Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mucilage Events
2.2. Field Sampling
2.3. Sample Preparation and Leaching
2.4. Elemental Analyses
2.5. Data Treatment
3. Results and Discussion
3.1. Interstitial Water
3.2. Elemental Composition of Gelatinous Matrix
3.3. Normalization of Macroaggregate Multi-Elemental Composition to Possible Biogenic and Lithogenic Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovač, N.; Faganeli, J.; Bajt, O. Mucous Macroaggregates in the Northern Adriatic. In Geochemistry Research Advances; Stefansson, O., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2008; pp. 119–141. ISBN 978-1-60456-215-6. [Google Scholar]
- Kovac, N.; Bajt, O.; Faganeli, J.; Sket, B.; Orel, B. Study of macroaggregate composition using FT-IR and 1H NMR spectroscopy. Mar. Chem. 2002, 78, 205–215. [Google Scholar] [CrossRef]
- Kovac, N.; Faganeli, J.; Sket, B.; Bajt, O. Characterization of macroaggregates and photodegradation of their soluble fraction. Org. Geochem. 1988, 29, 1623–1634. [Google Scholar] [CrossRef]
- Kovac, N.; Faganeli, J.; Bajt, O.; Sket, B.; Surca Vuk, A.; Orel, B.; Mozetic, P. Degradation and preservation of organic matter in marine macroaggregates. Acta Chim. Slov. 2006, 53, 81–87. [Google Scholar]
- Russo, A.; Rabitti, S.; Bastianini, M. Decadal Climatic Anomalies in the Northern Adriatic Sea Inferred from a New Oceanographic Data Set. Mar. Ecol. 2002, 23, 340–351. [Google Scholar] [CrossRef]
- Grilli, F.; Marin, M.; Degobbis, D.; Ferrari, C.R.; Fornasiero, R.; Russo, A.; Gismondi, M.; Djakovac, T.; Precali, R.; Simonetti, R. Circulation and horizontal fluxes in the northern Adriatic Sea in the period June 1999–July 2002. Part II: Nutrients transport. Sci. Total. Environ. 2005, 353, 115–125. [Google Scholar] [CrossRef]
- Myklestad, S.M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci. Total Environ. 1995, 165, 155–164. [Google Scholar] [CrossRef]
- Myklestad, S.M. Phytoplankton extracellular production and leakage with considerations on the polysaccharide accumulation. Ann. Ist. Super. Sanit. 1999, 35, 401–404. [Google Scholar]
- Baldi, F.; Minacci, A.; Sailot, A.; Mejanelle, L.; Mozetic, P.; Turk, C.; Malej, A. Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes. Mar. Ecol. Prog. Ser. 1997, 153, 45–57. [Google Scholar] [CrossRef]
- Turk, V.; Hagström, A.; Kovac, N.; Faganeli, J. Composition and function of mucilage macroaggregates in the northern Adriatic. Aquat. Microb. Ecol. 2010, 61, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Possedel, N.; Faganeli, J. Nature and sedimentation of suspended particulate matter during stratification in shallow coastal waters (Gulf of Trieste, northern Adriatic). Mar. Ecol. Prog. Ser. 1991, 77, 135–145. [Google Scholar] [CrossRef]
- Giani, M.; Savelli, F.; Berto, D.; Zangrando, V.; Cosovic, B.; Vojvodic, V. Temporal dynamics of dissolved and particulate organic carbon in the northern Adriatic Sea in relation to the mucilage events. Sci. Total Environ. 2005, 353, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Faganeli, J.; Ogrinc, N.; Kovac, N.; Kukovec, K.; Falnoga, I.; Mozetic, P.; Bajt, O. Carbon and nitrogen isotope composition of particulate organic matter in relation to mucilage formation in the northern Adriatic Sea. Mar. Chem. 2009, 114, 102–109. [Google Scholar] [CrossRef]
