Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology for the Literature Search and Included Studies
2.1. Focal Question
2.2. Language
2.3. Databases
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
Medicinal Plants | In Vivo/In Vitro Model | Plant Parts Used or Extracts | Effective Doses/Concentrations | Related Clinical Features of IBD | Related Molecular Mechanisms in Regulation of NLRP3 in IBD | Reference |
---|---|---|---|---|---|---|
Xianglian Pill | DSS-induced C57BL/6 mice model of colitis in vivo | XLP is composed of Coptis chinensis Franch, Evodia rutaecarpa, and Aucklandia lappa Decne | 1.35, 2.7, and 5.4 mg/kg/day orally for 7 days in vivo | ↑DAI, ↑intestinal inflammation, ↓colon length, ↑histopathologic injury, ↑fecal occult blood, ↑diarrhea, ↑necrosis and ↑mucosal layer loss | ↓NLRP3, ↓caspase-1, ↓GSDMD-N, ↓TLR4, ↓MyD88, ↓NF-κB, ↓p–NF–κB, ↓IL-1β, ↓TNF-α, ↓IL-18, and ↓MPO | [15] |
Litsea cubeba | LPS and ATP-stimulated J774A.1 cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | Leaves ethanolic extract | 12.5, 25, or 50 μg/mL incubated for 0.5 h in vitro and 20, 40, and 80 mg/kg/day orally for 7 days in vivo | ↑Inflammation in vitro and ↑fecal occult blood, ↑diarrhea, ↓body weight, ↓colon length and splenomegaly in vivo | ↓IL-1β, ↓ASC, ↓caspase-1, ↓NLRP3, ↓ROS, ↓pyroptosis, ↓IL-6, and ↓mitochondrial ROS/damage in vitro and ↓IL-1β and ↓IL-6 in vivo | [16] |
Artemisia anomala | LPS-stimulated BMDMs cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | Whole plant ethanolic extract | 1 μg/mL incubated for 40 min in vitro and 40 or 80 mg/kg/day orally in vivo | ↑Inflammation in vitro and ↑DAI, ↑intestinal inflammation, ↑cellular infiltration ↓colon length, ↓body weight and ↑fecal occult blood in vivo | ↓IL-1β, ↓NLRP3, ↓ASC, ↓TAK1-JNK, ↓caspase-1, ↓p65 nuclear, ↓IκBα, ↓NF-kB, ↓lysosomal disruption, ↓ROS, ↓mitochondrial damage, and ↓TNF-α in vitro and ↓IL-1β in vivo | [17] |
Schisandra chinensis (Turcz.) Baill. | DSS-induced C57BL/6 mice model of colitis in vivo | Fruit ethanolic extract | 593.78 and 1187.55 mg/kg/day orally for 14 days | ↑DAI, ↑intestinal inflammation, ↓colon length, ↑intestinal mucosa damage, ↓body weight, ↑histopathologic injury | ↑SOD, ↓MDA, ↓MPO, ↑ZO-1, ↓IL-1β, ↓TNF-α, ↓IL-18, ↓TLR4, ↓p-p65, ↓p-IκB-α, ↓TLR4/NF-κB signaling, and ↓NLRP3 | [18] |
Wu-Mei-Wan | DSS-induced C57BL/6 mice model of colitis in vivo | A mixture of Coptidis rhizoma, Phellodendri chinensis cortex, Zingiberis rhizoma recens, Typhonii rhizoma, Zanthoxyli, Mume fructus, and Ginseng radix rhizoma | Doses of 5.4, 2.7, and 1.35 g/mL were given orally by gavage, and each mouse was given 0.2 mL in vivo | ↑Intestinal inflammation, ↑intestinal mucosa damage, ↑colon necrosis, ↑epithelial defects, ↓colon length, ↑infiltration of inflammatory cells, and ↑crypt injury | ↓NLRP3, ↓Notch-1, ↓NF-κBp65, ↓p-NF-κBp65, ↓NLRP3, ↓IL-18, ↓IL-6, ↓IL-1β, ↓co-expression of Notch-1, ↓IL-18, ↓TNF-α, ↓macrophages infiltration, and ↓IRF5 | [19] |
Kui Jie Tong | DSS-induced mice model of colitis in vivo | A mixture of Verbenae herb, Euphorbiae Humifusae herb, Arecae semen, Aurantii fructus immaturus and Angelicae sinensis radix | 10 mL/kg/day orally twice daily for 7 days | ↑DAI, ↑intestinal inflammation, ↓colon length, ↓body weight, ↑mucosal injury, ↑crypt architecture loss, and hematochezia | ↓NLRP3, ↓ASC, ↓caspase-1, ↓NEK7, ↓pyroptosis, ↓IL-1β, ↓IL-18, ↓IL-33, and ↓GSDMD | [20] |
Piper nigrum | DSS-induced BALB/c mice model of colitis in vivo | Seed extract | 50 and 100 mg/kg/day of Viphyllin for 14 days before DSS treatment | ↑DAI, ↑intestinal inflammation, ↓colon length, ↓body weight, ↑mucosal injury, ↑crypt architecture loss, and ↓goblet cells/epithelial cells | ↓TNF-α, ↓IL-1β, ↓NLRP3, ↑claudin-1, ↑occludin, ↓OS, ↑SOD, ↑CAT, ↑GSH, and ↓MDA | [21] |
Morus macroura Miq. | AA-induced mice model of colitis in vivo | Whole fruit extract | 100, 200, or 300 mg/kg/day orally given for 7 days before induction | ↑DAI, ↑intestinal inflammation, ↓colon length, ↑mucosa injury, and ↓intestinal crypts | ↑miRNA-223, ↓TNFα, ↓NFκB-p65, ↓caspase-1, ↓NLRP3, ↑SOD, ↑GSH, ↓MDA, ↓IL-1β, ↓TNF-α, ↓IL-18, ↓ROS, and ↓nitrate/nitrite | [22] |
Patrinia villosa | TNBS-induced Sprague Dawley rat model of colitis in vivo | Dry leaf extract | 21, 43, 64 g/kg/day orally for 14 days | ↓Body weight, ↑diarrhea, ↓colon length, ↑ulceration, ↑rectal bleeding, ↑unformed feces, ↑blood feces, ↑DAI, ↑infiltration of inflammatory cells, ↓goblet cells, and ↓mucous epithelium, | ↓IL-1β, ↓TNF-α, ↓IL-6, ↓NF-κB, ↓p-NF-κB, ↓NLRP3, and ↓caspase-1 | [23] |
Ficus pandurata Hance | DSS-induced C57BL/6 mice model of colitis in vivo | Stem, leaf, root, and whole plant extract | 24 and 48 g/kg/day orally for 12 days orally | ↓Body weight, ↑diarrhea, ↑rectal bleeding, ↓mucosal layer, ↓goblet cells, ↑muscular layer, ↑intestinal permeability, and ↑inflammatory cells infiltration. | ↓TLR4 expression, ↓MyD88 expression, ↓NF-κB expression, ↓phospho-NF-κB expression, ↑T-SOD, ↑GSH-Px, ↓MDA, ↓Keap1, ↓NOX2, ↓p22-phox, ↑Nrf2, ↑HO1, and ↑NQO1 | [24] |
Agrimonia pilosa | DSS-induced C57BL/6 mice model of colitis in vivo | - | 3 and 6 g/kg/day orally for 8 days | ↓Body weight, ↓colon length, ↑neutrophil infiltration, ↑crypt loss, ↓goblet cell, and ↑submucosal edema | ↓TNF-α, ↓IL-6, ↓IL-1β, ↓p65, ↓p-p65, ↓NLRP3, ↓ASC, ↓caspase-1, ↓NF-kB, and ↓NLRP3 | [25] |
Vitis vinifera | DSS-induced C57BL/6 mice model of colitis in vivo | Seed proanthocyanidin extract | 50 mg/kg/day orally for 21 days | ↓Body weight, ↓colon length, ↑DAI, ↑epithelial destruction, ↑crypt abscess, ↑goblet cell, ↑submucosal edema, and ↑inflammatory cells infiltration | ↓TNF-α, ↓IL-1β, ↑IL-10, ↓TNF-α mRNA, ↓IL-1β mRNA, ↑IL-10 mRNA, ↓NLRP3 mRNA, ↓ASC mRNA, ↓caspase-1 mRNA, ↓MDA, ↑SOD, and ↑GSH | [26] |
