The Impact of Physical Activity on Metabolic Health and Cognitive Function in Postmenopausal Women: A Cross-Sectional Study
Abstract
:1. Introduction
2. Method
2.1. Participants and Ethical Aspects
2.2. Nutritional Evaluation
2.3. Anthropometric and Physical Activity Measurement
2.4. Assessment of Psychological Parameters and Dementia
2.5. Biochemical Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzo, M.R.; Fasano, R.; Paolisso, G. Adiponectin and Cognitive Decline. Int. J. Mol. Sci. 2020, 21, 2010. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mishra, A.; Brinton, R.D. Transitions in Metabolic and Immune Systems from Pre-Menopause to Post-Menopause: Implications for Age-Associated Neurodegenerative Diseases. F1000Research 2020, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.G.; Park, H. Metabolic Disorders in Menopause. Metabolites 2022, 12, 954. [Google Scholar] [CrossRef]
- Sochocka, M.; Karska, J.; Pszczołowska, M.; Ochnik, M.; Fułek, M.; Fułek, K.; Kurpas, D.; Chojdak-Łukasiewicz, J.; Rosner-Tenerowicz, A.; Leszek, J. Cognitive Decline in Early and Premature Menopause. Int. J. Mol. Sci. 2023, 24, 6566. [Google Scholar] [CrossRef]
- Genazzani, A.D.; Petrillo, T.; Semprini, E.; Aio, C.; Foschi, M.; Ambrosetti, F.; Sponzilli, A.; Ricciardiello, F.; Battipaglia, C. Metabolic Syndrome, Insulin Resistance and Menopause: The Changes in Body Structure and the Therapeutic Approach. Gynecol. Reprod. Endocrinol. Metab. 2024, 4, 86–91. [Google Scholar] [CrossRef]
- Motlani, V.; Motlani, G.; Pamnani, S.; Sahu, A.; Acharya, N. Changed Endocrinology in Postmenopausal Women: A Comprehensive View. Cureus 2023, 15, e51287. [Google Scholar] [CrossRef] [PubMed]
- Avis, N.E.; Crawford, S.L.; Greendale, G.; Bromberger, J.T.; Everson-Rose, S.A.; Gold, E.B.; Hess, R.; Joffe, H.; Kravitz, H.M.; Tepper, P.G.; et al. Duration of Menopausal Vasomotor Symptoms Over the Menopause Transition. JAMA Intern. Med. 2015, 175, 531–539. [Google Scholar] [CrossRef]
- Bromberger, J.T.; Kravitz, H.M.; Chang, Y.-F.; Cyranowski, J.M.; Brown, C.; Matthews, K.A. Major Depression during and after the Menopausal Transition: Study of Women’s Health Across the Nation (SWAN). Psychol. Med. 2011, 41, 1879–1888. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The Menopause Transition and Women’s Health at Midlife: A Progress Report from the Study of Women’s Health Across the Nation (SWAN). Menopause 2019, 26, 1213. [Google Scholar] [CrossRef]
- Hearing, C.M.; Chang, W.C.; Szuhany, K.L.; Deckersbach, T.; Nierenberg, A.A.; Sylvia, L.G. Physical Exercise for Treatment of Mood Disorders: A Critical Review. Curr. Behav. Neurosci. Rep. 2016, 3, 350–359. [Google Scholar] [CrossRef]
- Kravitz, H.M.; Janssen, I.; Bromberger, J.T.; Matthews, K.A.; Hall, M.H.; Ruppert, K.; Joffe, H. Sleep Trajectories Before and After the Final Menstrual Period in the Study of Women’s Health Across the Nation (SWAN). Curr. Sleep Med. Rep. 2017, 3, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Mark, J.K.K.; Samsudin, S.; Looi, I.; Yuen, K.H. Vaginal Dryness: A Review of Current Understanding and Management Strategies. Climacteric J. Int. Menopause Soc. 2024, 27, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Tepper, P.G.; Brooks, M.M.; Randolph, J.F.J.; Crawford, S.L.; El Khoudary, S.R.; Gold, E.B.; Lasley, B.L.; Jones, B.; Joffe, H.; Hess, R.; et al. Characterizing the Trajectories of Vasomotor Symptoms across the Menopausal Transition. Menopause 2016, 23, 1067. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F. Estrogen and Androgen Receptors: Regulators of Fuel Homeostasis and Emerging Targets for Diabetes and Obesity. Trends Endocrinol. Metab. TEM 2011, 22, 24–33. [Google Scholar] [CrossRef]
- Nie, G.; Yang, X.; Wang, Y.; Liang, W.; Li, X.; Luo, Q.; Yang, H.; Liu, J.; Wang, J.; Guo, Q.; et al. The Effects of Menopause Hormone Therapy on Lipid Profile in Postmenopausal Women: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 850815. [Google Scholar] [CrossRef]
- Uddenberg, E.R.; Safwan, N.; Saadedine, M.; Hurtado, M.D.; Faubion, S.S.; Shufelt, C.L. Menopause Transition and Cardiovascular Disease Risk. Maturitas 2024, 185, 107974. [Google Scholar] [CrossRef]
- Joffe, H.; de Wit, A.; Coborn, J.; Crawford, S.; Freeman, M.; Wiley, A.; Athappilly, G.; Kim, S.; Sullivan, K.A.; Cohen, L.S.; et al. Impact of Estradiol Variability and Progesterone on Mood in Perimenopausal Women With Depressive Symptoms. J. Clin. Endocrinol. Metab. 2020, 105, e642–e650. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pérez, J.J.; Hernández-Hernández, O.T.; Flores-Ramos, M.; Cueto-Escobedo, J.; Rodríguez-Landa, J.F.; Martínez-Mota, L. The Intersection between Menopause and Depression: Overview of Research Using Animal Models. Front. Psychiatry 2024, 15, 1408878. [Google Scholar] [CrossRef]