- Penna, N.; Capellacci, S.; Ricci, F.; Kovac, N. Characterization of carbohydrates in mucilage samples from the northern Adriatic Sea. Analyt. Bioanalyt. Chem. 2003, 376, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Faganeli, J.; Mohar, B.; Kofol, R.; Pavlica, V.; Marinsek, T.; Rozman, A.; Kovac, N.; Surca Vuk, A. Nature and Lability of Northern Adriatic Macroaggregates. Mar. Drugs 2010, 8, 2480–2492. [Google Scholar] [CrossRef] [Green Version]
- Kovac, N.; Faganeli, J.; Bajt, O.; Sket, B.; Orel, B.; Penna, N. Chemical composition of macroaggregates in the northern Adriatic sea. Org. Geochem. 2004, 35, 1095–1104. [Google Scholar] [CrossRef]
- Berto, D.; Giani, M.; Taddei, P.; Bottura, G. Spectroscopic evidence of the marine origin of mucilages in the Northern Adriatic Sea. Sci. Total Environ. 2005, 353, 247–257. [Google Scholar] [CrossRef]
- Mecozzi, M.; Pietrantonio, E.; Di Noto, V.; Pápai, Z. The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: Hypothesis about the reasonable causes of mucilage formation. Mar. Chem. 2005, 95, 255–269. [Google Scholar] [CrossRef]
- Mecozzi, M.; Pietroletti, M.; Conti, M.E. The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples. Mar. Chem. 2008, 112, 38–52. [Google Scholar] [CrossRef]
- Kovac, N.; Mozetic, P.; Trichet, J.; Defarge, C. Phytoplankton composition and organic matter organization of mucuous aggregates by means of light and cryo-scanning electron microscopy. Mar. Biol. 2005, 147, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Dolenec, T.; Faganeli, J.; Pirc, S. Major, Minor and Trace Elements in Surficial Sediments from the Open Adriatic Sea: A Regional Geochemical Study. Geol. Croat. 1998, 51, 59–73. [Google Scholar]
- Guerzoni, S. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Prog. Oceanogr. 1999, 44, 147–190. [Google Scholar] [CrossRef]
- Malej, A.; Petelin, B.; Cermelj, B. Quantification of mucilage-associated suspended matter in the Gulf of Trieste (Adriatic Sea). Ann. Ser. Hist. Nat. 2001, 11, 43–52. [Google Scholar]
- Viers, J.; Oliva, P.; Sonke, J.; Nonell, A.; Freydier, R.; Gainville, R.; Dupré, B. Evidence of Zn isotopic fractionation in a soil-plant-system of a pristine tropical watershed (Nsimi, south Cameroon). Chem. Geol. 2007, 239, 124–137. [Google Scholar] [CrossRef]
- Viers, J.; Prokushkin, A.S.; Pokrovsky, O.S.; Kirdyanov, A.V.; Beaulieu, E.; Zouiten, C.; Oliva, P.; Dupré, B. Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost. Biogeochemistry 2013, 113, 435–449. [Google Scholar] [CrossRef]
- Del Negro, P.; Crevatin, E.; Larato, C.; Ferrari, C.; Totti, C.; Pompei, M.; Giani, M.; Berto, D.; Umani, S.F. Mucilage microcosms. Sci. Total. Environ. 2005, 353, 258–269. [Google Scholar] [CrossRef]
- Herndl, G.J.; Arietta, J.M.; Stoderegger, K. Interaction between specific hydrological and microbial activity leading to extensive mucilage formation in the northern Adriatic Sea. Ann. Ist. Super Sanit. 1999, 35, 405–409. [Google Scholar]