Lycium ruthenicum Murray | DSS-induced C57BL/6 mice model of colitis in vivo | Dry fruit extract | 500 mg/kg/day orally for 14 days | ↓Body weight, ↑DAI score, ↓colon length, ↓goblet cell, ↓crypt, ↑mucosa ulceration, ↑inflammatory cells infiltration, ↑necrosis, ↑ cell apoptosis, and ↑inflammatory infiltration | ↓TNF-α, ↓IL-1β, ↓IL-6, ↓IL-17A, ↓IFN-γ, ↑IL-10, ↓TLR4, ↓p-IκB, ↓NF-κB p65, ↓p-p65, ↓c-Jun, ↓p-STAT3, ↓COX-2, ↓iNOS, ↓NO, ↓PGE2, ↓p38 phosphorylation, ↓ERK phosphorylation, ↓JNK phosphorylation, ↓NLRP3, ↓ASC, ↓caspase-1, ↓IL-1β, ↓ROS, ↓MDA, ↑CAT, ↑SOD, and ↑GSH | [27] |
Compounds/Phytochemicals | In Vivo/In Vitro Model | Effective Doses/ Concentrations | Related Clinical Features of IBD | Related Molecular Mechanisms in Regulation of NLRP3 in IBD | Reference |
---|---|---|---|---|---|
Artemisitene | LPS, nigericin or ATP stimulated J774A.1 cells and LPS, nigericin, NLRC4 and AIM2 stimulated BMDMs cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo. | 0.1, 1, or 5 μM incubated for 2 h or 24 h in vitro and 5, 15, or 45 mg/kg orally for 10 days starting from 3 days before colitis induction in vivo. | ↑Inflammation and ↑OS in vitro and ↓colon length, ↑fecal occult blood, ↓body weight, ↑mucosal damages, ↑inflammatory infiltration, ↑goblet cell depletion, and ↑crypt architecture loss in vivo | ↓IL-1β, ↓NLRP3-mediated IL-1β secretion, ↓NF-κB-dependent TNF-α activation, ↓pro-caspase-1 cleavage, ↓interaction between NLRP3 and ASC, ↓ASC oligomerization, ↓ASC specks, ↓NLRP3-ASC binding, ↓NLRC4, ↓AIM2 and ↓IL-6 in vitro and ↓IL-1β, ↓TNF-α and ↓IL-6 in vivo | [28] |
Morroniside | LPS-stimulated NCM460 cells in vitro | 10, 30, 60, 100, or 200 µmol/L for 24 h in vitro | ↑Inflammation and ↑cell injury in vitro | ↓Bax, ↑Bcl-2 expression, ↓TNF-α, IL-1β and IL-6 expressions, ↑SOD and T-AOC expressions, ↓MDA and ↓MPO expressions, ↓NLRP3, ↓p-p65–p65 expression and ↓p-IκBα–IκBα expression | [29] |
Protopine | LPS-stimulated NCM460 cells in vitro | 0, 5, 10, or 20 μM in vitro | ↑Inflammation and ↑apoptosis and in vitro | ↓Bax, ↑Bcl-2, ↓TNF-α, ↓IL-1β, ↓IL-6, ↑SOD, ↑T-AOC, ↓MDA, ↓MPO, ↓ROS, ↓intracellular Ca2+ concentration, ↑mitochondrial membrane potential, ↓NLRP3, ↓p-IκBα/IκBα and ↓p-P65/P65 | [30] |
Ferulic acid | TNF-α-stimulated HIMECs cells in vitro and TNBS-induced Sprague-Dawley mice model of colitis in vivo | 125, 250, or 500 μM incubated for 2 h in vitro and 10, 20, or 250 mg/kg/day rectally for 14 days in vivo | ↓Cell proliferation and ↑cell apoptosis in vitro and ↓colon length, ↑inflammatory cells infiltration and ↑intestinal necrosis in vivo | ↓IL-1β, ↓IL-6, ↓IL-12, ↓caspase-1, ↓caspase-3, ↓Bcl-2 and ↓TXNIP/NLRP3 in vitro and ↓IL-1β, ↓IL-6, ↓IL-12, ↓caspase-1, ↓caspase-3 and ↓TXNIP and ↓NLRP3 in vivo | [31] |
Artemisinin analog SM934 | TNF-α-stimulated Caco-2 and HT-29 cells in vitro and TNBS-induced C57BL/6 mice model of colitis in vivo | 10 μM incubated for 24 h and 10 μM incubated for 1 h in pre-treatment and 24 h or 72 h after treatment in vitro and 10 mg/kg/day orally from day 3 to day 7 in vivo | ↑Inflammation and ↑OS in vitro and ↓body weight, ↓colon length, ↑epithelium erosion, ↑thickened intestinal wall, ↓crypt integrity, ↑mucosal injury, ↑inflammatory cells infiltration and ↑abnormal epithelial proliferation in vivo | ↓c-Casp3, ↓NLRP3, ↑E-cadherin, ↑ZO-1, ↑occludin, ↓claudin-2, ↓ASC, ↓c-Casp1, ↓IL-18, ↓p-NF-κB, ↓p-p38, ↓p-ERK, ↓p-JNK, ↓GSDMD, ↓GSDMD-F and ↓GSDMD-N in vitro and ↓c-Casp3, ↓Bax/Bcl-2, ↓c-Casp9, ↓NLRP3, ↓ASC, ↓c-Casp1, ↓GSDMD, ↓L-18, ↓HMGB1, ↓NF κB, ↓ERK, ↓p38 and ↓JNK in vivo | [32] |
Betaine | DSS-induced C57BL/6J mice model of colitis in vivo | 600 mg/kg/day intraperitoneally for 7 days | ↓Body weight, ↑DAI, ↑inflammatory cells infiltration, ↓goblet cells and ↓crypts integrity | ↑Occludin, ↑ZO-1, ↓MDA, ↓MPO, ↓NOS-related enzymes, ↓COX2, ↑Nrf2, ↑CAT, ↑SOD, ↓NLRP3, ↓ASC, ↓c-Casp1 and ↓N-terminal GSDMD | [33] |
N-Palmitoyl-D-Glucosamine | DNBS-induced C57BL/6J mice model of colitis in vivo | 200 µL/day of 30 or 100 mg/kg of a PGA suspension orally from days 1 to 6 | ↑DAI, ↓colon length, ↑spleen weight, ↑intestinal neutrophil infiltration and ↓intestinal mucosa integrity | ↑Occludin, ↑ZO-1, ↓TLR-4, ↓NLRP3, ↓iNOS, ↓IL-1β and PGE2 expressions | [34] |
Moronic acid | LPS/IFN-γ-stimulated intestinal macrophages in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 10 or 20 μM incubated for 6 h in vitro and 5 or 10 mg/kg/day orally in vivo | ↑Inflammatory phenotype in vitro and ↑inflammatory cells infiltration in vivo | ↓TNF-α, ↓IL-1β, ↓IL-6, ↓ROS, ↓CD11, ↓NF-kB (P50), ↓NLRP3, ↓p-P50 and ↓M1 macrophage polarization in vitro and ↓ROS, ↓CD11, ↓TNF-α, ↓IL-1β, ↓IL-6, ↑ZO 1, ↓NLRP3 and ↓p-P50 in vivo | [35] |
Munronoid I | LPS/ATP-stimulated mouse peritoneal macrophages and BMDMs cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 0–50 mM incubated for 24 h in vitro and 10 mg/kg/day orally for 7 days in vivo | ↑Cell injury and ↑formation of membrane pores in vitro and ↓body weight, ↑DAI, ↓colon length, ↑colon erythema, ↓epithelial cells integrity, ↑crypts distortion and ↑inflammatory cells infiltration in vivo | ↓Caspase-1 p20, ↓IL-1β, ↓IL-18, ↓NLRP3 and ↓GSDMD p30 in vitro and ↓NLRP3, ↓cleaved caspase-1 (p20), ↓pyroptosis-related protein cleaved GSDMD (p30), ↓IL-6, ↓TNF-α, ↓IL-1β and ↓IL-18 in vivo | [36] |
Sanguinarine | LPS-induced THP-1 cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 0.25, 0.5, and 1.0 μM incubated for 1 h in vitro and 5 and 10 mg/kg twice daily orally for 7 days in vivo | ↑Inflammation and ↑OS in vitro and ↓body weight, ↑DAI, ↓colon length, ↑spleen size, ↑irregular glands, ↑inflammatory cells infiltration, ↑TNF-α, ↑IFN-γ, ↑ IL-1β, ↑IL-6, ↑IL-13, ↑ IL-18, ↓IL-4, ↓IL-10 in vivo | ↓NLRP3, ↓caspase-1, ↓IL-1β, ↓ROS and ↓IL-18 in vitro and ↓NLRP3, ↓caspase-1, ↓IL-1β, ↓TNF-α, ↓IFN-γ, ↓IL-1β, ↓IL-6, ↓IL-13, ↓IL-18, ↑IL-4 and ↑IL-10 in vivo | [37] |
8-Oxypalmatine Oxidative metabolite | DSS-induced BALB/c mice model of acute colitis in vivo | 12.5, 25, or 50 mg/kg/day of OPAL orally for 14 days | ↑Diarrhea, ↓body weight, ↑rectal bleeding, colon shortening, ↑bloody stools, ↑inflammatory cell infiltration, ↑crypt damage, ↑epithelial cell destruction, and mucosal thickening | ↓NLRP3, ↓ASC, and ↓Caspase-1 mRNA, ↓TNF-α, IL-1β, IFN-γ, IL-17A, IL-6 pro-inflammatory cytokines expression and secretion, ↑IL-10 expression and secretion, ↑SOD, GSH, CAT, GSH-Px antioxidant proteins expression and secretion, ↑Nrf2 and ↑HO-1 expression | [38] |