- Conde, D.M.; Verdade, R.C.; Valadares, A.L.R.; Mella, L.F.B.; Pedro, A.O.; Costa-Paiva, L. Menopause and Cognitive Impairment: A Narrative Review of Current Knowledge. World J. Psychiatry 2021, 11, 412–428. [Google Scholar] [CrossRef]
- Pertesi, S.; Coughlan, G.; Puthusseryppady, V.; Morris, E.; Hornberger, M. Menopause, Cognition and Dementia—A Review. Post Reprod. Health 2019, 25, 200–206. [Google Scholar] [CrossRef]
- Beam, C.R.; Kaneshiro, C.; Jang, J.Y.; Reynolds, C.A.; Pedersen, N.L.; Gatz, M. Differences Between Women and Men in Incidence Rates of Dementia and Alzheimer’s Disease. J. Alzheimers Dis. JAD 2018, 64, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-H.; Kim, H.-S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Zhang, C.; Zhang, C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem. Res. 2024, 49, 834–846. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef]
- Nascimento, C.M.C.; Pereira, J.R.; de Andrade, L.P.; Garuffi, M.; Talib, L.L.; Forlenza, O.V.; Cancela, J.M.; Cominetti, M.R.; Stella, F. Physical Exercise in MCI Elderly Promotes Reduction of Pro-Inflammatory Cytokines and Improvements on Cognition and BDNF Peripheral Levels. Curr. Alzheimer Res. 2014, 11, 799–805. [Google Scholar] [CrossRef]
- Christensen, A.; Pike, C.J. Menopause, Obesity and Inflammation: Interactive Risk Factors for Alzheimer’s Disease. Front. Aging Neurosci. 2015, 7, 130. [Google Scholar] [CrossRef]
- Hara, Y.; Waters, E.M.; McEwen, B.S.; Morrison, J.H. Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol. Rev. 2015, 95, 785–807. [Google Scholar] [CrossRef]
- Khalafi, M.; Malandish, A.; Rosenkranz, S.K. The Impact of Exercise Training on Inflammatory Markers in Postmenopausal Women: A Systemic Review and Meta-Analysis. Exp. Gerontol. 2021, 150, 111398. [Google Scholar] [CrossRef]
- Svensson, M.; Lexell, J.; Deierborg, T. Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior: What We Can Learn From Animal Models in Clinical Settings. Neurorehabil. Neural Repair 2015, 29, 577–589. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.; Yaffe, K. Obesity in Middle Age and Future Risk of Dementia: A 27 Year Longitudinal Population Based Study. BMJ 2005, 330, 1360. [Google Scholar] [CrossRef] [PubMed]
- Leckie, R.L.; Oberlin, L.E.; Voss, M.W.; Prakash, R.S.; Szabo-Reed, A.; Chaddock-Heyman, L.; Phillips, S.M.; Gothe, N.P.; Mailey, E.; Vieira-Potter, V.J.; et al. BDNF Mediates Improvements in Executive Function Following a 1-Year Exercise Intervention. Front. Hum. Neurosci. 2014, 8, 985. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roqué-Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the Early Detection of Dementia in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2021, 7, CD010783. [Google Scholar] [CrossRef]
- Anderson, D.; Seib, C.; Rasmussen, L. Can Physical Activity Prevent Physical and Cognitive Decline in Postmenopausal Women? A Systematic Review of the Literature. Maturitas 2014, 79, 14–33. [Google Scholar] [CrossRef]
- Baker, A.; Sirois-Leclerc, H.; Tulloch, H. The Impact of Long-Term Physical Activity Interventions for Overweight/Obese Postmenopausal Women on Adiposity Indicators, Physical Capacity, and Mental Health Outcomes: A Systematic Review. J. Obes. 2016, 2016, 6169890. [Google Scholar] [CrossRef] [PubMed]
- Gheysen, F.; Poppe, L.; DeSmet, A.; Swinnen, S.; Cardon, G.; De Bourdeaudhuij, I.; Chastin, S.; Fias, W. Physical Activity to Improve Cognition in Older Adults: Can Physical Activity Programs Enriched with Cognitive Challenges Enhance the Effects? A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise Interventions for Cognitive Function in Adults Older than 50: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yin, S.; Lang, M.; He, R.; Li, J. The More the Better? A Meta-Analysis on Effects of Combined Cognitive and Physical Intervention on Cognition in Healthy Older Adults. Ageing Res. Rev. 2016, 31, 67–79. [Google Scholar] [CrossRef]
- Barha, C.K.; Falck, R.S.; Davis, J.C.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex Differences in Aerobic Exercise Efficacy to Improve Cognition: A Systematic Review and Meta-Analysis of Studies in Older Rodents. Front. Neuroendocrinol. 2017, 46, 86–105. [Google Scholar] [CrossRef]
- Karssemeijer, E.G.A.; Aaronson, J.A.; Bossers, W.J.R.; Donders, R.; Olde Rikkert, M.G.M.; Kessels, R.P.C. The Quest for Synergy between Physical Exercise and Cognitive Stimulation via Exergaming in People with Dementia: A Randomized Controlled Trial. Alzheimers Res. Ther. 2019, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D. The Role of Astrocytes on the Effects of Exercise on Episodic Memory Function. Physiol. Int. 2019, 106, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise Promotes the Expression of Brain Derived Neurotrophic Factor (BDNF) through the Action of the Ketone Body β-Hydroxybutyrate. eLife 2016, 5, e15092. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Pilc, A. The Effect of Physical Activity on the Brain Derived Neurotrophic Factor: From Animal to Human Studies. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2010, 61, 533–541. [Google Scholar]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A Meta-Analytic Review of the Effects of Exercise on Brain-Derived Neurotrophic Factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef]