- Koron, N.; Faganeli, J.; Falnoga, I.; Mazej, D.; Klun, K.; Kovac, N. Association of macroaggregates and metals in coastal waters. Mar. Chem. 2013, 157, 185–193. [Google Scholar] [CrossRef]
- Ho, T.Y.; Quigg, A.; Finkel, Z.V.; Milligan, A.J.; Wyman, K.; Falkowski, P.G.; Morel, F.M.M. The elemental composition of some marine phytoplankton. J. Phycol. 2003, 39, 1145–1159. [Google Scholar] [CrossRef]
- Finkel, Z.V.; Quigg, A.S.; Raven, J.A.; Reinfelder, J.R.; Schofield, O.E.; Falkowski, P.G. Irradiance and the elemental stoichiometry of marine phytoplankton. Limnol. Oceanogr. 2006, 51, 2690–2701. [Google Scholar] [CrossRef] [Green Version]
- Masuzawa, T.; Suzuki, T.; Seki, K.; Kosugi, T.; Hibi, Y.; Yamamoto, M.; Takada, J.; Matsushita, R.; Yanada, M. Multielement compositions of marine phytoplankton samples from coastal areas of japan by instrumental neutron activation analysis. Biol. Trace Elem. Res. 1999, 71–72, 331–342. [Google Scholar] [CrossRef]
- Morel, F.M.M. The co-evolution of phytoplankton and trace element cycles in the oceans. Geobiology 2008, 6, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Falkoswki, P.G. Rationalizing elemental ratios in unicellular algae. J. Phycol. 2000, 36, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Quigg, A.; Finkel, Z.; Irwin, A.; Rosenthal, Y.; Ho, T.Y.; Reinfelder, J.R.; Schofield, O.; Morel, F.M.; Falkowski, P.G. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 2003, 425, 291–294. [Google Scholar] [CrossRef]
- Ahalya, N.; Ramachandra, T.V.; Kanamadi, R.D. Biosorption of Heavy Metals. Res. J. Chem. Environ. 2003, 7, 71–78. [Google Scholar]
- Gélabert, A.; Pokrovsky, O.S.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.; Mielczarski, E.; Mielczarski, J.; Spalla, O. Study of diatoms/aqueous solution interface. I. Acid-base equilibria, surface charge and spectroscopic observation of two freshwater peryphytic and two marine planktonic diatoms. Geochim. Cosmochim. Acta 2004, 68, 4039–4058. [Google Scholar] [CrossRef]
- Gélabert, A.; Pokrovsky, O.S.; Schott, J.; Feurtet-Mazel, A. Trace element (Cr, Mo, W, As, Sb, Al, Ga, Ge) interaction with marine and freshwater diatoms: A physico-chemical approach. Chem. Geol. 2018, 494, 117–126. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Pokrovski, G.S.; Gélabert, A.; Schott, J.; Boudou, A. Speciation of Zn associated with diatoms using X-ray absorption spectroscopy. Environ. Sci. Technol. 2005, 39, 4490–4498. [Google Scholar] [CrossRef]
- Gélabert, A.; Pokrovsky, O.S.; Schott, J.; Boudou, A.; Feurtet-Mazel, A. Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach. Geochim. Cosmochim. Acta 2007, 71, 3698–3716. [Google Scholar] [CrossRef]
- Doucet, F.J.; Lead, J.R.; Santschi, P.H. Colloid-trace element interactions in aquatic systems. In Environmental Colloids and Particles: Behavior, Separation and Characterization; IUPAC Series on Analytical and Physical Chemistry of Environmental System; Wilkinson, K.J., Lead, J.R., Eds.; John Wiley & Sons: Chichester, UK, 2007; pp. 95–158. [Google Scholar]
- Kosta, L.; Ravnik, V.; Byrne, A.R.; Štirn, J.; Dermelj, M.; Stegnar, P. Some trace elements in the waters, marine organisms and sediments of the Adriatic by neutron activation analysis. J. Radioanalyt. Nucl. Chem. 1978, 44, 317–332. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. V. 3, Chapter 3.01: Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–863. [Google Scholar] [CrossRef]
