A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury
Abstract
:1. Introduction
2. Results
2.1. Metabolomic Biomarker Candidates
2.2. Lipidomic Biomarker Candidates
3. Discussion
3.1. Acute Radiation Syndrome and Delayed Effects of Acute Radiation Exposure
3.2. Metabolomic Biomarker Discovery and Evaluation
3.3. Citric Acid
3.4. Creatine
3.5. Citrulline
3.6. Uric Acid
3.7. Lipidomics
3.8. Ceramide
3.9. Tissue Specific Biomarkers
3.10. Creatinine Use in Normalization Techniques
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J. Radiation pneumonitis following large single dose irradiation: A re-evaluation based on absolute dose to lung. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 461–467. [Google Scholar] [CrossRef]
- Fryer, C.J.; Fitzpatrick, P.J.; Rider, W.D.; Poon, P. Radiation pneumonitis: Experience following a large single dose of radiation. Int. J. Radiat. Oncol. Biol. Phys. 1978, 4, 931–936. [Google Scholar] [CrossRef]
- Sullivan, J.M.; Prasanna, P.G.; Grace, M.B.; Wathen, L.K.; Wallace, R.L.; Koerner, J.F.; Coleman, C.N. Assessment of biodosimetry methods for a mass-casualty radiological incident: Medical response and management considerations. Health Phys. 2013, 105, 540–554. [Google Scholar] [CrossRef] [Green Version]
- Laiakis, E.C.; Wang, Y.W.; Young, E.F.; Harken, A.D.; Xu, Y.; Smilenov, L.; Garty, G.Y.; Brenner, D.J.; Fornace, A.J., Jr. Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device. Radiat. Res. 2017, 188, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Scott, A.J.; Tudor, G.; Xu, P.T.; Jackson, I.L.; Vujaskovic, Z.; Booth, C.; MacVittie, T.J.; Ernst, R.K.; Kane, M.A. Identification and quantitation of biomarkers for radiation-induced injury via mass spectrometry. Health Phys. 2014, 106, 106–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.K.; Newman, V.L.; Romaine, P.L.; Hauer-Jensen, M.; Pollard, H.B. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev. Mol. Diagn. 2016, 16, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Coy, S.L.; Cheema, A.K.; Tyburski, J.B.; Laiakis, E.C.; Collins, S.P.; Fornace, A., Jr. Radiation metabolomics and its potential in biodosimetry. Int. J. Radiat. Biol. 2011, 87, 802–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Coy, S.L.; Pannkuk, E.L.; Laiakis, E.C.; Fornace, A.J., Jr.; Vouros, P. Differential Mobility Spectrometry-Mass Spectrometry (DMS-MS) in Radiation Biodosimetry: Rapid and High-Throughput Quantitation of Multiple Radiation Biomarkers in Nonhuman Primate Urine. J. Am. Soc. Mass Spectrom. 2018, 29, 1650–1664. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Fornace, A.J., Jr.; Laiakis, E.C. Metabolomic applications in radiation biodosimetry: Exploring radiation effects through small molecules. Int. J. Radiat. Biol. 2017, 93, 1151–1176. [Google Scholar] [CrossRef]
- Garty, G.; Xu, Y.; Elliston, C.; Marino, S.A.; Randers-Pehrson, G.; Brenner, D.J. Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios. Radiat. Res. 2017, 187, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Randers-Pehrson, G.; Turner, H.C.; Marino, S.A.; Geard, C.R.; Brenner, D.J.; Garty, G. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device. Radiat. Res. 2015, 184, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Laiakis, E.C.; Canadell, M.P.; Grilj, V.; Harken, A.D.; Garty, G.Y.; Astarita, G.; Brenner, D.J.; Smilenov, L.; Fornace, A.J. Serum lipidomic analysis from mixed neutron/X-ray radiation fields reveals a hyperlipidemic and pro-inflammatory phenotype. Sci. Rep. 2019, 9, 4539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.H.; Patterson, A.D.; Krausz, K.W.; Lanz, C.; Kang, D.W.; Luecke, H.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-Based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat. Res. 2011, 175, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyburski, J.B.; Patterson, A.D.; Krausz, K.W.; Slavik, J.; Fornace, A.J.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 2. Dose- and time-dependent urinary excretion of deaminated purines and pyrimidines after sublethal gamma-radiation exposure in mice. Radiat. Res. 2009, 172, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Pilib, O.B.; Vaitheesvaran, B.; Saha, S.; Hartil, K.; Chen, E.I.; Goldman, D.; Fleming, W.H.; Kurland, I.J.; Guha, C.; Golden, A. Intestinal microbiota-derived metabolomic blood plasma markers for prior radiation injury. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Manna, S.K.; Krausz, K.W.; Bonzo, J.A.; Idle, J.R.; Gonzalez, F.J. Metabolomics reveals aging-associated attenuation of noninvasive radiation biomarkers in mice: Potential role of polyamine catabolism and incoherent DNA damage-repair. J. Proteome Res. 2013, 12, 2269–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laiakis, E.C.; Nishita, D.; Bujold, K.; Jayatilake, M.M.; Bakke, J.; Gahagen, J.; Authier, S.; Chang, P.; Fornace, A.J., Jr. Salivary Metabolomics of Total Body Irradiated Nonhuman Primates Reveals Long-Term Normal Tissue Responses to Radiation. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 843–851. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Fornace, A.J., Jr.; Fatanmi, O.O.; Singh, V.K. A Metabolomic Serum Signature from Nonhuman Primates Treated with a Radiation Countermeasure, Gamma-tocotrienol, and Exposed to Ionizing Radiation. Health Phys. 2018, 115, 3–11. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, M.; Zhang, Y.; Fan, S.; Wang, C. Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model. Metabolomics 2013, 9, 853–863. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv. 2016, 6, 51192–51202. [Google Scholar] [CrossRef] [Green Version]
- Moren, L.; Wibom, C.; Bergstrom, P.; Johansson, M.; Antti, H.; Bergenheim, A.T. Characterization of the serum metabolome following radiation treatment in patients with high-grade gliomas. Radiat. Oncol. 2016, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Gas Chromatography/Mass Spectrometry Metabolomics of Urine and Serum from Nonhuman Primates Exposed to Ionizing Radiation: Impacts on the Tricarboxylic Acid Cycle and Protein Metabolism. J. Proteome Res. 2017, 16, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Weber, W.M.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MS(E) approach. J. Proteome Res. 2015, 14, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Weber, W.M.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Strawn, S.J.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. A Comprehensive Metabolomic Investigation in Urine of Mice Exposed to Strontium-90. Radiat. Res. 2015, 183, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Lanz, C.; Ledermann, M.; Slavik, J.; Idle, J.R. The production and composition of rat sebum is unaffected by 3 Gy gamma radiation. Int. J. Radiat. Biol. 2011, 87, 360–371. [Google Scholar] [CrossRef]
- Goudarzi, M.; Weber, W.M.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Mak, T.D.; Strawn, S.J.; Brenner, D.J.; Guilmette, R.; Fornace, A.J., Jr.; et al. Serum Dyslipidemia Is Induced by Internal Exposure to Strontium-90 in Mice, Lipidomic Profiling Using a Data-Independent Liquid Chromatography-Mass Spectrometry Approach. J. Proteome Res. 2015, 14, 4039–4049. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Z.; Zhang, X.; Qiao, Y.; Wu, S.; Dong, F.; Chen, Y. Selection of candidate radiation biomarkers in the serum of rats exposed to gamma-rays by GC/TOFMS-based metabolomics. Radiat. Prot. Dosim. 2013, 154, 9–17. [Google Scholar] [CrossRef]
- Jones, J.W.; Jackson, I.L.; Vujaskovic, Z.; Kaytor, M.D.; Kane, M.A. Targeted Metabolomics Identifies Pharmacodynamic Biomarkers for BIO 300 Mitigation of Radiation-Induced Lung Injury. Pharm. Res. 2017, 34, 2698–2709. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Mak, T.D.; Astarita, G.; Authier, S.; Wong, K.; Fornace, A.J., Jr. A Lipidomic and Metabolomic Serum Signature from Nonhuman Primates Exposed to Ionizing Radiation. Metabolomics 2016, 12, 80. [Google Scholar] [CrossRef]
- Cheema, A.K.; Suman, S.; Kaur, P.; Singh, R.; Fornace, A.J., Jr.; Datta, K. Long-term differential changes in mouse intestinal metabolomics after gamma and heavy ion radiation exposure. PLoS ONE 2014, 9, e87079. [Google Scholar] [CrossRef]