- Nejatian Hoseinpour, A.; Bassami, M.; Ahmadizad, S.; Donath, L.; Setayesh, S.; Mirzaei, M.; Mohammad Rahimi, G.R. The Influence of Resistance Training on Inflammatory Markers, Body Composition and Functional Capacity in Healthy Older Adults: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2025, 130, 105731. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, Z. Effect of Resistance Training on Inflammatory Markers in Middle-Aged and Older Adults: A Meta-Analysis. Arch. Gerontol. Geriatr. 2024, 126, 105536. [Google Scholar] [CrossRef]
- Casaletto, K.B.; Lindbergh, C.A.; VandeBunte, A.; Neuhaus, J.; Schneider, J.A.; Buchman, A.S.; Honer, W.G.; Bennett, D.A. Microglial Correlates of Late Life Physical Activity: Relationship with Synaptic and Cognitive Aging in Older Adults. J. Neurosci. Off. J. Soc. Neurosci. 2022, 42, 288–298. [Google Scholar] [CrossRef]
- Małkowska, P. Positive Effects of Physical Activity on Insulin Signaling. Curr. Issues Mol. Biol. 2024, 46, 5467–5487. [Google Scholar] [CrossRef]
- Sirico, F.; Bianco, A.; D’Alicandro, G.; Castaldo, C.; Montagnani, S.; Spera, R.; Di Meglio, F.; Nurzynska, D. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child. Obes. Print 2018, 14, 207–217. [Google Scholar] [CrossRef]
- Chiang, M.-C.; Tsai, T.-Y.; Wang, C.-J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24, 6328. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western Diet Effects on Alzheimer’s Disease Biomarkers, Cerebral Perfusion, and Cognition in Mid-Life: A Randomized Trial. Alzheimers Dement. J. Alzheimers Assoc. 2022, 18, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Kousparou, C.; Fyrilla, M.; Stephanou, A.; Patrikios, I. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as Bioactive Molecules in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 10717. [Google Scholar] [CrossRef]
- Sherzai, A.Z.; Sherzai, A.N.; Sherzai, D. A Systematic Review of Omega-3 Consumption and Neuroprotective Cognitive Outcomes. Am. J. Lifestyle Med. 2023, 17, 560–588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Miao, F.; Wang, J.; Zheng, M.; Yu, F.; Yi, Y. The Ameliorative and Neuroprotective Effects of Dietary Fibre on Hyperuricaemia Mice: A Perspective from Microbiome and Metabolome. Br. J. Nutr. 2024, 132, 275–288. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A.; Kwiecień, M.; Jachimowicz-Rogowska, K.; Donaldson, J.; Tomaszewska, E.; Baranowska-Wójcik, E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols—Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 2258. [Google Scholar] [CrossRef]
- Gronowska-Senger, A. (Ed.) Przewodnik Metodyczny Badań Sposobu Żywienia: Praca Zbiorowa; Komitet Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Warszawa, Poland, 2013; ISBN 978-83-63305-09-3. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album Fotografii Produktów i Potraw; Instytut Żywności i Żywienia: Warsaw, Poland, 2008; ISBN 978-83-86060-69-6. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski i Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warsaw, Poland, 2020; Volume 83. [Google Scholar]
- Laudisio, A.; Antonelli Incalzi, R.; Gemma, A.; Marzetti, E.; Pozzi, G.; Padua, L.; Bernabei, R.; Zuccalà, G. Definition of a Geriatric Depression Scale Cutoff Based upon Quality of Life: A Population-Based Study. Int. J. Geriatr. Psychiatry 2018, 33, e58–e64. [Google Scholar] [CrossRef]
- Norris, D.; Clark, M.S.; Shipley, S. The Mental Status Examination. Am. Fam. Physician 2016, 94, 635–641. [Google Scholar]
- Tafiadis, D.; Ziavra, N.; Prentza, A.; Siafaka, V.; Zarokanelou, V.; Voniati, L.; Konitsiotis, S. The Tuokko Version of the Clock Drawing Test: A Validation Study in the Greek Population. J. Clin. Exp. Neuropsychol. 2021, 43, 967–979. [Google Scholar] [CrossRef]
- Sacktor, N.C.; Wong, M.; Nakasujja, N.; Skolasky, R.L.; Selnes, O.A.; Musisi, S.; Robertson, K.; McArthur, J.C.; Ronald, A.; Katabira, E. The International HIV Dementia Scale: A New Rapid Screening Test for HIV Dementia. AIDS Lond. Engl. 2005, 19, 1367–1374. [Google Scholar]
- Buelt, A.; Richards, A.; Jones, A.L. Hypertension: New Guidelines from the International Society of Hypertension. Am. Fam. Physician 2021, 103, 763–765. [Google Scholar] [PubMed]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojskiej, H. Normy Żywienia dla Populacji Polski; NIZP PZH–PIB: Warszawa, Poland, 2024. [Google Scholar]
- Pandarek Zalecenia Kliniczne Dotyczące Postępowania u osób z Cukrzycą 2024 Stanowisko Polskiego Towarzystwa Diabetologicznego. Available online: https://ptdiab.pl/zalecenia-ptd/zalecania-aktywni-czlonkowie-2024 (accessed on 11 June 2025).