- Savenko, V.S. Elemental chemical composition of oceanic plankton. Geochem. Internat. 1988, 8, 1084–1089. [Google Scholar]
- Savenko, V.S. On the relationship between biogenic and terrigenous suspended particulate matter in the ocean. Dokl. Acad. Sci. 1999, 364, 251–254. [Google Scholar]
- Acquavita, A.; Predonzani, S.; Mattassi, G.; Rossin, P.; Tamberlich, F.; Falomo, J.; Valic, I. Heavy Metal Contents and Distribution in Coastal Sediments of the Gulf of Trieste (Northern Adriatic Sea, Italy). Water Air Soil Pollut. 2010, 211, 95–111. [Google Scholar] [CrossRef]
- Covelli, S.; Fontolan, G. Application of a normalization procedure in determining regional geochemical baselines. Environ. Geol. 1997, 30, 34–45. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Adami, G.; Faganeli, J.; Covelli, S. Partitioning and mixing behaviour of trace elements at the Isonzo/Soča River mouth (Gulf of Trieste, northern Adriatic Sea). Mar. Chem. 2020, 223, 103800. [Google Scholar] [CrossRef]
- Pavoni, E.; Crosera, M.; Petranich, E.; Faganeli, J.; Klun, K.; Oliveri, P.; Covelli, S.; Adami, G. Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: The case of the karstic Timavo River (northern Adriatic Sea, Italy). Estuar. Coast. 2021, 44, 1831–1847. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupré, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Loiko, S.V.; Vorobyev, S.N.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V.; Pokrovsky, O.S. Major and trace elements in suspended matter of western Siberian rivers: First assessment across perma-frost zones and landscape parameters of watersheds. Geochim. Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Pokrovsky, O.S.; Filippov, A.S.; Lisitsyn, A.P.; Bobrov, V.A.; Bogunov, A.Y.; Zavernina, N.N.; Zolotykh, E.O.; Isaeva, A.B.; Kokryatskaya, N.M.; et al. On the elemental composition of suspended matter of the Severnaya Dvina River (White Sea region). Dokl. Earth Sci. 2010, 430, 228–234. [Google Scholar] [CrossRef]
- Penna, N.; Kovac, N.; Ricci, F.; Penna, A.; Capellacci, S.; Faganeli, J. The Role of Dissolved Carbohydrates in the Northern Adriatic Macroaggregate Formation. Acta Chim. Slov. 2009, 56, 305–314. [Google Scholar]
Element | Macroaggregate—Surface 9 June 2000 | Macroaggregate—Water Column 1 July 2004, Aqueous Fraction | Macroagregate—Water Column 1 July 2004 |
---|---|---|---|
Li | 13.5 ± 1.5 | 5.14 ± 0.14 | 8.96 ± 0.33 |
B | <d.l. | <d.l. | 429 ± 75 |
Na | 5600 ± 58 | 206,000 ± 15,000 | 90,500 ± 970 |
Mg | 8070 ± 120 | 26,500 ± 640 | 19,900 ± 290 |
Al | 11,100 ± 150 | 14 ± 1 | 1400 ± 40 |
Si | 20,800 ± 470 | 276 ± 20 | 2350 ± 96 |
P | 590 ± 17 | 9 ± 2 | 436 ± 14 |
K | 4620 ± 160 | 13,280 ± 535 | 5330 ± 150 |
Ca | 186,000 ± 5000 | 12,200 ± 450 | 74,900 ± 3000 |
Sc | 17.2 ± 0.46 | 0.43 ± 0.04 | 1.62 ± 0.09 |
Ti | 811 ± 29 | 1.05 ± 0.2 | 85 ± 3 |
V | 37.5 ± 0.68 | 0.41 ± 0.02 | 5.50 ± 0.10 |
Cr | 29 ± 0.84 | <d.l. | 5.42 ± 0.14 |
Mn | 377 ± 17 | 5.75 ± 0.28 | 121 ± 5 |
Fe | 10,900 ± 340 | 79 ± 3 | 1300 ± 45 |
Ni | 45 ± 2.8 | <d.l. | 6.1 ± 0.8 |