Quercetin | LPS-induced RIMVECs cells in vitro | 300, 160, 80, 40, 20, 10, 5, 2.5, and 1.25 μM incubated for 12 h | ↑Inflammation | ↓TLR4, ↓NLRP3, ↓caspase-1, ↓GSDMD, ↓IL-1β, ↓IL-18, ↓IL-6, and ↓TNF-α | [39] |
Picroside II | LPS-stimulated THP-1 treated cells in vitro and DSS-induced C57BL/6 mice model colitis in vivo | 1, 5, 15, 30, 60, 100, or 150 μM incubated for 1 h in vitro and 5 or 10 mg/kg/day intraperitoneally for 7 days in vivo | ↑Inflammation in vitro and ↑body weight loss, ↑tissue damage, ↑mucosal erosion and ulceration, and ↑inflammatory cell infiltration in vivo | ↓NLRP3, ASC, and Caspase-1 proteins and ↓NF-κB signaling pathway in vitro, ↓NLRP3, ASC, and caspase-1 proteins in vivo and ↓TNF-a, ↓IL-6, and ↓IL-1β pro-inflammatory cytokines in vitro and in vivo | [40] |
Hydroxytyrosol | DSS-induced Kunming mice model of colitis in vivo | 40 mg/kg/day orally for 14 days | ↑Body weight loss, ↑colon shortening, ↑colonic morphologic damage, ↑desquamative epithelial cells in the lumen, ↑diffuse bleeding, ↓diversity levels of gut microbiota, and inflammatory cells infiltration | ↓NLRP3, ASC, and Caspase-1 mRNA transcription, ↓NLRP3 inflammasome activation, ↓TNF-α, IL-1β, and IL-18 pro-inflammatory cytokines expression and secretion, ↓oxidative profiles (↓MPO, ↓MDA, ↑SOD, ↑GSH-Px, and ↑CAT enzymes expression), and ↓apoptotic-related proteins expression | [41] |
SCLP | DSS-induced BALB/c mice model of acute colitis in vivo | 250 and 500 mg/kg/day orally for 14 days | ↑Body weight loss, ↓daily food intake, ↑colonic shortening, ↓goblet cells, ↑mucosal erosion, ↑cryptdamage and ↑infiltration of neutrophils and mononuclear cells | ↓NLRP3, ASC, and Caspase-1 mRNA transcription and protein expression, ↓Gal-3 expression, ↓IL-6, TNF-α, and IL-1β pro-inflammatory cytokines expression and release, and ↓MPO expression | [42] |
Bryodulcosigenin | TNF-α-stimulated NCM460 treated cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 10 μM incubated for 48 h in vitro and 10 mg/kg/day orally for 64 days in vivo | ↑Inflammation in vitro and ↑body weight loss, ↑colonic shortening, ↑infiltration of inflammatory cells, ↑deformation of the crypt epithelium, and ↑necrosis of the crypt in the mucosal layer in vivo | ↓NLRP3 inflammasome activation and ↓IL-1β and IL-17 mRNA expressions, ↓caspases cleavage and ↓Bax/Bcl-2 in vitro and ↓NLRP3 inflammasome activation, ↓IL-10, IL-1β, IL-17, and IL-6 mRNA expressions and ↑occludin and ↑ZO-1 expressions in vivo | [43] |
Dioscin | DSS-induced C57BL/6 mice model of acute colitis in vivo | 40 mg/kg/day orally for 7 days | ↑Colon shortening, ↑intestinal damage, ↑crypt shrinkage, and ↑inflammatory cells infiltration | ↓NLRP3 inflammasome activation, ↓MAPKp38, ↓NF-κBp65 expression, ↓TNF-α and IL-1β pro-inflammatory expression, ↓M1 macrophage infiltration, ↓CD80 and ↑CD206 expressions and ↑IL-10 anti-inflammatory expression | [44] |
Rosmarinic Acid | DSS-induced C57BL/6 mice model of colitis in vivo | 5, 10, or 20 mg/kg/day orally for 7 days | ↑Body weight loss, ↑colon shortening, ↑mucosal damage, ↑massive inflammatory infiltrate, ↑ulceration of the mucous epithelium, and ↓goblet cells | ↓NLRP3 inflammasome activation, ↓NLRP3, ASC and caspase-1 expressions, ↓TNF-α, ↓MPO and ↓IL-1β expressions and ↑Nrf2 and ↑HO-1 expressions | [45] |
Mogrol | PMA-stimulated THP-1 treated cells and LPS-stimulated THP-M treated cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 1 or 10 µM incubated for 24 h in vitro and 1 or 5 mg/kg/day orally for 7 days in vivo | ↑Inflammation in vitro and ↑body weight loss, ↑colonic shortening, ↑crypt epithelium ↑distortion, and ↑inflammatory cells infiltration in vivo | ↓NLRP3 inflammasome activation and ↓caspase-1 expression in vitro and ↓NLRP3 inflammasome activation, ↓NLRP3 mRNA, ↓NLRP3 activation, ↓IκBα degradation, ↓IL-1β and IL-17 pro-inflammatory cytokines expression, ↑IL-10 expression, and ↑occludin and ↑ZO-1 expressions in vivo | [46] |
Sinapic Acid | DSS-induced Kunming mice model of colitis in vivo | 10 or 50 mg/kg/day orally for 7 days | ↑Diarrhea, ↑gross bleeding, ↑body weight loss, ↑colon weight, ↑colon shortening, ↑disruption of the crypt epithelium, ↑mucosal damage and ↑inflammatory cells | ↓NLRP3 inflammasome activation, ↓NLRP3, ASC and caspase-1 expressions, ↓TNF-α, IL-1β, IL-6, IL-8, IL-17α and ↓IFN-γ pro-inflammatory cytokines expression, ↑IL-4 and IL-10 anti-inflammatory cytokines expression, ↑SOD, GSH-Px, CAT and GSH expressions and ↓MDA and ↑claudin-1, occludin and ZO-1 proteins expression | [47] |
Evodiamine | Human THP-1 cells stimulated by LPS in vitro and DSS-induced C57BL/6J mice model of colitis in vivo | 10 μM incubated for 1 h in vitro and 20, 40, and 60 mg/kg/day orally for 10 days in vivo | ↑Inflammation in vitro and ↓body weight, ↓colon length, ↑loss of tissue structure, ↑mucosal damage, ↑necrosis, ↑edema and ↑infiltration of inflammatory cells in vivo | ↓IL-1β, ↓IL-18, ↓caspase1, ↓ASC and ASC oligomers, ↓P62 and ↑LC3 in vitro, ↓MPO, ↓IL-1β, ↓IL-18, ↓caspase1, ↓ASC, ↓p-P65NFκB, ↓p-IκB ↓P62 and ↑LC3 in vivo and ↓NLRP3 inflammasome assembly both in vivo and in vitro | [48] |
Geniposide | LPS-stimulated BMDM cells and RAW264.7 macrophages in vitro and DSS-induced C57BL/6J mice model of colitis in vivo | 20, 50, and 100 μM incubated for 4 h in vitro and 25, 50 and 100 mg/kg/day orally for 7 days in vivo | ↑Inflammation in vitro and ↑ulcer, ↓colon length and ↓histochemical score in vivo | ↓IL-1β and ↓caspase-1 in vitro, ↓MPO, ↓IL-1β, ↓IL-17, ↓TNF-α, ↓IFN-γ, ↓caspase-1, ↓NOS2 mRNA, ↓Arg1 mRNA in vivo and ↓NLRP3 inflammasome pathway activation in both in vitro and in vivo | [49] |