- Solnica, B.; Sygitowicz, G.; Sitkiewicz, D.; Jóźwiak, J.; Kasperczyk, S.; Broncel, M.; Wolska, A.; Odrowąż-Sypniewska, G.; Banach, M. 2024 Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipid Association on Laboratory Diagnostics of Lipid Metabolism Disorders. Arch. Med. Sci. 2024, 20, 357–374. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. Ser. A 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Mazzonna, F.; Peracchi, F. Ageing, Cognitive Abilities and Retirement. Eur. Econ. Rev. 2012, 56, 691–710. [Google Scholar] [CrossRef]
- Singh, A.S.; Chin A Paw, M.J.M.; Bosscher, R.J.; van Mechelen, W. Cross-Sectional Relationship between Physical Fitness Components and Functional Performance in Older Persons Living in Long-Term Care Facilities. BMC Geriatr. 2006, 6, 4. [Google Scholar] [CrossRef]
- Singh, G.K.; Hiatt, R.A. Trends and Disparities in Socioeconomic and Behavioural Characteristics, Life Expectancy, and Cause-Specific Mortality of Native-Born and Foreign-Born Populations in the United States, 1979–2003. Int. J. Epidemiol. 2006, 35, 903–919. [Google Scholar] [CrossRef]
- Phillips, C.; Fahimi, A. Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression. Front. Neurosci. 2018, 12, 498. [Google Scholar] [CrossRef]
- Barter, P.; Gotto, A.M.; LaRosa, J.C.; Maroni, J.; Szarek, M.; Grundy, S.M.; Kastelein, J.J.P.; Bittner, V.; Fruchart, J.-C. HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. N. Engl. J. Med. 2007, 357, 1301–1310. [Google Scholar] [CrossRef]
- Quispe, R.; Elshazly, M.B.; Zhao, D.; Toth, P.P.; Puri, R.; Virani, S.S.; Blumenthal, R.S.; Martin, S.S.; Jones, S.R.; Michos, E.D. TC/HDL-C Ratio Discordance with LDL-C and Non-HDL-C and Incidence of Atherosclerotic Cardiovascular Disease in Primary Prevention: The ARIC Study. Eur. J. Prev. Cardiol. 2020, 27, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, L.; Franceschini, G. Lecithin:Cholesterol Acyltransferase, High-Density Lipoproteins, and Atheroprotection in Humans. Trends Cardiovasc. Med. 2010, 20, 50–53. [Google Scholar] [CrossRef]
- Earnest, C.P.; Artero, E.G.; Sui, X.; Lee, D.; Church, T.S.; Blair, S.N. Maximal Estimated Cardiorespiratory Fitness, Cardiometabolic Risk Factors, and Metabolic Syndrome in the Aerobics Center Longitudinal Study. Mayo Clin. Proc. 2013, 88, 259–270. [Google Scholar] [CrossRef]
- Harrison, M.; Moyna, N.M.; Zderic, T.W.; O’Gorman, D.J.; McCaffrey, N.; Carson, B.P.; Hamilton, M.T. Lipoprotein Particle Distribution and Skeletal Muscle Lipoprotein Lipase Activity after Acute Exercise. Lipids Health Dis. 2012, 11, 64. [Google Scholar] [CrossRef]
- Mann, S.; Beedie, C.; Jimenez, A. Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile: Review, Synthesis and Recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]
- Riedl, I.; Yoshioka, M.; Nishida, Y.; Tobina, T.; Paradis, R.; Shono, N.; Tanaka, H.; St-Amand, J. Regulation of Skeletal Muscle Transcriptome in Elderly Men after 6 Weeks of Endurance Training at Lactate Threshold Intensity. Exp. Gerontol. 2010, 45, 896–903. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.C.; Diniz, M.d.F.H.S.; Alvim, S.; Vidigal, P.G.; Fedeli, L.M.G.; Barreto, S.M. Physical Activity and Lipid Profile in the ELSA-Brasil Study. Arq. Bras. Cardiol. 2016, 107, 10–19. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease: The Task Force on Sports Cardiology and Exercise in Patients with Cardiovascular Disease of the European Society of Cardiology (ESC). Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Riddell, M.C.; Zaharieva, D.P.; Yavelberg, L.; Cinar, A.; Jamnik, V.K. Exercise and the Development of the Artificial Pancreas: One of the More Difficult Series of Hurdles. J. Diabetes Sci. Technol. 2015, 9, 1217–1226. [Google Scholar] [CrossRef]
