcomes and Prognostic Factors of Vitrectomy in Patients with Primary Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment. Curr. Eye Res. 2019, 44, 329–333. [Google Scholar] [CrossRef]
- Denwattana, A.; Prakhunhungsit, S.; Thoongsuwan, S.; Rodanant, N.; Phasukkijwatana, N. Surgical Outcomes of Preoperative Steroid for Rhegmatogenous Retinal Detachment with Associated Choroidal Detachment. Eye 2018, 32, 602–607. [Google Scholar] [CrossRef]
- Spitzer, M.S.; Kaczmarek, R.T.; Yoeruek, E.; Petermeier, K.; Wong, D.; Heimann, H.; Jaissle, G.B.; Bartz-Schmidt, K.U.; Szurman, P. The Distribution, Release Kinetics, and Biocompatibility of Triamcinolone Injected and Dispersed in Silicone Oil. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2337–2343. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.J.; Quartilho, A.; Bunce, C.; Xing, W.; Zvobgo, T.M.; Harris, N.; Charteris, D.G. Slow-Release Dexamethasone in Proliferative Vitreoretinopathy: A Prospective, Randomized Controlled Clinical Trial. Ophthalmology 2017, 124, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Koerner, F.; Koerner-Stiefbold, U.; Garweg, J.G. Systemic Corticosteroids Reduce the Risk of Cellophane Membranes after Retinal Detachment Surgery: A Prospective Randomized Placebo-Controlled Double-Blind Clinical Trial. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 981–987. [Google Scholar] [CrossRef]
- Yasuda, K.; Motohashi, R.; Kotake, O.; Nakagawa, H.; Noma, H.; Shimura, M. Comparative Effects of Topical Diclofenac and Betamethasone on Inflammation After Vitrectomy and Cataract Surgery in Various Vitreoretinal Diseases. J. Ocul. Pharmacol. Ther. 2016, 32, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Harju, N.; Kauppinen, A.; Loukovaara, S. Fibrotic Changes in Rhegmatogenous Retinal Detachment. Int. J. Mol. Sci. 2025, 26, 1025. [Google Scholar] [CrossRef]
- Toh, V.T.R.; Gerard, G.; Tay, Z.Q.; Chen, J.; Chew, G.W.M.; Teoh, C.S. Efficacy and Safety of Methotrexate in the Treatment of Proliferative Vitreoretinopathy: A Systematic Review. Eye 2025, 39, 460–467. [Google Scholar] [CrossRef]
- Asaria, R.H.Y.; Kon, C.H.; Bunce, C.; Charteris, D.G.; Wong, D.; Khaw, P.T.; Aylward, G.W. Adjuvant 5-Fluorouracil and Heparin Prevents Proliferative Vitreoretinopathy: Results from a Randomized, Double-Blind, Controlled Clinical Trial. Ophthalmology 2001, 108, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Ahmadieh, H.; Nourinia, R.; Ragati Haghi, A.; Ramezani, A.; Entezari, M.; Rahmani, G.; Yaseri, M. Oral Colchicine for Prevention of Proliferative Vitreoretinopathy: A Randomized Clinical Trial. Acta Ophthalmol. 2015, 93, e171–e172. [Google Scholar] [CrossRef]
- Ferro Desideri, L.; Artemiev, D.; Zandi, S.; Zinkernagel, M.S.; Anguita, R. Proliferative Vitreoretinopathy: An Update on the Current and Emerging Treatment Options. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 679–687. [Google Scholar] [CrossRef]
- Conart, J.-B.; Blot, G.; Augustin, S.; Millet-Puel, G.; Roubeix, C.; Beguier, F.; Charles-Messance, H.; Touhami, S.; Sahel, J.-A.; Berrod, J.-P.; et al. Insulin Inhibits Inflammation-Induced Cone Death in Retinal Detachment. J. Neuroinflammation 2020, 17, 358. [Google Scholar] [CrossRef]
- Kim, B.; Kusibati, R.; Heisler-Taylor, T.; Mantopoulos, D.; Ding, J.; Abdel-Rahman, M.H.; Satoskar, A.R.; Godbout, J.P.; Bhattacharya, S.K.; Cebulla, C.M. MIF Inhibitor ISO-1 Protects Photoreceptors and Reduces Gliosis in Experimental Retinal Detachment. Sci. Rep. 2017, 7, 14336. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, Y.; Liu, Y. Down-Regulation of miR-377 Suppresses High Glucose and Hypoxia-Induced Angiogenesis and Inflammation in Human Retinal Endothelial Cells by Direct up-Regulation of Target Gene SIRT1. Hum. Cell 2019, 32, 260–274. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redruello-Guerrero, P.; Gómez-Tomás, M.; Rechi-Sierra, T.; Molinero-Sicilia, L.; Galindo-Cabello, N.; Usategui-Martín, R.; Pastor-Idoate, S. Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment. Metabolites 2025, 15, 442. https://doi.org/10.3390/metabo15070442
Redruello-Guerrero P, Gómez-Tomás M, Rechi-Sierra T, Molinero-Sicilia L, Galindo-Cabello N, Usategui-Martín R, Pastor-Idoate S. Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment. Metabolites. 2025; 15(7):442. https://doi.org/10.3390/metabo15070442
Chicago/Turabian StyleRedruello-Guerrero, Pablo, María Gómez-Tomás, Tomás Rechi-Sierra, Laura Molinero-Sicilia, Nadia Galindo-Cabello, Ricardo Usategui-Martín, and Salvador Pastor-Idoate. 2025. "Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment" Metabolites 15, no. 7: 442. https://doi.org/10.3390/metabo15070442
APA StyleRedruello-Guerrero, P., Gómez-Tomás, M., Rechi-Sierra, T., Molinero-Sicilia, L., Galindo-Cabello, N., Usategui-Martín, R., & Pastor-Idoate, S. (2025). Inflammatory Mechanisms in the Management and Treatment of Retinal Detachment. Metabolites, 15(7), 442. https://doi.org/10.3390/metabo15070442