- Kurland, I.J.; Broin, P.O.; Golden, A.; Su, G.; Meng, F.; Liu, L.; Mohney, R.; Kulkarni, S.; Guha, C. Integrative Metabolic Signatures for Hepatic Radiation Injury. PLoS ONE 2015, 10, e0124795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros-Mazurczyk, M.; Wojakowska, A.; Marczak, L.; Polanski, K.; Pietrowska, M.; Jelonek, K.; Dominczyk, I.; Hajduk, A.; Rutkowski, T.; Skladowski, K.; et al. Ionizing radiation affects profile of serum metabolites: Increased level of 3-hydroxybutyric acid in serum of cancer patients treated with radiotherapy. Acta Biochim. Pol. 2017, 64, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Lanz, C.; Patterson, A.D.; Slavik, J.; Krausz, K.W.; Ledermann, M.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 3. Biomarker discovery in the urine of gamma-irradiated rats using a simplified metabolomics protocol of gas chromatography-mass spectrometry combined with random forests machine learning algorithm. Radiat. Res. 2009, 172, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Girgis, M.; Dowd, S.E.; Dhungana, S.; Nishita, D.; Bujold, K.; Bakke, J.; Gahagen, J.; Authier, S.; et al. Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography-Mass Spectrometry Metabolomics. Metabolites 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.W.; Clifford, Z.; Li, F.; Tudor, G.L.; Farese, A.M.; Booth, C.; MacVittie, T.J.; Kane, M.A. Targeted Metabolomics Reveals Metabolomic Signatures Correlating Gastrointestinal Tissue to Plasma in a Mouse Total-body Irradiation Model. Health Phys. 2019, 116, 473–483. [Google Scholar] [CrossRef]
- Lee, D.Y.; Bowen, B.P.; Nguyen, D.H.; Parsa, S.; Huang, Y.; Mao, J.H.; Northen, T.R. Low-dose ionizing radiation-induced blood plasma metabolic response in a diverse genetic mouse population. Radiat. Res. 2012, 178, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.P.; Singh, R.; Chakraborty, K.; Kulkarni, S.; Uppal, A.; Luo, Y.; Kaur, P.; Pathak, R.; Kumar, K.S.; Hauer-Jensen, M.; et al. Metabolomic changes in gastrointestinal tissues after whole body radiation in a murine model. Mol. Biosyst. 2013, 9, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.R.; Rana, P.; Devi, M.M.; Chaturvedi, S.; Javed, S.; Tripathi, R.P.; Khushu, S. Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of gamma-irradiated mice. Int. J. Radiat. Biol. 2011, 87, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Wibom, C.; Surowiec, I.; Moren, L.; Bergstrom, P.; Johansson, M.; Antti, H.; Bergenheim, A.T. Metabolomic patterns in glioblastoma and changes during radiotherapy: A clinical microdialysis study. J. Proteome Res. 2010, 9, 2909–2919. [Google Scholar] [CrossRef]
- Goudarzi, M.; Mak, T.D.; Chen, C.; Smilenov, L.B.; Brenner, D.J.; Fornace, A.J. The effect of low dose rate on metabolomic response to radiation in mice. Radiat. Environ. Biophys. 2014, 53, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Goudarzi, M.; Weber, W.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J. Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat. Res. 2014, 181, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Brenner, D.J.; Brown, T.R. Identification of urinary biomarkers from X-irradiated mice using NMR spectroscopy. Radiat. Res. 2011, 175, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Tyburski, J.B.; Patterson, A.D.; Krausz, K.W.; Slavik, J.; Fornace, A.J., Jr.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 1. Identification of minimally invasive urine biomarkers for gamma-radiation exposure in mice. Radiat. Res. 2008, 170, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Mak, T.D.; Jacobs, J.P.; Moon, B.H.; Strawn, S.J.; Braun, J.; Brenner, D.J.; Fornace, A.J., Jr.; Li, H.H. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat. Res. 2016, 186, 219–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, T.D.; Tyburski, J.B.; Krausz, K.W.; Kalinich, J.F.; Gonzalez, F.J.; Fornace, A.J., Jr. Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat. Metabolomics 2015, 11, 1082–1094. [Google Scholar] [CrossRef]
- Johnson, C.H.; Patterson, A.D.; Krausz, K.W.; Kalinich, J.F.; Tyburski, J.B.; Kang, D.W.; Luecke, H.; Gonzalez, F.J.; Blakely, W.F.; Idle, J.R. Radiation metabolomics. 5. Identification of urinary biomarkers of ionizing radiation exposure in nonhuman primates by mass spectrometry-based metabolomics. Radiat. Res. 2012, 178, 328–340. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Global Metabolomic Identification of Long-Term Dose-Dependent Urinary Biomarkers in Nonhuman Primates Exposed to Ionizing Radiation. Radiat. Res. 2015, 184, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Gill, K.; Jain, S.K.; Mehta, K.Y.; Nishita, D.; Bujold, K.; Bakke, J.; Gahagen, J.; Authier, S.; et al. Liquid Chromatography-Mass Spectrometry-Based Metabolomics of Nonhuman Primates after 4 Gy Total Body Radiation Exposure: Global Effects and Targeted Panels. J. Proteome Res. 2019, 18, 2260–2269. [Google Scholar] [CrossRef]