- Tagougui, S.; Taleb, N.; Rabasa-Lhoret, R. The Benefits and Limits of Technological Advances in Glucose Management Around Physical Activity in Patients Type 1 Diabetes. Front. Endocrinol. 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Di Liegro, C.M.; Schiera, G.; Proia, P.; Di Liegro, I. Physical Activity and Brain Health. Genes 2019, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.; Polk, J.D. BDNF, Endurance Activity, and Mechanisms Underlying the Evolution of Hominin Brains. Am. J. Phys. Anthropol. 2019, 168, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Maudsley, S.; Martin, B. A Neural Signaling Triumvirate That Influences Ageing and Age-Related Disease: Insulin/IGF-1, BDNF and Serotonin. Ageing Res. Rev. 2004, 3, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Golden, E.; Emiliano, A.; Maudsley, S.; Windham, B.G.; Carlson, O.D.; Egan, J.M.; Driscoll, I.; Ferrucci, L.; Martin, B.; Mattson, M.P. Circulating Brain-Derived Neurotrophic Factor and Indices of Metabolic and Cardiovascular Health: Data from the Baltimore Longitudinal Study of Aging. PLoS ONE 2010, 5, e10099. [Google Scholar] [CrossRef]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity—Exercise-Induced Response of Peripheral Brain-Derived Neurotrophic Factor: A Systematic Review of Experimental Studies in Human Subjects. Sports Med. 2010, 40, 765–801. [Google Scholar] [CrossRef]
- Gholami, F.; Mesrabadi, J.; Iranpour, M.; Donyaei, A. Exercise training alters resting brain-derived neurotrophic factor concentration in older adults: A systematic review with meta-analysis of randomized-controlled trials. Exp. Gerontol. 2025, 199, 112658. [Google Scholar] [CrossRef]
- Sakuma, K.; Yamaguchi, A. The Recent Understanding of the Neurotrophin’s Role in Skeletal Muscle Adaptation. J. Biomed. Biotechnol. 2011, 2011, 201696. [Google Scholar] [CrossRef]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L.B. The Effects of Physical Activity and Exercise on Brain-Derived Neurotrophic Factor in Healthy Humans: A Review. Scand. J. Med. Sci. Sports 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A Simple Role for BDNF in Learning and Memory? Front. Mol. Neurosci. 2010, 3, 865. [Google Scholar] [CrossRef]
- Liu, P.Z.; Nusslock, R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front. Neurosci. 2018, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Chalimoniuk, M.; Langfort, J. The Effect of Subchronic, Intermittent L-DOPA Treatment on Neuronal Nitric Oxide Synthase and Soluble Guanylyl Cyclase Expression and Activity in the Striatum and Midbrain of Normal and MPTP-Treated Mice. Neurochem. Int. 2007, 50, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Cisek-Woźniak, A.; Mruczyk, K.; Wójciak, R.W. The Association between Physical Activity and Selected Parameters of Psychological Status and Dementia in Older Women. Int. J. Environ. Res. Public. Health 2021, 18, 7549. [Google Scholar] [CrossRef]
- Colcombe, S.; Kramer, A.F. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study. Psychol. Sci. 2003, 14, 125–130. [Google Scholar] [CrossRef]
- Ekblom, M.M.; Ekblom, Ö.B.; Börjesson, M.; Bergström, G.; Jern, C.; Wallin, A. Device-Measured Sedentary Behavior, Physical Activity and Aerobic Fitness Are Independent Correlates of Cognitive Performance in Healthy Middle-Aged Adults—Results from the SCAPIS Pilot Study. Int. J. Environ. Res. Public. Health 2019, 16, 5136. [Google Scholar] [CrossRef]
- Nakagawa, T.; Koan, I.; Chen, C.; Matsubara, T.; Hagiwara, K.; Lei, H.; Hirotsu, M.; Yamagata, H.; Nakagawa, S. Regular Moderate- to Vigorous-Intensity Physical Activity Rather Than Walking Is Associated with Enhanced Cognitive Functions and Mental Health in Young Adults. Int. J. Environ. Res. Public. Health 2020, 17, 614. [Google Scholar] [CrossRef]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef]
