Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Targeted and Untargeted GC-MS Analyses
2.2. Untargeted LC-MS Analyses
2.3. Targeted LC-MS/MS Analyses
3. Discussion
4. Materials and Methods
4.1. Seaweed and Hemp Plant Samples
4.2. Extraction of Seaweed and Hemp Samples for Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) Analyses
4.3. Targeted and Untargeted GC-MS
4.3.1. Materials
4.3.2. Standard Curve
4.3.3. GC-MS
4.3.4. Method Validation
4.4. Untargeted LC-MS
4.4.1. Materials
4.4.2. LC-MS
4.4.3. Quality Assurance of the Method
4.5. Targeted LC-MS/MS
4.5.1. Materials
4.5.2. Standard Curve
4.5.3. LC-MS/MS and Method Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patra, A.; Park, T.; Kim, M.; Yu, Z.T. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; Garcia-Gonzalez, R.; Andres, S.; Giraldez, F.J.; Lopez, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Bodas, R.; Lopez, S.; Fernandez, M.; Garcia-Gonzalez, R.; Rodriguez, A.B.; Wallace, R.J.; Gonzalez, J.S. In Vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 2008, 145, 245–258. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of Marine and Freshwater Macroalgae on In Vitro Total Gas and Methane Production. PLoS ONE 2014, 9, e85289. [Google Scholar] [CrossRef] [Green Version]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; De Anda, V.; Ginsburg, D.W.; Harden, M.C.; Nuzhdin, S.V.; et al. Methane Reduction Potential of Two Pacific Coast Macroalgae During in vitro Ruminant Fermentation. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Morais, T.I.A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J. Appl. Phycol. 2019, 31, 779–786. [Google Scholar] [CrossRef]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, L.J.; Liss, P.S. On temperate sources of bromoform and other reactive organic bromine gases. J. Geophys. Res.-Atmos. 2000, 105, 20539–20547. [Google Scholar] [CrossRef] [Green Version]
- Muizelaar, W.G.M.; van Duinkerken, G.; Peters, R.; Dijkstra, J. Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows. Foods 2021, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Zhong, B.M.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Olate-Gallegos, C.; Barriga, A.; Vergara, C.; Fredes, C.; Garcia, P.; Gimenez, B.; Robert, P. Identification of Polyphenols from Chilean Brown Seaweeds Extracts by LC-DAD-ESI-MS/MS. J. Aquat. Food Prod. Technol. 2019, 28, 375–391. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Willfor, S.M. Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chem. 2012, 134, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- O’Malley, R.M.; Lin, H.C. The separation and identification of some brominated and chlorinated compounds by GC/MS—An advanced undergraduate laboratory. J. Chem. Educ. 1999, 76, 1547–1551. [Google Scholar] [CrossRef]
- Ma, Y.; Kind, T.; Yang, D.W.; Leon, C.; Fiehn, O. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra. Anal. Chem. 2014, 86, 10724–10731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karche, T.; Singh, M.R. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Mihaila, A. Investigating the Anti-Methanogenic Properties of Select Species of Seaweed in New Zealand. Master’s Thesis, The University of Waikato, Hamilton, New Zealand, 2020. [Google Scholar]