Chlorogenic Acid | LPS/ATP-induced RAW264.7 macrophages in vitro and DSS-induced BALB/c mice model of colitis in vivo | 0.5 µg/mL CGA incubated for 15 h in vitro and 20 and 40 mg/kg/day orally for 7 days in vivo | ↑Inflammation in vitro and ↓body weight, ↓colon length, ↑loss of crypts, ↑bloody diarrhea and ↑inflammatory cells infiltration in vivo | ↓IL-1β, ↓IL-18, ↓NLRP3, ↓ASC, ↓caspase1 p45, ↓caspase1 p20, ↓NF-κB and ↓MiR-155 in vitro and ↓IL-1β, ↓IL-18, ↓NLRP3, ↓ASC, ↓caspase1 p45, ↓caspase1 p20, ↑NF-κB and ↓MiR-155 in vivo | [50] |
Resveratrol | Radiation-induced C57/6 mice model of colitis in vivo | 50, 100, and 200 mg/kg/day orally for 7 days before irradiation and then 14 days after irradiation. | ↓Body weight, ↑tissue damage, ↑inflammatory cells infiltration and ↑mucosal edema | ↓NLRP3, ↓Sirt1, ↓IL-1β and ↓TNF-α | [51] |
Ginsenoside Rk3 | DSS-induced C57BL/6 mice model of colitis in vivo | 20, 40, and 60 mg/kg/day orally for 14 days | ↓Body weight, ↑DAI, ↓colon length, ↑inflammatory cells infiltration and ↓normal colon structure | ↓NLRP3, ↓ASC, ↓caspase1, ↓MPO, ↓iNOS, ↓IL-1β, ↓TNF-α, ↓IL-6, ↑claudin 1, ↑occludin and ↑ZO-1 | [52] |
Physalin B | LPS-stimulated RAW 264.7 macrophages in vitro and DSS-induced BALB/c mice model of acute colitis in vivo | 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 µM incubated for 4 h in vitro and 10 and 20 mg/kg/day intraperitonially for 7 days in vivo | ↑Inflammation in vitro and ↑DAI, ↓colon length, ↑inflammatory cells infiltration and ↓colon architecture in vivo | ↓IL-1β, ↓IL-6 and ↓TNF-α in vitro and ↓NLRP3, ↓ASC, ↓IL-1β, ↓MPO, ↓TNF-α, ↓IL-6, ↓NF-κB activation cascade, ↓STAT3 and ↓β-arrestin 1 signaling pathway in vivo | [53] |
Oroxindin | LPS-stimulated human THP-1 cells in vitro and DSS-induced C57BL/6 mice model of acute colitis in vivo | 12.5, 25, and 50 μM incubated for 2 h in vitro and 12.5, 25, and 50 mg/kg/day via gastric intubation for 10 days in vivo | ↑Inflammation in vitro and ↓body weight, ↓colon length, ↑spleen index, ↑white blood cell count, ↑colonic inflammation and ↑ulceration in vivo | ↓NLRP3, ↓IL-1β, ↓caspase1 and ↓IL-18 in vtiro and ↓NLRP3, ↓IL-1β, ↓caspase1 and ↓IL-18 in vivo | [54] |
Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA | Human colon cancer LS174T and Caco2 cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 1 µM incubated for 24 h in vitro and 200 mg/kg/day orally for 9 days in vivo | ↑Inflammation in vitro and ↓body weight, ↓colon length, ↑bleeding of anus, ↑tissue damage, ↑ulcerative areas and ↑epithelial necrosis in vivo | ↓NLRP3, ↑Nrf2, ↑AKR1C, ↑NQO1, ↑GSH, ↓TNF-α and ↓IL-6 in vitro and ↓NLRP3, ↑Nrf2, ↑AKR1C, ↑NQO1, ↑GSH, ↓TNF-α and ↓IL-6 in vivo | [55] |
Curcumin | LPS-primed peritoneal macrophages in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 0, 10, 25, and 50 μM incubated for 24 h in vitro and 100 mg/kg/day intraperitonially for 7 days in vivo | ↑Inflammation in vitro and ↑DAI, ↓body weight, ↓colon length, ↑inflammatory cells infiltration and ↑tissue damage in vivo | ↓IL-1β, ↑K+ efflux, ↓ROS production and ↓cathepsin B leakage in vitro and ↓NLRP3, ↓IL-1β, ↓ASC, ↑K+ efflux, ↓ROS production, ↓cathepsin B leakage, ↓caspase1, ↓MPO, ↓MCP-1 and ↓IL-6 in vivo | [56] |
Dimethyl fumarate | LPS-stimulated human THP-1 cells in vitro and DSS-induced C57BL/6 mice model of colitis in vivo | 20 μM incubated for 12 h in vitro and 30 and 60 mg/kg/day orally for 10 days in vivo | ↑Inflammation in vitro and ↓body weight, ↓colon length, ↑blood loss, stool consistency alterations, ↑DAI, ↑inflammatory cells infiltration, ↑tissue damage, ↑distortion of crypts and ↑loss of glandular epithelium in vivo | ↓NLRP3, ↓IL-1β, ↓caspase1, ↓ASC, ↑Nrf2 and ↓ROS in vitro and ↓NLRP3, ↓IL-1β, ↓caspase1, ↓TNF-α, ↓IL-6, ↓MPO, ↓iNOS and ↑Nrf2 in vivo | [57] |
3. Overview of the Included Pre-Clinical Studies
4. IBD, NLRP3 Inflammasome, and Implications of Plant-Derived Interventions
4.1. Physiopathology of Ulcerative Colitis
4.2. Physiopathology of Crohn’s Disease
4.3. NLRP3 Inflammasome: Implications for IBD
4.4. Medicinal Plants TARGETING NLRP3 inflammasome
4.4.1. Xianglian Pill
4.4.2. Litsea cubeba
4.4.3. Artemisia anomala
4.4.4. Schisandra chinensis (Turcz.) Baill
4.4.5. Wu-Mei-Wan
4.4.6. Kui Jie Tong
4.4.7. Piper nigrum
4.4.8. Morus macroura Miq
4.4.9. Patrinia villosa
4.4.10. Ficus pandurata Hance
4.4.11. Agrimonia pilosa
4.4.12. Vitis vinifera
4.4.13. Lycium ruthenicum Murray
4.5. Phytochemicals That Target NLRP3 Inflammasome
4.5.1. Artemisitene
4.5.2. Morroniside
4.5.3. Protopine
4.5.4. Ferulic Acid
4.5.5. Artemisinin Analog SM934
4.5.6. Betaine
4.5.7. N-Palmitoyl-D-glucosamine
4.5.8. Moronic Acid
4.5.9. Munronoid I
4.5.10. Sanguinarine
4.5.11. 8-Oxypalmatine
4.5.12. Quercetin
4.5.13. Picroside II
4.5.14. Hydroxytyrosol
4.5.15. SCLP
4.5.16. Dioscin
4.5.17. Bryodulcosigenin
4.5.18. Rosmarinic Acid
4.5.19. Mogrol
4.5.20. Sinapic Acid
4.5.21. Evodiamine
4.5.22. Geniposide
4.5.23. Chlorogenic Acid
4.5.24. Resveratrol
4.5.25. Ginsenoside Rk3
4.5.26. Physalin B
4.5.27. Oroxindin
4.5.28. Resveratrol Analog 2-Methoxyl-3,6-dihydroxyl-IRA
4.5.29. Curcumin
5. Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, V.; Gautam, D.N.S.; Radu, A.F.; Behl, T.; Bungau, S.G.; Vesa, C.M. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants 2022, 11, 1359. [Google Scholar] [CrossRef]
- Dai, W.; Long, L.; Wang, X.; Li, S.; Xu, H. Phytochemicals targeting Toll-like receptors 4 (TLR4) in inflammatory bowel disease. Chin. Med. 2022, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Baradaran Rahimi, V.; Rahmanian Devin, P.; Askari, V.R. Boswellia serrata inhibits LPS-induced cardiotoxicity in H9c2 cells: Investigating role of anti-inflammatory and antioxidant effects. Toxicon 2023, 229, 107132. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.B.; Rahali, F.Z.; Nehme, R.; Falleh, H.; Jemaa, M.B.; Sellami, I.H.; Ksouri, R.; Bouhallab, S.; Ceciliani, F.; Abdennebi-Najar, L.; et al. Anti-inflammatory activity of essential oils from Tunisian aromatic and medicinal plants and their major constituents in THP-1 macrophages. Food Res. Int. 2023, 167, 112678. [Google Scholar] [CrossRef]