- Wang, X.; Feng, S.; Deng, Q.; Wu, C.; Duan, R.; Yang, L. The Role of Estrogen in Alzheimer’s Disease Pathogenesis and Therapeutic Potential in Women. Mol. Cell. Biochem. 2025, 480, 1983–1998. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; Jiménez Ortega, A.I.; Martínez García, R.M.; Cuadrado Soto, E.; Aparicio, A.; López-Sobaler, A.M. a; Jiménez Ortega, A.I.; Martínez García, R.M.; Cuadrado Soto, E.; Aparicio, A.; López-Sobaler, A.M. [Nutrition in the prevention and control of osteoporosis]. Nutr. Hosp. 2021, 37, 63–66. [Google Scholar] [CrossRef]
- Annevelink, C.E.; Sapp, P.A.; Petersen, K.S.; Shearer, G.C.; Kris-Etherton, P.M. Diet-Derived and Diet-Related Endogenously Produced Palmitic Acid: Effects on Metabolic Regulation and Cardiovascular Disease Risk. J. Clin. Lipidol. 2023, 17, 577–586. [Google Scholar] [CrossRef]
- Ardisson Korat, A.V.; Shea, M.K.; Jacques, P.F.; Sebastiani, P.; Wang, M.; Eliassen, A.H.; Willett, W.C.; Sun, Q. Dietary Protein Intake in Midlife in Relation to Healthy Aging—Results from the Prospective Nurses’ Health Study Cohort. Am. J. Clin. Nutr. 2024, 119, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic Review and Meta-Analysis of Protein Intake to Support Muscle Mass and Function in Healthy Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Traylor, D.A.; Gorissen, S.H.M.; Phillips, S.M. Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance? Adv. Nutr. Bethesda Md 2018, 9, 171–182. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Feingold, K.R. The Effect of Diet on Cardiovascular Disease and Lipid and Lipoprotein Levels. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Ozen, E.; Mihaylova, R.; Weech, M.; Kinsella, S.; Lovegrove, J.A.; Jackson, K.G. Association between Dietary Saturated Fat with Cardiovascular Disease Risk Markers and Body Composition in Healthy Adults: Findings from the Cross-Sectional BODYCON Study. Nutr. Metab. 2022, 19, 15. [Google Scholar] [CrossRef]
- Yang, L.; Yang, C.; Chu, C.; Wan, M.; Xu, D.; Pan, D.; Xia, H.; Wang, S.K.; Shu, G.; Chen, S.; et al. Beneficial Effects of Monounsaturated Fatty Acid-Rich Blended Oils with an Appropriate Polyunsaturated/Saturated Fatty Acid Ratio and a Low n-6/n-3 Fatty Acid Ratio on the Health of Rats. J. Sci. Food Agric. 2022, 102, 7172–7185. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Svendsen, K.; Dankel, S.N. The Homeoviscous Adaptation to Dietary Lipids (HADL) Model Explains Controversies over Saturated Fat, Cholesterol, and Cardiovascular Disease Risk. Am. J. Clin. Nutr. 2021, 113, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Amerkamp, J.; Benli, S.; Isenmann, E.; Brinkmann, C. Optimizing the Lifestyle of Patients with Type 2 Diabetes Mellitus—Systematic Review on the Effects of Combined Diet-and-Exercise Interventions. Nutr. Metab. Cardiovasc. Dis. NMCD 2024, 35, 103746. [Google Scholar] [CrossRef]
- Hironaka, J.; Hamaguchi, M.; Ichikawa, T.; Nakajima, H.; Okamura, T.; Majima, S.; Senmaru, T.; Okada, H.; Ushigome, E.; Nakanishi, N.; et al. Low-Carbohydrate Diets in East Asians with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Diabetes Investig. 2024, 15, 1753–1762. [Google Scholar] [CrossRef]
- Skoczek-Rubińska, A.; Muzsik-Kazimierska, A.; Chmurzynska, A.; Jamka, M.; Walkowiak, J.; Bajerska, J. Inflammatory Potential of Diet Is Associated with Biomarkers Levels of Inflammation and Cognitive Function among Postmenopausal Women. Nutrients 2021, 13, 2323. [Google Scholar] [CrossRef]
- Thomsen, M.N.; Skytte, M.J.; Samkani, A.; Carl, M.H.; Weber, P.; Astrup, A.; Chabanova, E.; Fenger, M.; Frystyk, J.; Hartmann, B.; et al. Dietary Carbohydrate Restriction Augments Weight Loss-Induced Improvements in Glycaemic Control and Liver Fat in Individuals with Type 2 Diabetes: A Randomised Controlled Trial. Diabetologia 2022, 65, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J. Dietary Fiber: Still Alive. Food Chem. 2024, 439, 138076. [Google Scholar] [CrossRef] [PubMed]