- Jones, J.W.; Tudor, G.; Li, F.; Tong, Y.; Katz, B.; Farese, A.M.; MacVittie, T.J.; Booth, C.; Kane, M.A. Citrulline as a Biomarker in the Murine Total-Body Irradiation Model: Correlation of Circulating and Tissue Citrulline to Small Intestine Epithelial Histopathology. Health Phys. 2015, 109, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Tudor, G.; Bennett, A.; Farese, A.M.; Moroni, M.; Booth, C.; MacVittie, T.J.; Kane, M.A. Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species. Anal. Bioanal. Chem. 2014, 406, 4663–4675. [Google Scholar] [CrossRef]
- Goudarzi, M.; Chauthe, S.; Strawn, S.J.; Weber, W.M.; Brenner, D.J.; Fornace, A.J. Quantitative Metabolomic Analysis of Urinary Citrulline and Calcitroic Acid in Mice after Exposure to Various Types of Ionizing Radiation. Int. J. Mol. Sci. 2016, 17, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.W.; Alloush, J.; Sellamuthu, R.; Chua, H.L.; MacVittie, T.J.; Orschell, C.M.; Kane, M.A. Effect of Sex on Biomarker Response in a Mouse Model of the Hematopoietic Acute Radiation Syndrome. Health Phys. 2019, 116, 484–502. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Jang, W.S.; Lee, S.J.; Jin, S.; Kim, J.; Lee, S.S.; Bang, H.Y.; Jeon, B.S.; Park, S. Development of a new minipig model to study radiation-induced gastrointestinal syndrome and its application in clinical research. Radiat. Res. 2014, 181, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.W.; Bennett, A.; Carter, C.L.; Tudor, G.; Hankey, K.G.; Farese, A.M.; Booth, C.; MacVittie, T.J.; Kane, M.A. Citrulline as a Biomarker in the Non-human Primate Total- and Partial-body Irradiation Models: Correlation of Circulating Citrulline to Acute and Prolonged Gastrointestinal Injury. Health Phys. 2015, 109, 440–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onal, C.; Kotek, A.; Unal, B.; Arslan, G.; Yavuz, A.; Topkan, E.; Yavuz, M. Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy. Acta Oncol. 2011, 50, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Hyduke, D.R.; Fornace, A.J. Comparison of mouse urinary metabolic profiles after exposure to the inflammatory stressors gamma radiation and lipopolysaccharide. Radiat. Res. 2012, 177, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Strassburg, K.; Bogumil, R.; Lai, S.; Vreeken, R.J.; Hankemeier, T.; Langridge, J.; Plumb, R.S.; Fornace, A.J., Jr.; Astarita, G. Metabolic phenotyping reveals a lipid mediator response to ionizing radiation. J. Proteome Res. 2014, 13, 4143–4154. [Google Scholar] [CrossRef] [Green Version]
- Laiakis, E.C.; Mak, T.D.; Anizan, S.; Amundson, S.A.; Barker, C.A.; Wolden, S.L.; Brenner, D.J.; Fornace, A.J., Jr. Development of a metabolomic radiation signature in urine from patients undergoing total body irradiation. Radiat. Res. 2014, 181, 350–361. [Google Scholar] [CrossRef] [Green Version]
- Roszkowski, K.; Gackowski, D.; Rozalski, R.; Dziaman, T.; Siomek, A.; Guz, J.; Szpila, A.; Foksinski, M.; Olinski, R. Small field radiotherapy of head and neck cancer patients is responsible for oxidatively damaged DNA/oxidative stress on the level of a whole organism. Int. J. Cancer 2008, 123, 1964–1967. [Google Scholar] [CrossRef]
- Jelonek, K.; Pietrowska, M.; Ros, M.; Zagdanski, A.; Suchwalko, A.; Polanska, J.; Marczyk, M.; Rutkowski, T.; Skladowski, K.; Clench, M.R.; et al. Radiation-induced changes in serum lipidome of head and neck cancer patients. Int. J. Mol. Sci. 2014, 15, 6609–6624. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Fuks, Z.; Kolesnick, R. Ceramide mediates radiation-induced death of endothelium. Crit. Care Med. 2000, 28, N87–N93. [Google Scholar] [CrossRef] [PubMed]