- Paul, N.A.; de Nys, R.; Steinberg, P.D. Chemical defence against bacteria in the red alga Asparagopsis armata: Linking structure with function. Mar. Ecol. Prog. Ser. 2006, 306, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Genovese, G.; Tedone, L.; Hamann, M.T.; Morabito, M. The Mediterranean Red Alga Asparagopsis: A Source of Compounds against Leishmania. Mar. Drugs 2009, 7, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotas, J.L.A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Tang, K. Chemical Diversity and Biochemical Transformation of Biogenic Organic Sulfur in the Ocean. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Gunal, S.; Hardman, R.; Kopriva, S.; Mueller, J.W. Sulfation pathways from red to green. J. Biol. Chem. 2019, 294, 12293–12312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vangsoe, C.T.; Norskov, N.P.; Devaux, M.F.; Bonnin, E.; Knudsen, K.E.B. Carbohydrase Complexes Rich in Xylanases and Arabinofuranosidases Affect the Autofluorescence Signal and Liberate Phenolic Acids from the Cell Wall Matrix in Wheat, Maize, and Rice Bran: An In Vitro Digestion Study. J. Agric. Food Chem. 2020, 68, 9878–9887. [Google Scholar] [CrossRef]
- Norskov, N.P.; Hedemann, M.S.; Theil, P.K.; Fomsgaard, I.S.; Laursen, B.B.; Knudsen, K.E.B. Phenolic Acids from Wheat Show Different Absorption Profiles in Plasma: A Model Experiment with Catheterized Pigs. J. Agric. Food Chem. 2013, 61, 8842–8850. [Google Scholar] [CrossRef]
- Plouguerne, E.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E. Glycolipids from seaweeds and their potential biotechnological applications. Front. Cell. Infect. Microbiol. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Callado, C.S.C.; Priego-Capote, E.; Ferreiro-Vera, C. Untargeted characterization of extracts from Cannabis sativa L. cultivars by gas and liquid chromatography coupled to mass spectrometry in high resolution mode. Talanta 2020, 208. [Google Scholar] [CrossRef]
- Izzo, L.; Castaldo, L.; Narvaez, A.; Graziani, G.; Gaspari, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miladinovic, J.; Dordevic, V.; Balesevic-Tubic, S.; Petrovic, K.; Ceran, M.; Cveji, J.; Bursac, M.; Miladinovic, D. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Norskov, N.P.; Givens, I.; Purup, S.; Stergiadis, S. Concentrations of phytoestrogens in conventional, organic and free-range retail milk in England. Food Chem. 2019, 295, 1–9. [Google Scholar] [CrossRef]
- Mojzer, E.B.; Hrncic, M.K.; Skerget, M.; Knez, Z.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Tan, H.Y.; Sieo, C.C.; Abdullah, N.; Liang, J.B.; Huang, X.D.; Ho, Y.W. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol. 2011, 169, 185–193. [Google Scholar] [CrossRef]
- Norskov, N.P.; Hedemann, M.S.; Laerke, H.N.; Knudsen, K.E.B. Multicompartmental Nontargeted LC-MS Metabolomics: Explorative Study on the Metabolic Responses of Rye Fiber versus Refined Wheat Fiber Intake in Plasma and Urine of Hypercholesterolemic Pigs. J. Proteome Res. 2013, 12, 2818–2832. [Google Scholar] [CrossRef]
- Audu, B.S.; Ofojekwu, P.C.; Ujah, A.; Ajima, M.N.O. Phytochemical, proximate composition, amino acid profile and characterization of Marijuana (Cannabis sativa L.). J. Phytopharm. 2014, 3, 35–43. [Google Scholar]
- Vargas, J.E.; Andres, S.; Lopez-Ferreras, L.; Snelling, T.J.; Yanez-Ruiz, D.R.; Garcia-Estrada, C.; Lopez, S. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Norskov, N.P.; Knudsen, K.E.B. Validated LC-MS/MS Method for the Quantification of Free and Bound Lignans in Cereal-Based Diets and Feces. J. Agric. Food Chem. 2016, 64, 8343–8351. [Google Scholar] [CrossRef] [PubMed]
- Guideline on Bioanalytical Method Validation. Eurpean Medicines Agency of Science Medicine Health. Committee for Medicinal Products for Human Use (CHMP). 2012. Available online: http://www.Ema.Europa.Eu/docs/en_gb/document_library/scientific_guideline/2011/08/wc500109686.Pdf (accessed on 22 April 2021).