- Sardou, H.S.; Vosough, P.R.; Abbaspour, M.; Akhgari, A.; Sathyapalan, T.; Sahebkar, A. A review on curcumin colon-targeted oral drug delivery systems for the treatment of inflammatory bowel disease. Inflammopharmacology 2023, 31, 1095–1105. [Google Scholar] [CrossRef]
- Laurindo, L.F.; de Maio, M.C.; Minniti, G.; de Góes Corrêa, N.; Barbalho, S.M.; Quesada, K.; Guiguer, E.L.; Sloan, K.P.; Detregiachi, C.R.P.; Araújo, A.C.; et al. Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef]
- Haneishi, Y.; Furuya, Y.; Hasegawa, M.; Picarelli, A.; Rossi, M.; Miyamoto, J. Inflammatory Bowel Diseases and Gut Microbiota. Int. J. Mol. Sci. 2023, 24, 3817. [Google Scholar] [CrossRef]
- Felice, C.; Dal Buono, A.; Gabbiadini, R.; Rattazzi, M.; Armuzzi, A. Cytokines in Spondyloarthritis and Inflammatory Bowel Diseases: From Pathogenesis to Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 3957. [Google Scholar] [CrossRef]
- Zhen, Y.; Zhang, H. NLRP3 Inflammasome and Inflammatory Bowel Disease. Front. Immunol. 2019, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koca-Ünsal, R.B.; Şehirli, A.; Sayıner, S.; Aksoy, U. Relationship of NLRP3 inflammasome with periodontal, endodontic and related systemic diseases. Mol. Biol. Rep. 2022, 49, 11123–11132. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Santos, A.; Carvalho, A.C.A.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Lu, Q.; Li, P.; Zhu, J.; Jiang, J.; Zhao, T.; Hu, Y.; Ding, K.; Zhao, M. Xianglian Pill attenuates ulcerative colitis through TLR4/MyD88/NF-κB signaling pathway. J. Ethnopharmacol. 2023, 300, 115690. [Google Scholar] [CrossRef]
- Wong, W.T.; Wu, C.H.; Li, L.H.; Hung, D.Y.; Chiu, H.W.; Hsu, H.T.; Ho, C.L.; Chernikov, O.V.; Cheng, S.M.; Yang, S.P.; et al. The leaves of the seasoning plant Litsea cubeba inhibit the NLRP3 inflammasome and ameliorate dextran sulfate sodium-induced colitis in mice. Front. Nutr. 2022, 9, 871325. [Google Scholar] [CrossRef]
- Hong, F.; Zhao, M.; Xue, L.L.; Ma, X.; Liu, L.; Cai, X.Y.; Zhang, R.J.; Li, N.; Wang, L.; Ni, H.F.; et al. The ethanolic extract of Artemisia anomala exerts anti-inflammatory effects via inhibition of NLRP3 inflammasome. Phytomedicine 2022, 102, 154163. [Google Scholar] [CrossRef]
- Bian, Z.; Qin, Y.; Li, L.; Su, L.; Fei, C.; Li, Y.; Hu, M.; Chen, X.; Zhang, W.; Mao, C.; et al. Schisandra chinensis (Turcz.) Baill. Protects against DSS-induced colitis in mice: Involvement of TLR4/NF-κB/NLRP3 inflammasome pathway and gut microbiota. J. Ethnopharmacol. 2022, 298, 115570. [Google Scholar] [CrossRef]
- Yan, S.; Wang, P.; Wei, H.; Jia, R.; Zhen, M.; Li, Q.; Xue, C.; Li, J. Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. Phytomedicine 2022, 105, 154362. [Google Scholar] [CrossRef]
- Xue, S.; Xue, Y.; Dou, D.; Wu, H.; Zhang, P.; Gao, Y.; Tang, Y.; Xia, Z.; Yang, S.; Gu, S. Kui Jie Tong Ameliorates Ulcerative Colitis by Regulating Gut Microbiota and NLRP3/Caspase-1 Classical Pyroptosis Signaling Pathway. Dis. Markers 2022, 2022, 2782112. [Google Scholar] [CrossRef]
- Sudeep, H.V.; Venkatakrishna, K.; Raj, A.; Reethi, B.; Shyamprasad, K. Viphyllin™, a standardized extract from black pepper seeds, mitigates intestinal inflammation, oxidative stress, and anxiety-like behavior in DSS-induced colitis mice. J. Food Biochem. 2022, 46, e14306. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.M.; Darwish, S.F.; El Shaffei, I.; Elmongy, N.F.; Fahmy, N.M.; Afifi, M.S.; Abdel-Latif, G.A. Morus macroura Miq. Fruit extract protects against acetic acid-induced ulcerative colitis in rats: Novel mechanistic insights on its impact on miRNA-223 and on the TNFα/NFκB/NLRP3 inflammatory axis. Food Chem. Toxicol. 2022, 165, 113146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Ma, X.; Xu, B.; Chen, L.; Chen, C.; Liu, W.; Liu, Y.; Xiang, Z. Therapeutic effect of Patrinia villosa on TNBS-induced ulcerative colitis via metabolism, vitamin D receptor and NF-κB signaling pathways. J. Ethnopharmacol. 2022, 288, 114989. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Zhan, X.; Peng, W.; Liu, X.; Peng, W.; Mei, Q.; Hu, X. Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity. Oxid. Med. Cell. Longev. 2021, 2021, 2617881. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, M.; Sui, J.; Zhou, Y.; Chen, W. Protective mechanisms of Agrimonia pilosa Ledeb in dextran sodium sulfate-induced colitis as determined by a network pharmacology approach. Acta Biochim. Biophys. Sin. 2021, 53, 1342–1353. [Google Scholar] [CrossRef]
- Sheng, K.; Zhang, G.; Sun, M.; He, S.; Kong, X.; Wang, J.; Zhu, F.; Zha, X.; Wang, Y. Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation. Food Funct. 2020, 11, 7817–7829. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Yang, L.; Park, H.J.; Li, J. Dietary intake of Lycium ruthenicum Murray ethanol extract inhibits colonic inflammation in dextran sulfate sodium-induced murine experimental colitis. Food Funct. 2020, 11, 2924–2937. [Google Scholar] [CrossRef]
- Hua, L.; Liang, S.; Zhou, Y.; Wu, X.; Cai, H.; Liu, Z.; Ou, Y.; Chen, Y.; Chen, X.; Yan, Y.; et al. Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitis. Int. Immunopharmacol. 2022, 113, 109431. [Google Scholar] [CrossRef]
- Zhang, S.; Lai, Q.; Liu, L.; Yang, Y.; Wang, J. Morroniside alleviates lipopolysaccharide-induced inflammatory and oxidative stress in inflammatory bowel disease by inhibiting NLRP3 and NF-κB signaling pathways. Allergol. Immunopathol. 2022, 50, 93–99. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; OuYang, C.; Wu, X.; Xie, Y.; Xie, J. Protopine alleviates lipopolysaccharide-triggered intestinal epithelial cell injury through retarding the NLRP3 and NF-κB signaling pathways to reduce inflammation and oxidative stress. Allergol. Immunopathol. 2022, 50, 84–92. [Google Scholar] [CrossRef]