- Antoni, R. Dietary Saturated Fat and Cholesterol: Cracking the Myths around Eggs and Cardiovascular Disease. J. Nutr. Sci. 2023, 12, e97. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Kong, S.Y.; Ro, Y.S.; Ryu, H.H.; Shin, S.D. Serum Cholesterol Levels and Risk of Cardiovascular Death: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies. Int. J. Environ. Res. Public. Health 2022, 19, 8272. [Google Scholar] [CrossRef]
- Schade, D.S.; Shey, L.; Eaton, R.P. Cholesterol Review: A Metabolically Important Molecule. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2020, 26, 1514–1523. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef]
Variable | Total (n = 72) | ||
---|---|---|---|
Arithmetic Mean ± sd Median (Min-Max) | References Rda | (%) | |
Total caloric intake (kcal) | 1722 ± 437 1656 (996–3143) | 2000–2500 kcal/person/day | 77 |
Total protein (g) | 80 ± 22 76 (40–151) | 50–75 g/person/day | 128 |
Protein daily intake (g/kg body weight) | 1.09 | 0.9 g/kg body weight | 121 |
Total fat (g) | 64 ± 21 61 (29–139) | 60–80 g/person/day | 91 |
Total carbohydrates (g) | 214 ± 65 215 (46–394) | 260–300 g/person/day | 76 |
Dietary fiber (g) | 23 ± 8 22 (7–54) | 25–40 g/person/day | 71 |
Plant protein (g) | 23 ± 8 21 (5–56) | no clear standards | - |
Animal protein (g) | 52 ± 19 50 (21–104) | no clear standards | - |
SFA (g) | 24 ± 16 23 (9–118) | <10% energy | over 10% |
MUFA (g) | 23 ± 8 22 (10–49) | 10–15% energy | - |
PUFA (g) | 11 ± 5 10 (4–38) | 6–8% energy | - |
Cholesterol (mg) | 331 ± 131 326 (101–658) | >300 mg | 110 |
Variable | Lower Physical Activity Group (Group A) (n = 56) | Higher Physical Activity Group (Group B) (n = 16) | Test U M-W p |
---|---|---|---|
Arithmetic Mean ± SD | |||
Total MET min/week | 2848.0 ± 2772.3 | 8210.4 ± 4234.7 | <0.001 |
Variable | Lower Physical Activity Group (Group A) (n = 56) | Higher Physical Activity Group (Group B) (n = 16) | |
---|---|---|---|
Arithmetic Mean ± SD | Test M-W p | ||
BMI (kg/m2) | 29 ± 5 | 27 ± 6 | 0.0553 |
WC (cm) | 97 ± 11 | 90 ± 15 | 0.0136 |
WHR | 0.91 ± 0.07 | 0.87 ± 0.11 | 0.0138 |
SBP (mmHg) | 135 ± 19 | 132 ± 13 | 0.9622 |
DBP (mmHg) | 84 ± 15 | 82 ± 12 | 0.6892 |
PULSE | 73 ± 8 | 73 ± 9 | 0.7345 |
Variable | Lower Physical Activity Group (Group A) (n = 56) | Higher Physical Activity Group (Group B) (n = 16) | References | Test M-W p |
---|---|---|---|---|
GDS (points) | 4.11 ± 5.20 | 5.19 ± 7.39 | 0–9—no depression 10–19—mild depression above 20–deep depression [62] | 0.9235 |
Motor speed | 22.47 ± 3.42 | 23.06 ± 2.29 | no clear standards | 0.6448 |
Psychomotor speed | 5.66 ± 1.91 | 6.26 ± 2.51 | no clear standards | 0.5369 |
MMSE (points) | 28.73 ± 1.77 | 28.44 ± 1.26 | 30–27—normal result 26–24—cognitive impairment without dementia 23–19—mild dementia 18–11—moderate dementia 10–0—profound dementia [63] | 0.1563 |
Clock Drawing Test (points) | 2.75 ± 0.51 | 2.94 ± 0.25 | 0–3 [64] | 0.1649 |
Glucose (mg/dL) | 106.77 ± 21.89 | 97.13 ± 13.16 | <100 [68] | 0.0569 |
Triglycerides (mg/dL) | 233.38 ± 135.25 | 157.88 ± 62.47 | <100 [69] | 0.0645 |
Cholesterol (mg/dL) | 194.05 ± 46.25 | 223.31 ± 47.41 | <190 [69] | 0.0277 |
BDNF (ng/mL) | 1.81 ± 1.21 | 2.26 ± 1.05 | no clear standards | 0.0714 |
Interleukin IL-6 (pg/mL) | 25.60 ± 37.91 | 79.39 ± 248.80 | <6 [70] | 0.4281 |
Insulin (μLU/mL) | 17.33 ± 11.39 | 14.10 ± 9.03 | 3–17 [68] | 0.1530 |
Group A (n = 56) | Intensive Physical Effort (Minutes/Week) | Moderate Physical Effort (Minutes/Week) | Walking (Minutes/Week) |
---|---|---|---|
BMI (kg/m2) r p | −0.0045 0.9843 | 0.1085 0.5027 | −0.0514 0.4670 |
SBP (mmHg) r p | −0.1750 0.2203 | −0.0639 0.6242 | 0.0561 0.8161 |
DBP (mmHg) r p | −0.1821 0.2076 | 0.1176 0.5560 | 0.0822 0.9739 |
PULSE (bpm) r p | −0.0059 0.9358 | 0.1779 0.2373 | −0.1632 0.2036 |
WC (cm) r p | 0.0227 0.2520 | 0.0718 0.0825 | −0.1390 0.3546 |
WHR r p | −0.0366 0.8206 | −0.1498 0.2796 | −0.1746 0.2114 |