- Kolesnick, R.; Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene 2003, 22, 5897–5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.W.; Carter, C.L.; Li, F.; Yu, J.; Pierzchalski, K.; Jackson, I.L.; Vujaskovic, Z.; Kane, M.A. Ultraperformance convergence chromatography-high resolution tandem mass spectrometry for lipid biomarker profiling and identification. Biomed. Chromatogr. 2017, 31, e3822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, C.L.; Jones, J.W.; Farese, A.M.; MacVittie, T.J.; Kane, M.A. Lipidomic dysregulation within the lung parenchyma following whole-thorax lung irradiation: Markers of injury, inflammation and fibrosis detected by MALDI-MSI. Sci. Rep. 2017, 7, 10343. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Pannkuk, E.L.; Chauthe, S.K.; Wang, Y.W.; Lian, M.; Mak, T.D.; Barker, C.A.; Astarita, G.; Fornace, A.J., Jr. A Serum Small Molecule Biosignature of Radiation Exposure from Total Body Irradiated Patients. J. Proteome Res. 2017, 16, 3805–3815. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Singh, V.K.; Fornace, A.J. Lipidomic Signatures of Nonhuman Primates with Radiation-Induced Hematopoietic Syndrome. Sci. Rep. 2017, 7, 9777. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.P.; McBride, W.H. After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int. J. Radiat. Biol. 2011, 87, 851–868. [Google Scholar] [CrossRef]
- MacVittie, T.J.; Farese, A.M.; Kane, M.A. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. Health Phys. 2019, 116, 453. [Google Scholar] [CrossRef]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 8th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2019. [Google Scholar]
- Robbins, M.E.; Zhao, W. Chronic oxidative stress and radiation-induced late normal tissue injury: A review. Int. J. Radiat. Biol. 2004, 80, 251–259. [Google Scholar] [CrossRef]
- Zhao, W.; Robbins, M.E. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 2009, 16, 130–143. [Google Scholar] [CrossRef]
- Eccles, L.J.; O’Neill, P.; Lomax, M.E. Delayed repair of radiation induced clustered DNA damage: Friend or foe? Mutat. Res. Mol. Mech. Mutagen. 2011, 711, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Benderitter, M.; Vincent-Genod, L.; Pouget, J.P.; Voisin, P. The cell membrane as a biosensor of oxidative stress induced by radiation exposure: A multiparameter investigation. Radiat. Res. 2003, 159, 471–483. [Google Scholar] [CrossRef]
- Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta 2005, 1703, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Clemens, M.R.; Ladner, C.; Schmidt, H.; Ehninger, G.; Einsele, H.; Bühler, E.; Waller, H.D.; Gey, K.F. Decreased essential antioxidants and increased lipid hydroperoxides following high-dose radiochemotherapy. Free Radic. Res. Commun. 1989, 7, 227–232. [Google Scholar] [CrossRef]
- Jelonek, K.; Pietrowska, M.; Widlak, P. Systemic effects of ionizing radiation at the proteome and metabolome levels in the blood of cancer patients treated with radiotherapy: The influence of inflammation and radiation toxicity. Int. J. Radiat. Biol. 2017, 93, 683–696. [Google Scholar] [CrossRef]
- Gross, N.J. Pulmonary effects of radiation therapy. Ann. Intern. Med. 1977, 86, 81–92. [Google Scholar] [CrossRef]
- Carter, C.L.; Jones, J.W.; Barrow, K.; Kieta, K.; Taylor-Howell, C.; Kearney, S.; Smith, C.P.; Gibbs, A.; Farese, A.M.; MacVittie, T.J.; et al. A MALDI-MSI Approach to the Characterization of Radiation-Induced Lung Injury and Medical Countermeasure Development. Health Phys. 2015, 109, 466–478. [Google Scholar] [CrossRef] [Green Version]
- Rustam, Y.H.; Reid, G.E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90, 374–397. [Google Scholar] [CrossRef]
- Gatto, L.; Hansen, K.D.; Hoopmann, M.R.; Hermjakob, H.; Kohlbacher, O.; Beyer, A. Testing and Validation of Computational Methods for Mass Spectrometry. J. Proteome Res. 2016, 15, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Mittendorfer, B. Sexual Dimorphism in Human Lipid Metabolism. J. Nutr. 2005, 135, 681–686. [Google Scholar] [CrossRef]
- Williamson, J.R.; Cooper, R.H. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 1980, 117, K73–K85. [Google Scholar] [CrossRef] [Green Version]
- Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantopoulos, K.; Hentze, M.W. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 1995, 14, 2917–2924. [Google Scholar] [CrossRef]
- Tominaga, H.; Kodama, S.; Matsuda, N.; Suzuki, K.; Watanabe, M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J. Radiat. Res. 2004, 45, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumien, N.; Shetty, R.A.; Gonzales, E.B. Creatine, Creatine Kinase, and Aging. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Springer: Singapore, 2018; pp. 145–168. [Google Scholar]