- Yu, S.; Qian, H.; Zhang, D.; Jiang, Z. Ferulic acid relieved ulcerative colitis by inhibiting the TXNIP/NLRP3 pathway in rats. Cell Biol. Int. 2022, 47, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Yan, Y.; Zhu, F.; Yang, X.; Qi, Q.; Yang, F.; Hao, T.; Lin, Z.; He, P.; Zhou, Y.; et al. Artemisinin analog SM934 alleviates epithelial barrier dysfunction via inhibiting apoptosis and caspase-1-mediated pyroptosis in experimental colitis. Front. Pharmacol. 2022, 13, 849014. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, D.; Mao, M.; Liu, W.; Wang, Y.; Liang, Y.; Cao, W.; Zhong, X. Betaine Ameliorates Acute Sever Ulcerative Colitis by Inhibiting Oxidative Stress Induced Inflammatory Pyroptosis. Mol. Nutr. Food Res. 2022, 66, e2200341. [Google Scholar] [CrossRef] [PubMed]
- Palenca, I.; Seguella, L.; Del Re, A.; Franzin, S.B.; Corpetti, C.; Pesce, M.; Rurgo, S.; Steardo, L.; Sarnelli, G.; Esposito, G. N-Palmitoyl-D-Glucosamine Inhibits TLR-4/NLRP3 and Improves DNBS-Induced Colon Inflammation through a PPAR-α-Dependent Mechanism. Biomolecules 2022, 12, 1163. [Google Scholar] [CrossRef]
- Ruan, S.; Zha, L. Moronic acid improves intestinal inflammation in mice with chronic colitis by inhibiting intestinal macrophage polarization. J. Biochem. Mol. Toxicol. 2022, 36, e23188. [Google Scholar] [CrossRef]
- Ma, X.; Di, Q.; Li, X.; Zhao, X.; Zhang, R.; Xiao, Y.; Li, X.; Wu, H.; Tang, H.; Quan, J.; et al. Munronoid I Ameliorates DSS-Induced Mouse Colitis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Via Modulation of NLRP3. Front. Immunol. 2022, 13, 853194. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Wang, Q.; Xu, W.; Zhao, Q.; Xu, N.; Hu, X.; Ye, Z.; Yu, S.; Liu, J.; et al. Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice. Phytomedicine 2022, 104, 154321. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, X.; Zhang, H.; Wu, X.; Li, M.; Ai, G.; Zhan, R.; Xie, J.; Su, Z.; Huang, X. 8-Oxypalmatine, a novel oxidative metabolite of palmatine, exhibits superior anti-colitis effect via regulating Nrf2 and NLRP3 inflammasome. Biomed. Pharmacother. 2022, 153, 113335. [Google Scholar] [CrossRef]
- Zhang, H.X.; Li, Y.Y.; Liu, Z.J.; Wang, J.F. Quercetin effectively improves LPS-induced intestinal inflammation, pyroptosis, and disruption of the barrier function through the TLR4/NF-κB/NLRP3 signaling pathway in vivo and in vitro. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- Yao, H.; Yan, J.; Yin, L.; Chen, W. Picroside II alleviates DSS-induced ulcerative colitis by suppressing the production of NLRP3 inflammasomes through NF-κB signaling pathway. Immunopharmacol. Immunotoxicol. 2022, 44, 437–446. [Google Scholar] [CrossRef]
- Miao, F. Hydroxytyrosol alleviates dextran sodium sulfate-induced colitis by inhibiting NLRP3 inflammasome activation and modulating gut microbiota in vivo. Nutrition 2022, 97, 111579. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, H.; Zheng, Z.; Huang, X.; Yang, L.; Liu, J.; Wang, K.; Zhang, Y. Pectic polysaccharide from Smilax china L. ameliorated ulcerative colitis by inhibiting the galectin-3/NLRP3 inflammasome pathway. Carbohydr. Polym. 2022, 277, 118864. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chen, C.; Liu, B.; Shi, W.; Shimizu, K.; Zhang, C. Bryodulcosigenin a natural cucurbitane-type triterpenoid attenuates dextran sulfate sodium (DSS)-induced colitis in mice. Phytomedicine 2022, 94, 153814. [Google Scholar] [CrossRef]
- Cai, J.; Liu, J.; Fan, P.; Dong, X.; Zhu, K.; Liu, X.; Zhang, N.; Cao, Y. Dioscin prevents DSS-induced colitis in mice with enhancing intestinal barrier function and reducing colon inflammation. Int. Immunopharmacol. 2021, 99, 108015. [Google Scholar] [CrossRef] [PubMed]
- Marinho, S.; Illanes, M.; Ávila-Román, J.; Motilva, V.; Talero, E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules 2021, 11, 162. [Google Scholar] [CrossRef]
- Liang, H.; Cheng, R.; Wang, J.; Xie, H.; Li, R.; Shimizu, K.; Zhang, C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine 2021, 81, 153427. [Google Scholar] [CrossRef]
- Qian, B.; Wang, C.; Zeng, Z.; Ren, Y.; Li, D.; Song, J.L. Ameliorative Effect of Sinapic Acid on Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in Kunming (KM) Mice. Oxid. Med. Cell. Longev. 2020, 2020, 8393504. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Ding, Z.; Wang, Y.; Zhu, Y.; Gao, Q.; Cao, W.; Du, R. Evodiamine Attenuates Experimental Colitis Injury Via Activating Autophagy and Inhibiting NLRP3 Inflammasome Assembly. Front. Pharmacol. 2020, 11, 573870. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, Y.; Li, C.; Xu, M.; Xie, H.; Zhao, J. Using Network Pharmacology for Systematic Understanding of Geniposide in Ameliorating Inflammatory Responses in Colitis Through Suppression of NLRP3 Inflammasome in Macrophage by AMPK/Sirt1 Dependent Signaling. Am. J. Chin. Med. 2020, 48, 1693–1713. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, D.; Wan, X.; Bai, Y.; Yuan, C.; Wang, T.; Yuan, D.; Zhang, C.; Liu, C. Chlorogenic Acid Suppresses miR-155 and Ameliorates Ulcerative Colitis through the NF-κB/NLRP3 Inflammasome Pathway. Mol. Nutr. Food Res. 2020, 64, e2000452. [Google Scholar] [CrossRef]
- Sun, H.; Cai, H.; Fu, Y.; Wang, Q.; Ji, K.; Du, L.; Xu, C.; Tian, L.; He, N.; Wang, J.; et al. The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in Mice. Dose Response 2020, 18, 1559325820931292. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Ma, P.; Zhang, Y.; Mi, Y.; Fan, D. Ginsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathway. Int. Immunopharmacol. 2020, 85, 106645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, N.; Hu, X.; Zheng, Y. Anti-colitic effects of Physalin B on dextran sodium sulfate-induced BALB/c mice by suppressing multiple inflammatory signaling pathways. J. Ethnopharmacol. 2020, 259, 112956. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zuo, R.; Wang, K.; Nong, F.F.; Fu, Y.J.; Huang, S.W.; Pan, Z.F.; Zhang, Y.; Luo, X.; Deng, X.L.; et al. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway. Acta Pharmacol. Sin. 2020, 41, 771–781. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Z.; Li, C.; Pan, Y.; Tang, X.; Wang, X.J. Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. Oxid. Med. Cell. Longev. 2019, 2019, 7180284. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol. 2018, 104, 11–19. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, W.; Zhang, X.; Lu, P.; Du, Q.; Tao, L.; Ding, Y.; Wang, Y.; Hu, R. Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation. Biochem. Pharmacol. 2016, 112, 37–49. [Google Scholar] [CrossRef]