Futura 75 (µg/100 g) | Finola (µg/100 g) | |||
---|---|---|---|---|
Extract 2 | Extract 3 | Extract 2 | Extract 3 | |
Secoisolariciresinol | 4 ± 1.1 | 235 ± 51 | 3 ± 0.9 | 100 ± 12 |
Lariciresinol | 12 ± 1.7 | 328 ± 20 | 2 ± 0.3 | 34 ± 8 |
Syringaresinol | 52 ± 2.8 | 250 ± 71 | 27 ± 4.7 | 81 ± 1.4 |
Isolariciresinol | 3 ± 0.8 | 39 ± 9 | 1 ± 0.1 | 28 ± 1 |
Matairesinol | 0.2 ± 0.01 | 3 ± 0.2 | 0.5 ± 0.1 | 7 ± 4.2 |
Naringenin | 1 ± 0.1 | 88 ± 31 | 0.3 ± 0.1 | 58 ± 15 |
Glycitein | 1 ± 0.3 | 2 ± 0.4 | 0.4 ± 0.1 | 1 ± 0.2 |
Species | Group | Harvest Location | Origin | Harvest Time | Pretreatment |
---|---|---|---|---|---|
Asparagopsis taxiformis | Red | Magnetic Island, AUS | Wild harvest | 08-09-2019 | Freeze-dried |
Chondrus crispus | Red | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Delesseria sanguinea | Red | Kims top, Kattegat, DK | Wild harvest | 08-2020 | Freeze-dried |
Dumontia contortia | Red | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Furcellaria lumbricalis | Red | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Gracilaria vermiculophylla | Red | Isefjord, DK | Wild harvest | 18-02-2020 | Freeze-dried |
Polyides rotundus | Red | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Ulva intestinalis | Green | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Ulva sp. | Green | Limfjorden, DK | Wild harvest | 01-07-2020 | Freeze-dried |
Alaria esculenta | Brown | Funningsførdur, Faroe Isl. | Cultivation | Spring 2020 | Oven-dried 40 °C |
Chorda filum | Brown | Isefjord, DK | Wild harvest | 15-09-2020 | Freeze-dried |
Dictyota dichotoma | Brown | Limfjorden, DK | Wild harvest | 01-09-2020 | Freeze-dried |
Fucus evanescens | Brown | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Fucus serratus | Brown | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Fucus spiralis | Brown | Isefjord, DK | Wild harvest | 05-05-2020 | Freeze-dried |
Laminaria digitata | Brown | Funningsførdur, Faroe Isl. | Cultivation | Spring 2020 | Oven-dried 40 °C |
Saccharina latissima | Brown | Funningsførdur, Faroe Isl. | Cultivation | Spring 2020 | Oven-dried 40 °C |
Sargassum muticum | Brown | Limfjorden, DK | Wild harvest | 01-09-2020 | Freeze-dried |
Compounds | MW (g/mol) | RT (min) | Selected Ion (m/z) | |||
---|---|---|---|---|---|---|
Quantitative ion | Ion clusters | Qualifying ion | Ion clusters | |||
Dibromomethane | 173.83 | 3.6 | 174 | 172, 174, 176 | 93 | 91, 93, 95 |
Dibromochloromethane | 208.28 | 5.5 | 129 | 127, 129, 131 | - | - |
Bromoform | 252.73 | 7.3 | 173 | 171, 173, 175 | 252 | 250, 252, 254, 256 |
Diiodomethane-d2 | 269.84 | 7.7 | 270 | - | 143 | - |
Compounds | Spiked 1 µg/mL (LLOQ) | Spiked 5 µg/mL | Spiked 50 µg/mL | |||
---|---|---|---|---|---|---|
Recovery % | Precision RSD % | Recovery % | Precision RSD % | Recovery % | Precision RSD % | |
Dibromomethane | 120 | 4.0 | 120 | 5.1 | 118 | 2.0 |
Dibromochloromethane | 91 | 5.2 | 99 | 7.5 | 103 | 2.3 |
Bromoform | 112 | 3.9 | 101 | 6.3 | 88 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nørskov, N.P.; Bruhn, A.; Cole, A.; Nielsen, M.O. Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry. Metabolites 2021, 11, 259. https://doi.org/10.3390/metabo11050259
Nørskov NP, Bruhn A, Cole A, Nielsen MO. Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry. Metabolites. 2021; 11(5):259. https://doi.org/10.3390/metabo11050259
Chicago/Turabian StyleNørskov, Natalja P., Annette Bruhn, Andrew Cole, and Mette Olaf Nielsen. 2021. "Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry" Metabolites 11, no. 5: 259. https://doi.org/10.3390/metabo11050259
APA StyleNørskov, N. P., Bruhn, A., Cole, A., & Nielsen, M. O. (2021). Targeted and Untargeted Metabolic Profiling to Discover Bioactive Compounds in Seaweeds and Hemp Using Gas and Liquid Chromatography-Mass Spectrometry. Metabolites, 11(5), 259. https://doi.org/10.3390/metabo11050259