- Haberland, G.L.; Schreier, K.; Bruns, F.; Altman, K.I.; Hempelmann, L.H. Creatine-creatinine metabolism in radiation myopathy. Nature 1955, 175, 1039–1040. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M. Creatine as a therapeutic strategy for myopathies. Amino Acids 2011, 40, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.S.; Milone, M. Clinical and laboratory findings of 21 patients with radiation-induced myopathy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 152–158. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Parshad, A.; Walzel, B.; Schlattner, U.; Wallimann, T. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve 2001, 24, 682–688. [Google Scholar] [CrossRef]
- Guipaud, O.; Benderitter, M. Protein biomarkers for radiation exposure: Towards a proteomic approach as a new investigation tool. Ann. Ist. Super. sanità 2009, 45, 278–286. [Google Scholar]
- Kaur, A.; Ten Have, G.A.M.; Hritzo, B.; Deutz, N.E.P.; Olsen, C.; Moroni, M. Morphological and functional impairment in the gut in a partial body irradiation minipig model of GI-ARS. Int. J. Radiat. Biol. 2020, 96, 112–128. [Google Scholar] [CrossRef]
- Lutgens, L.; Lambin, P. Biomarkers for radiation-induced small bowel epithelial damage: An emerging role for plasma Citrulline. World J. Gastroenterol. 2007, 13, 3033–3042. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, Y.; Yamada, E.; Yoshida, T.; Takahashi, N. Effect of intestinal resection and arginine-free diet on rat physiology. Am. J. Physiol. Gastrointest. Liver Physiol. 1995, 269, G313–G318. [Google Scholar] [CrossRef]
- Yang, S.; He, X.; Liu, Y.; Ding, X.; Jiang, H.; Tan, Y.; Lu, H. Prognostic Significance of Serum Uric Acid and Gamma-Glutamyltransferase in Patients with Advanced Gastric Cancer. Dis. Markers 2019, 2019, 1415421. [Google Scholar] [CrossRef]
- Scheepers, L.E.; Wei, F.; Stolarz-Skrzypek, K.; Malyutina, S.; Tikhonoff, V.; Thijs, L.; Salvi, E.; Barlassina, C.; Filipovský, J.; Casiglia, E.; et al. THU0519 Xanthine Oxidase Gene Variants and Their Association with Blood Pressure and Incident Hypertension: A Population Study. Ann. Rheum. Dis. 2016, 75, 379–380. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Kudva, A.K.; Raghu, S.V.; Patil, R.K. Radioprotective role of uric acid: Evidence from studies in Drosophila and human dermal fibroblast cells. Mol. Biol. Rep. 2020, 47, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiller, J.; Fuchs, B.; Arnhold, J.; Arnold, K. Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: Molecular pathways, diagnosis and potential therapeutic strategies. Curr. Med. Chem. 2003, 10, 2123–2145. [Google Scholar] [CrossRef]
- Wolrab, D.; Jirásko, R.; Chocholoušková, M.; Peterka, O.; Holčapek, M. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. TrAC Trends Anal. Chem. 2019, 120, 115480. [Google Scholar] [CrossRef]
- Haimovitz-Friedman, A.; Kan, C.C.; Ehleiter, D.; Persaud, R.S.; McLoughlin, M.; Fuks, Z.; Kolesnick, R.N. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 1994, 180, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Rotolo, J.; Stancevic, B.; Zhang, J.; Hua, G.; Fuller, J.; Yin, X.; Haimovitz-Friedman, A.; Kim, K.; Qian, M.; Cardo-Vila, M.; et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J. Clin. Investig. 2012, 122, 1786–1790. [Google Scholar] [CrossRef]
- Hao, D.; Sarfaraz, M.O.; Farshidfar, F.; Bebb, D.G.; Lee, C.Y.; Card, C.M.; David, M.; Weljie, A.M. Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment. Metabolomics 2016, 12, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, T.D.; Laiakis, E.C.; Goudarzi, M.; Fornace, A.J., Jr. Selective paired ion contrast analysis: A novel algorithm for analyzing postprocessed LC-MS metabolomics data possessing high experimental noise. Anal. Chem. 2015, 87, 3177–3186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagnebin, Y.; Tonoli, D.; Lescuyer, P.; Ponte, B.; de Seigneux, S.; Martin, P.Y.; Schappler, J.; Boccard, J.; Rudaz, S. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies. Anal. Chim. Acta 2017, 955, 27–35. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Species | Radiation Geometry | Dose (Gy) | Radiation Type | Timepoint(s) Post-IR | Sample Matrix | Analytical Platform | Technique | Source | Significance | Trend | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Citric Acid | Mouse | TBI | 3, 8 | γ-ray | 1 day | Urine | LC–MS | P | Tyburski et al. 2008 [43] | NS | Inc | |