- Kevans, D.; Silverberg, M.S.; Borowski, K.; Griffiths, A.; Xu, W.; Onay, V.; Paterson, A.D.; Knight, J.; Croitoru, K. IBD Genetic Risk Profile in Healthy First-Degree Relatives of Crohn’s Disease Patients. J. Crohns Colitis 2016, 10, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Aniwan, S.; Santiago, P.; Loftus Jr, E.V.; Park, S.H. The epidemiology of inflammatory bowel disease in Asia and Asian immigrants to Western countries. United Eur. Gastroenterol. J. 2022, 10, 1063–1076. [Google Scholar] [CrossRef]
- Du, L.; Ha, C. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol. Clin. N. Am. 2020, 49, 643–654. [Google Scholar] [CrossRef]
- Kaenkumchorn, T.; Wahbeh, G. Ulcerative Colitis: Making the Diagnosis. Gastroenterol. Clin. N. Am. 2020, 49, 655–669. [Google Scholar] [CrossRef]
- Adams, S.M.; Bornemann, P.H. Ulcerative colitis. Am. Fam. Physician 2013, 87, 699–705. [Google Scholar] [PubMed]
- Keshteli, A.H.; Madsen, K.L.; Dieleman, L.A. Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients 2019, 11, 1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niv, Y. Hospitalization of Patients with Ulcerative Colitis: A Systematic Review and Meta-Analysis. Isr. Med. Assoc. J. 2021, 23, 186–190. [Google Scholar]
- Lee, S.D. Health Maintenance in Ulcerative Colitis. Gastroenterol. Clin. N. Am. 2020, 49, xv–xvi. [Google Scholar] [CrossRef]
- Segal, J.P.; LeBlanc, J.F.; Hart, A.L. Ulcerative colitis: An update. Clin. Med. 2021, 21, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Roselli, M.; Finamore, A. Use of Synbiotics for Ulcerative Colitis Treatment. Curr. Clin. Pharmacol. 2020, 15, 174–182. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Zheng, C.Q.; Sang, L.X. Mucosal lesions of the upper gastrointestinal tract in patients with ulcerative colitis: A review. World J. Gastroenterol. 2021, 27, 2963–2978. [Google Scholar] [CrossRef]
- Wehkamp, J.; Stange, E.F. Recent advances and emerging therapies in the non-surgical management of ulcerative colitis. F1000Research 2018, 7, 1207. [Google Scholar] [CrossRef]
- Hashash, J.G.; Picco, M.F.; Farraye, F.A. Health Maintenance for Adult Patients with Inflammatory Bowel Disease. Curr. Treat. Options Gastroenterol. 2021, 19, 583–596. [Google Scholar] [CrossRef]
- Louis, E. Tailoring Biologic or Immunomodulator Treatment Withdrawal in Inflammatory Bowel Disease. Front. Med. 2019, 6, 302. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.J.; Lobo, A.J.; Travis, S.P.L. Guidelines for the management of inflammatory bowel disease in adults. Gut 2004, 53, v1. [Google Scholar] [CrossRef] [PubMed]
- Louis, E. Stopping Anti-TNF in Crohn’s Disease Remitters: Pros and Cons: The Pros. Inflamm. Intest. Dis. 2022, 7, 64–68. [Google Scholar] [CrossRef]
- Petagna, L.; Antonelli, A.; Ganini, C.; Bellato, V.; Campanelli, M.; Divizia, A.; Efrati, C.; Franceschilli, M.; Guida, A.M.; Ingallinella, S.; et al. Pathophysiology of Crohn’s disease inflammation and recurrence. Biol. Direct 2020, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Veauthier, B.; Hornecker, J.R. Crohn’s Disease: Diagnosis and Management. Am. Fam. Physician 2018, 98, 661–669. [Google Scholar] [PubMed]
- Yang, F.; Ni, B.; Liu, Q.; He, F.; Li, L.; Zhong, X.; Zheng, X.; Lu, J.; Chen, X.; Lin, H.; et al. Human umbilical cord-derived mesenchymal stem cells ameliorate experimental colitis by normalizing the gut microbiota. Stem Cell Res. Ther. 2022, 13, 475. [Google Scholar] [CrossRef]
- Torres, J.; Burisch, J.; Riddle, M.; Dubinsky, M.; Colombel, J.F. Preclinical disease and preventive strategies in IBD: Perspectives, challenges and opportunities. Gut 2016, 65, 1061–1069. [Google Scholar] [CrossRef]
- Nadalian, B.; Nadalian, B.; Houri, H.; Shahrokh, S.; Abdehagh, M.; Yadegar, A.; Ebrahimipour, G. Phylogrouping and characterization of Escherichia coli isolated from colonic biopsies and fecal samples of patients with flare of inflammatory bowel disease in Iran. Front. Med. 2022, 9, 985300. [Google Scholar] [CrossRef]
- Atanassova, A.; Georgieva, A. Circulating miRNA-16 in inflammatory bowel disease and some clinical correlations—A cohort study in Bulgarian patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6310–6315. [Google Scholar] [CrossRef]
- Shahini, A.; Shahini, A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: Focus on the available therapeutic approaches and gut microbiome. J. Cell Commun. Signal. 2022, 17, 55–74. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, W.; Yu, T.; Yu, Y.; Cui, X.; Zhou, Z.; Yang, H.; Yu, Y.; Bilotta, A.J.; Yao, S.; et al. Th17 cell-derived amphiregulin promotes colitis-associated intestinal fibrosis through activation of mTOR and MEK in intestinal myofibroblasts. Gastroenterology 2022, 164, 89–102. [Google Scholar] [CrossRef]
- Askari, H.; Shojaei-Zarghani, S.; Raeis-Abdollahi, E.; Jahromi, H.K.; Abdullahi, P.R.; Daliri, K.; Tajbakhsh, A.; Rahmati, L.; Safarpour, A.R. The Role of Gut Microbiota in Inflammatory Bowel Disease-Current State of the Art. Mini Rev. Med. Chem. 2022. [Google Scholar] [CrossRef]
- Boix-Amorós, A.; Monaco, H.; Sambataro, E.; Clemente, J.C. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022, 14, 2107866. [Google Scholar] [CrossRef]
- Yang, J.; Wise, L.; Fukuchi, K.I. TLR4 Cross-Talk With NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer’s Disease. Front. Immunol. 2020, 11, 724. [Google Scholar] [CrossRef]
- Wang, L.; Hauenstein, A.V. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol. Asp. Med. 2020, 76, 100889. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 2016, 13, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.Y.; Ye, X.J.; He, X.H.; Ouyang, D.Y. The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation 2021, 44, 1229–1245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Yin, H.R.; He, Q.Y.; Wang, Y. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed. Pharmacother. 2021, 138, 111442. [Google Scholar] [CrossRef]