Co | 6.8 ± 0.09 | 0.058 ± 0.005 | 1.0 ± 0.034 |
Cu | 25.3 ± 0.52 | 2.75 ± 0.10 | 7.8 ± 0.2 |
Zn | 203 ± 3.5 | 108 ± 3 | 77.3 ± 0.93 |
Ga | 5.86 ± 0.12 | 0.09 ± 0.01 | 0.65 ± 0.05 |
Ge | 0.53 ± 0.02 | <d.l. | 0.02 ± 0.01 |
As | 11.0 ± 0.28 | 0.41 ± 0.04 | 3.49 ± 0.14 |
Se | 2.5 ± 0.4 | 6.08 ± 0.55 | 6.47 ± 0.30 |
Rb | 24.0 ± 0.4 | 3.27 ± 0.12 | 4.23 ± 0.11 |
Sr | 770 ± 15 | 185 ± 6 | 964 ± 17 |
Y | 7.75 ± 0.13 | 0.0094 ± 0.002 | 0.625 ± 0.013 |
Zr | 15.3 ± 0.3 | 0.02 ± 0.005 | 1.67 ± 0.07 |
Nb | 2.7 ± 0.09 | <d.l. | 0.25 ± 0.02 |
Mo | 1.8 ± 0.2 | 0.3 ± 0.05 | 0.6 ± 0.05 |
Cd | 0.27 ± 0.03 | <d.l. | 0.16 ± 0.06 |
Sn | 4.1 ± 0.2 | 0.13 ± 0.02 | 0.87 ± 0.13 |
Sb | 0.99 ± 0.03 | <d.l. | 0.22 ± 0.03 |
Cs | 1.35 ± 0.03 | 0.01 ± 0.003 | 0.19 ± 0.02 |
Ba | 118 ± 10 | 1.64 ± 0.05 | 10.6 ± 0.13 |
La | 7.79 ± 0.10 | 0.01 ± 0.002 | 1.00 ± 0.03 |
Ce | 15.8 ± 0.35 | 0.02 ± 0.001 | 1.93 ± 0.04 |
Pr | 1.93 ± 0.05 | <d.l. | 0.22 ± 0.02 |
Nd | 7.7 ± 0.15 | 0.013 ± 0.002 | 0.84 ± 0.03 |
Sm | 1.6 ± 0.05 | 0.01 ± 0.003 | 0.18 ± 0.02 |
Eu | 0.43 ± 0.05 | <d.l. | 0.04 ± 0.005 |
Gd | 1.96 ± 0.05 | 0.01 ± 0.002 | 0.18 ± 0.015 |
Tb | 0.25 ± 0.02 | 0.0015 ± 0.0004 | 0.023 ± 0.005 |
Dy | 1.31 ± 0.04 | <d.l. | 0.12 ± 0.02 |
Ho | 0.26 ± 0.08 | <d.l. | 0.03 ± 0.005 |
Er | 0.75 ± 0.05 | <d.l. | 0.07 ± 0.015 |
Tm | 0.10 ± 0.02 | <d.l. | 0.01 ± 0.002 |
Yb | 0.63 ± 0.02 | <d.l. | 0.05 ± 0.005 |
Lu | 0.09 ± 0.01 | <d.l. | 0.01 ± 0.003 |
Hf | 0.44 ± 0.02 | 0.01 ± 0.002 | 0.06 ± 0.01 |
Ta | 0.27 ± 0.08 | <d.l. | 0.03 ± 0.005 |
W | 0.60 ± 0.05 | 0.01 ± 0.003 | 0.19 ± 0.03 |
Tl | 0.14 ± 0.03 | <d.l. | <d.l. |
Pb | 61 ± 1 | 0.92 ± 0.06 | 12.4 ± 0.8 |
Bi | 0.09 ± 0.02 | <d.l. | 0.05 ± 0.015 |
Th | 1.98 ± 0.04 | <d.l. | 0.27 ± 0.02 |
U | 1.82 ± 0.03 | 0.06 ± 0.002 | 0.20 ± 0.015 |
Hg | 0.27 ± 0.02 | n.d. | 0.075 ± 0.008 |
Concentration Range | Elemental Order/Sequence |
---|---|
>10,000 ppm | Na > Mg > K > Ca |
>10 ppm | Si > Sr > Zn > Fe > Al |
>1 ppm | P > Se > Mn > Li > Rb > Cu > Ba > Ti |
<1 ppm | Pb > Sc, V, As > Mo > Sn > Ga > Co, U |
Sampling Site | Date | Elemental Order/Sequence |
---|---|---|
Surface | June 2000 | Al > Fe > Ti > Mn > Zn > Ba > Pb > Ni > V > Cr, Cu > Co > U, Mo, Th > Cd |
Water column | July 2004 | Al > Fe > Mn > Ti > Zn > Pb, Ba > Cu > Ni, V, Cr > Co > Mo, U, Th, Cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, N.; Viers, J.; Faganeli, J.; Bajt, O.; Pokrovsky, O.S. Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites 2023, 13, 726. https://doi.org/10.3390/metabo13060726
Kovač N, Viers J, Faganeli J, Bajt O, Pokrovsky OS. Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites. 2023; 13(6):726. https://doi.org/10.3390/metabo13060726
Chicago/Turabian StyleKovač, Nives, Jérôme Viers, Jadran Faganeli, Oliver Bajt, and Oleg S. Pokrovsky. 2023. "Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components" Metabolites 13, no. 6: 726. https://doi.org/10.3390/metabo13060726
APA StyleKovač, N., Viers, J., Faganeli, J., Bajt, O., & Pokrovsky, O. S. (2023). Elemental Composition of Plankton Exometabolites (Mucous Macroaggregates): Control by Biogenic and Lithogenic Components. Metabolites, 13(6), 726. https://doi.org/10.3390/metabo13060726