. | . | 8 | x-ray | 1–7 days | . | 1H NMR | . | Chen et al. 2011 [42] | * | Dec | ||
. | . | 1.1,4.45 | γ-ray | 2–5 days | . | LC–MS | . | Goudarzi et al. 2014a [40] | * | Dec | ||
. | Internal | 1.95–9.91 | . | 2, 5, 20, 30 days | . | . | . | Goudarzi et al. 2014b [41] | * | Dec | ||
. | . | 1.81–5.25 | β | 7–30 days | . | . | . | Goudarzi et al. 2015c [24] | NS | Dec | ||
. | TBI | 5,12 | x-ray | 3, 14, 30 days | Feces | . | . | Goudarzi et al. 2016a [44] | * | Inc | ||
Rat | . | 3 | γ-ray | 1, 2, 3 days | Urine | GC–MS | . | Lanz et al. 2009 [33] | * | Dec | ||
NHP | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | . | Pannkuk et al. 2017a [22] | * | Dec | ||
. | . | 4 | . | 1–60 days | Urine + Serum | . | . | Pannkuk et al. 2019a [34] | * | Dec | ||
Human | PBI | 2–3.4 | x-ray | 36 h | Tissue (brain) | . | . | Wibom et al. 2010 [39] | * | Inc | ||
Creatine | Mouse | TBI | 8 | x-ray | 1–7 days | Urine | 1 H NMR | P | Chen et al. 2011 [42] | * | Inc | |
Rat | . | 0.5–10 | γ-ray | 6–72 h | . | LC–MS | P + T | Mak et al. 2015a [45] | * | Inc | ||
NHP | . | 6.5, 7.2 | . | 12, 24 h | Serum | . | T | Pannkuk et al. 2018a [18] | NS | Inc | ||
. | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | Urine | . | P + T | Johnson et al. 2012 [46] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | DMS–MS | T | Chen et al. 2018 [8] | U | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | LC–MS | P | Pannkuk et al. 2015 [47] | * | Dec → Inc | ||
. | . | 4 | . | 1–60 days | Urine + Serum | . | P + T | Pannkuk et al. 2019b [48] | ** | Inc | ||
Citrulline | Mouse | TBI | 8–15 | x-ray | 1–6 days | Plasma | LC–MS | T | Jones et al. 2014a [5] | * | Dec | |
. | TBI/PBI | 10, 50 | γ-ray | 1 day | . | GC/LC–MS | P + T | Kurland et al. 2015 [31] | NS | Dec | ||
. | TBI | 6–15 | x-ray | 1–6 days | . | LC–MS | T | Jones et al. 2015a [49] | ** | Dec | ||
. | . | 13 | . | 1–7 days | . | . | . | Jones et al. 2014b [50] | U | Dec | ||
. | Internal/TBI | 2, 4.1, 4.4 | β/γ-/x-ray | Up to 30 days | Urine | . | . | Goudarzi et al. 2016b [51] | ** | V | ||
. | TBI | 8, 8.72 | γ-ray | 3, 9 days | Serum | . | P | Jones et al. 2019a [52] | ** | Dec | ||
. | . | 8, 10, 12, 14 | x-ray | 1, 3 days | Jejunum + Plasma | . | T | Jones et al. 2019b [35] | ** | Dec | ||
Rat | . | 2, 4, 6, 8 | . | 5, 24, 72 h | Plasma | . | . | Tang et al. 2013 [19] | * | Dec | ||
Pig | . | 10 | γ-ray | 1–7 days | . | . | . | Jones et al. 2014b [50] | U | Dec | ||
. | PBI | 10, 15 | . | Up to 37 days | . | . | . | Shim et al. 2014 [53] | * | Dec | ||
NHP | TBI | 2, 4, 6, 7, 10 | . | 7 days | Serum | . | . | Pannkuk et al. 2016b [20] | * | Dec | ||
. | . | 4 | . | 1–60 days | Saliva | . | P | Laiakis et al. 2019b [17] | ** | V | ||
. | TBI/PBI | 7.5–13 | x-ray | Up to 180 days | Plasma | . | T | Jones et al. 2015b [54] | ** | Dec | ||
. | TBI | 10.5 | . | 1–7 days | . | . | . | Jones et al. 2014b [50] | U | Dec | ||
Human | PBI | 45–75.6 | . | 21–112 days | . | . | . | Onal et al. 2011 [55] | ** | Dec | ||
Taurine | Mouse | TBI | 3, 8 | γ-ray | 1 day | Urine | LC–MS | P | Tyburski et al. 2008 [43] | ** | Inc | |
. | . | 8 | x-ray | 1–7 days | . | 1H NMR | . | Chen et al. 2011 [42] | * | Inc → Dec | ||
. | . | 3, 8, 15 | γ-ray | Up to 15 days | . | LC–MS | . | Laiakis et al. 2012 [56] | * | Inc | ||
. | Internal | 1.95–9.91 | . | 2–30 days | . | . | . | Goudarzi et al. 2014b [41] | * | Inc | ||
. | . | 1.95 | . | 2–30 days | Serum | . | . | Goudarzi et al. 2015b [23] | ** | Dec | ||
. | TBI | 5, 12 | x-ray | 3 days | Feces | . | . | Goudarzi et al. 2016a [44] | * | Inc | ||
. | . | 0.25, 1, 4 | Neutron | 1, 7 days | Urine + Serum | . | . | Laiakis et al. 2017a [4] | * | Dec | ||
Rat | . | 3 | γ-ray | Up to 3 days | Urine | . | . | Johnson et al. 2011 [13] | ** | Inc | ||
NHP | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | . | Pannkuk et al. 2016a [29] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | Serum | . | . | Pannkuk et al. 2015 [47] | * | Dec → Inc | ||
. | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | Urine | . | P + T | Johnson et al. 2012 [46] | * | Inc | ||
Carnitine | Mouse | TBI | 8.0, 8.72 | γ-ray | 3, 6, 9 days | Serum | LC-MS | P | Jones et al. 2019a [52] | * | Dec | |