- Shao, B.Z.; Wang, S.L.; Pan, P.; Yao, J.; Wu, K.; Li, Z.S.; Bai, Y.; Linghu, E.Q. Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation. Inflammation 2019, 42, 1147–1159. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, X.; Zhang, X.; Tang, J.; Li, Z.; Wang, Q.; Hu, R. Oroxylin A inhibits colitis by inactivating NLRP3 inflammasome. Oncotarget 2017, 8, 58903–58917. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, Y.; Yao, J.; Zhao, L.; Wu, Z.; Wang, Y.; Pan, D.; Miao, H.; Guo, Q.; Lu, N. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB and NLRP3 inflammasome activation. Biochem. Pharmacol. 2015, 94, 142–154. [Google Scholar] [CrossRef]
- Liu, W.; Guo, W.; Hang, N.; Yang, Y.; Wu, X.; Shen, Y.; Cao, J.; Sun, Y.; Xu, Q. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation. Oncotarget 2016, 7, 30536–30549. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qin, J.; Zhang, S.; Zhang, N.; Tan, B.; Siwko, S.; Zhang, Y.; Wang, Q.; Chen, J.; Qian, M.; et al. ADP/P2Y(1) aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation. Mucosal Immunol. 2020, 13, 931–945. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, F.; Zhang, L.; Zhang, J.; Xie, H. Knockdown of P2Y4 ameliorates sepsis-induced acute kidney injury in mice via inhibiting the activation of the NF-κB/MMP8 axis. Front. Physiol. 2022, 13, 953977. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wu, C.; Wang, C.; Sun, W.; Chen, W.; Hu, X.; Liu, N.; Xing, D. New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front. Microbiol. 2022, 13, 1065608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, T.; Huang, B.; Luo, M.; Chen, Z.; Zhao, Z.; Wang, J.; Leung, D.; Yang, X.; Chan, K.W.; et al. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J. Allergy Clin. Immunol. 2021, 147, 267–279. [Google Scholar] [CrossRef]
- Rao, Z.; Chen, X.; Wu, J.; Xiao, M.; Zhang, J.; Wang, B.; Fang, L.; Zhang, H.; Wang, X.; Yang, S.; et al. Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination. Front. Immunol. 2019, 10, 2783. [Google Scholar] [CrossRef] [PubMed]
- Ngui, I.Q.H.; Perera, A.P.; Eri, R. Does NLRP3 Inflammasome and Aryl Hydrocarbon Receptor Play an Interlinked Role in Bowel Inflammation and Colitis-Associated Colorectal Cancer? Molecules 2020, 25, 2427. [Google Scholar] [CrossRef]
- Chen, X.; Liu, G.; Yuan, Y.; Wu, G.; Wang, S.; Yuan, L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019, 10, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Zhao, Y.; Ma, Y.; Wang, Z.; Rong, L.; Wang, B.; Zhang, N. Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev. 2021, 60, 61–75. [Google Scholar] [CrossRef]
- Li, N.; Wang, M.; Lyu, Z.; Shan, K.; Chen, Z.; Chen, B.; Chen, Y.; Hu, X.; Dou, B.; Zhang, J.; et al. Medicinal plant-based drug delivery system for inflammatory bowel disease. Front. Pharmacol. 2023, 14, 1158945. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Ye, N.; Ye, B.; Miao, Z.; Cao, T.; Lu, W.; Xu, D.; Tan, C.; Xu, Y.; Yan, J. Qingre Xingyu recipe exerts inhibiting effects on ulcerative colitis development by inhibiting TNFα/NLRP3/Caspase-1/IL-1β pathway and macrophage M1 polarization. Cell Death Discov. 2023, 9, 84. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Y.; Xie, J.; Hua, H.; Pan, C.; Huang, J.; Jing, M.; Chen, X.; Xu, C.; Gao, Y.; et al. Identification of FCN1 as a novel macrophage infiltration-associated biomarker for diagnosis of pediatric inflammatory bowel diseases. J. Transl. Med. 2023, 21, 203. [Google Scholar] [CrossRef]
- Chen, J.; Pan, M.; Wang, J.; Zhang, M.; Feng, M.; Chai, X.; Zhang, Q.; Sun, Y. Hydroxysafflor yellow A protects against colitis in mice by suppressing pyroptosis via inhibiting HK1/NLRP3/GSDMD and modulating gut microbiota. Toxicol. Appl. Pharmacol. 2023, 467, 116494. [Google Scholar] [CrossRef] [PubMed]
- Thorn, J.P.R.; Thornton, T.F.; Helfgott, A.; Willis, K.J. Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal. J. Ethnobiol. Ethnomed. 2020, 16, 33. [Google Scholar] [CrossRef] [PubMed]
- Constant, N.L.; Tshisikhawe, M.P. Hierarchies of knowledge: Ethnobotanical knowledge, practices and beliefs of the Vhavenda in South Africa for biodiversity conservation. J. Ethnobiol. Ethnomed. 2018, 14, 56. [Google Scholar] [CrossRef]
- Maroyi, A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J. Ethnobiol. Ethnomed. 2017, 13, 43. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Direito, R.; Barbalho, S.M.; Figueira, M.E.; Minniti, G.; de Carvalho, G.M.; de Oliveira Zanuso, B.; de Oliveira dos Santos, A.R.; de Góes Corrêa, N.; Rodrigues, V.D.; de Alvares Goulart, R.; et al. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites 2023, 13, 728. https://doi.org/10.3390/metabo13060728
Direito R, Barbalho SM, Figueira ME, Minniti G, de Carvalho GM, de Oliveira Zanuso B, de Oliveira dos Santos AR, de Góes Corrêa N, Rodrigues VD, de Alvares Goulart R, et al. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites. 2023; 13(6):728. https://doi.org/10.3390/metabo13060728
Chicago/Turabian StyleDireito, Rosa, Sandra Maria Barbalho, Maria Eduardo Figueira, Giulia Minniti, Gabriel Magno de Carvalho, Bárbara de Oliveira Zanuso, Ana Rita de Oliveira dos Santos, Natália de Góes Corrêa, Victória Dogani Rodrigues, Ricardo de Alvares Goulart, and et al. 2023. "Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review" Metabolites 13, no. 6: 728. https://doi.org/10.3390/metabo13060728
APA StyleDireito, R., Barbalho, S. M., Figueira, M. E., Minniti, G., de Carvalho, G. M., de Oliveira Zanuso, B., de Oliveira dos Santos, A. R., de Góes Corrêa, N., Rodrigues, V. D., de Alvares Goulart, R., Guiguer, E. L., Araújo, A. C., Bosso, H., & Fornari Laurindo, L. (2023). Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites, 13(6), 728. https://doi.org/10.3390/metabo13060728