Glucose (mg/dL) r p | −0.2416 0.0419 | −0.0161 0.9377 | −0.1754 0.3011 |
Triglycerides (mg/dL) r p | −0.0843 0.5305 | 0.0466 0.6034 | −0.2028 0.0425 |
Cholesterol (mg/dL) r p | 0.2806 0.0436 | 0.1742 0.1594 | −0.0029 0.9245 |
GDS (points) r p | −0.2044 0.0482 | −0.2539 0.0490 | 0.0323 0.9173 |
Motor speed r p | 0.1647 0.1547 | 0.2485 0.0467 | 0.0525 0.7441 |
Psychomotor speed r p | 0.2598 0.0487 | 0.3822 0.0099 | −0.1554 0.2309 |
MMSE (points) r p | −0.0055 0.7952 | 0.0737 0.4520 | −0.0832 0.4716 |
Clock Drawing Test (points) r p | 0.1488 0.3401 | 0.1192 0.3381 | −0.2098 0.0473 |
BDNF (ng/mL) r p | 0.3275 0.0389 | 0.3877 0.0489 | −0.0201 0.7349 |
Interleukin IL-6 (pg/mL) r p | −0.0832 0.3589 | −0.0916 0.9389 | −0.1168 0.7020 |
Insulin (μLU/mL) r p | −0.1794 0.1640 | −0.0718 0.7776 | −0.1020 0.2200 |
Group B (n = 16) | Intensive Physical Activity (Minutes/Week) | Moderate Physical Activity (Minutes/Week) | Walking (Minutes/Week) |
---|---|---|---|
BMI (kg/m2) r p | −0.4106 0.0424 | −0.0872 0.7349 | −0.1186 0.6983 |
SBP (mmHg) r p | −0.0733 0.7007 | 0.4138 0.0411 | 0.0000 0.9951 |
DBP (mmHg) r p | −0.1884 0.4016 | 0.1968 0.4095 | 0.1621 0.4698 |
PULSE (bpm) r p | 0.0594 0.8983 | 0.0203 0.7355 | −0.2612 0.0465 |
WC (cm) r p | −0.4843 0.0201 | 0.0848 0.0687 | 0.1453 0.5378 |
WHR r p | −0.3887 0.0389 | 0.0538 0.7771 | 0.3974 0.0398 |
Glucose (mg/dL) r p | −0.1144 0.6623 | 0.1555 0.4589 | −0.2962 0.0377 |
Triglycerides (mg/dL) r p | −0.2963 0.0389 | −0.1203 0.6442 | −0.0865 0.7826 |
Cholesterol (mg/dL) r p | 0.2561 0.476 | 0.0283 0.8913 | −0.2387 0.0421 |
GDS (points) r p | 0.1173 0.7904 | 0.0498 0.7969 | −0.2558 0.0401 |
Motor speed r p | −0.1205 0.6992 | −0.2288 0.0376 | 0.3769 0.0277 |
Psychomotor speed r p | 0.1477 0.6433 | −0.0430 0.8816 | −0.1379 0.6021 |
MMSE (points) r p | −0.1428 0.4647 | 0.0115 0.8350 | 0.1340 0.5256 |
Clock Drawing Test (points) r p | 0.4098 0.0456 | 0.0000 0.9987 | 0.0000 0.9876 |
BDNF (ng/mL) r p | 0.0492 0.5827 | −0.3683 0.0497 | 0.3335 0.0434 |
Interleukin IL-6 (pg/mL) r p | −0.2844 0.0401 | 0.0012 0.8005 | 0.0000 0.9942 |
Insulin (μLU/mL) r p | −0.3707 0.0387 | 0.1301 0.8195 | 0.0321 0.9279 |
Biochemical Parameters | BDNF Group A (n = 56) | BDNF Group B (n = 16) |
---|---|---|
Cholesterol (mg/dL) r p | 0.3462 0.0089 | 0.1384 0.6012 |
Glucose (mg/dL) r p | 0.1165 0.3886 | −0.7452 0.0009 |
IL-6 (pg/mL) r p | 0.1229 0.3629 | −0.2064 0.4413 |
Triglycerides r p | 0.1613 0.2343 | −0.2373 0.3759 |
Insulin (uLU/mL) r p | 0.0648 0.6401 | −0.0386 0.8834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mruczyk, K.; Wójciak, R.W.; Molska, M.; Śliwicka, E.; Podgórski, T.; Skoczek-Rubińska, A.; Borowiecka, A.; Cisek-Woźniak, A. The Impact of Physical Activity on Metabolic Health and Cognitive Function in Postmenopausal Women: A Cross-Sectional Study. Metabolites 2025, 15, 420. https://doi.org/10.3390/metabo15070420
Mruczyk K, Wójciak RW, Molska M, Śliwicka E, Podgórski T, Skoczek-Rubińska A, Borowiecka A, Cisek-Woźniak A. The Impact of Physical Activity on Metabolic Health and Cognitive Function in Postmenopausal Women: A Cross-Sectional Study. Metabolites. 2025; 15(7):420. https://doi.org/10.3390/metabo15070420
Chicago/Turabian StyleMruczyk, Kinga, Rafał W. Wójciak, Marta Molska, Ewa Śliwicka, Tomasz Podgórski, Aleksandra Skoczek-Rubińska, Anna Borowiecka, and Angelika Cisek-Woźniak. 2025. "The Impact of Physical Activity on Metabolic Health and Cognitive Function in Postmenopausal Women: A Cross-Sectional Study" Metabolites 15, no. 7: 420. https://doi.org/10.3390/metabo15070420
APA StyleMruczyk, K., Wójciak, R. W., Molska, M., Śliwicka, E., Podgórski, T., Skoczek-Rubińska, A., Borowiecka, A., & Cisek-Woźniak, A. (2025). The Impact of Physical Activity on Metabolic Health and Cognitive Function in Postmenopausal Women: A Cross-Sectional Study. Metabolites, 15(7), 420. https://doi.org/10.3390/metabo15070420