. | Internal | 1.95–9.91 | . | 2–30 days | . | . | . | Goudarzi et al. 2015b [23] | * | Dec | ||
. | TBI | 8 | . | 1 day | . | . | . | Laiakis et al. 2014b [57] | * | Inc | ||
Rat | . | 0.5–10 | . | 6,24,48,72 h | Urine + Serum | . | P + T | Mak et al. 2015a [45] | * | Inc | ||
NHP | . | 6.5 | . | 12, 24 h | Serum | . | T | Pannkuk et al. 2018a [18] | ** | Dec → Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | Urine | . | P | Pannkuk et al. 2015 [47] | ** | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | Serum | . | T | Pannkuk et al. 2016b [20] | ** | Inc | ||
. | . | 4 | . | 1–60 days | Urine + Serum | . | P + T | Pannkuk et al. 2019b [48] | ** | Inc | ||
Xanthine | Mouse | TBI | 1, 2, 3 | γ-ray | Up to 9 days | Urine | LC–MS | P | Tyburski et al. 2009 [14] | * | Inc | |
NHP | . | 4 | . | 1–60 days | Urine + Serum | . | P + T | Pannkuk et al. 2019b [48] | * | V | ||
. | . | 4 | . | 1–60 days | Saliva | . | P | Laiakis et al. 2019b [17] | * | V | ||
. | . | 6.5 | . | 12, 24 h | Serum | . | T | Pannkuk et al. 2018a [18] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | Urine | DMS–MS | . | Chen et al. 2018 [8] | NS | Inc | ||
. | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | . | LC–MS | P + T | Johnson et al. 2012 [46] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | P | Pannkuk et al. 2015 [47] | NS | V | ||
Human | . | 3.75 | x-ray | 4–24 h | . | . | . | Laiakis et al. 2014a [58] | * | Inc | ||
Creatinine | Mouse | TBI | 8.0, 8.72 | γ-ray | 3, 6, 9 days | Serum | LC–MS | P | Jones et al. 2019a [52] | * | Dec | |
. | . | 2 | . | 2 months | Intestinal issue | . | . | Cheema et al. 2014 [30] | * | Inc | ||
NHP | . | 2, 4, 6, 7, 10 | . | 7 days | Urine | DMS–MS | T | Chen et al. 2018 [8] | NS | Dec | ||
. | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | . | LC–MS | P + T | Johnson et al. 2012 [46] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | P | Pannkuk et al. 2015 [47] | * | Dec | ||
. | PBI | 2 | x-ray | 1 day | Serum | GC–MS | . | Moren et al. 2016 [21] | * | Dec | ||
Hypo-xanthine | Mouse | TBI | 5, 12 | x-ray | 3 days | Feces | LC–MS | P | Goudarzi et al. 2016a [44] | * | Inc | |
NHP | . | 4 | γ-ray | 1–60 days | Saliva | . | . | Laiakis et al. 2019b [17] | ** | Inc | ||
. | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | Urine | . | P + T | Johnson et al. 2012 [46] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | P | Pannkuk et al. 2015 [47] | ** | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | . | Pannkuk et al. 2016a [29] | ** | Dec | ||
. | . | 4 | . | 1–60 days | Urine + Serum | . | P + T | Pannkuk et al. 2019b [48] | ** | Dec | ||
Human | . | 3.75 | x-ray | 4–24 h | Urine | . | P | Laiakis et al. 2014a [58] | ** | Dec | ||
Uric Acid | Mouse | TBI | 0.25, 1, 4 | Neutron | 1, 7 days | Urine + Serum | LC–MS | P | Laiakis et al. 2017a [4] | * | Dec | |
. | . | 10 (cGy) | x-ray | 36 h | Plasma | GC–MS | . | Lee et al. 2012 [36] | * | Inc | ||
. | Internal | 1.95–9.91 | γ-ray | 2–30 days | Urine | LC–MS | . | Goudarzi et al. 2015b [23] | ** | Inc | ||
. | TBI | 3, 8, 15 | . | Up to 15 days | . | . | . | Laiakis et al. 2012 [56] | * | Inc | ||
. | Internal | 1.95–9.91 | . | 2–30 days | . | . | . | Goudarzi et al. 2014b [41] | * | Inc | ||
Rat | TBI | 0.5 - 10 | . | 6–72 h | . | . | P + T | Mak et al. 2015a [45] | * | Inc | ||
NHP | . | 1, 3.5, 6.5, 8.5 | . | 12–72 h | . | . | P + T | Johnson et al. 2012 [46] | * | Inc | ||
Human | . | 3.75 | x-ray | 4–24 h | . | . | P | Laiakis et al. 2014a [58] | ** | Inc | ||
. | PBI | 70 | . | U | Plasma | LC/GC–MS | T | Roszkowski et al. 2008 [59] | ** | Dec | ||
Threonine | Mouse | TBI | 8, 10, 12, 14 | x-ray | 1, 3 days | Jejunum + Plasma | LC–MS | T | Jones et al. 2019b [35] | * | Inc | |
. | TBI+PBI | 10, 50 | γ-ray | 1 day | Liver + Plasma | LC/GC–MS | P + T | Kurland et al. 2015 [31] | * | Dec | ||
Rat | TBI | 2, 4, 6, 8 | x-ray | 5, 24, 72 h | Plasma | LC–MS | T | Tang et al. 2013 [19] | U | Inc | ||
. | . | 0.75, 3, 8 | γ-ray | 1 day | Serum | GC–MS | P | Liu et al. 2013 [27] | * | Inc | ||
NHP | . | 4 | . | 1–60 days | Urine + Serum | . | . | Pannkuk et al. 2019a [34] | * | Inc | ||
. | . | 2, 4, 6, 7, 10 | . | 7 days | . | . | . | Pannkuk et al. 2017a [22] | * | Dec→ Inc | ||
Human | PBI | 2 (multiple) | x-ray | 1 day | Serum | . | . | Moren et al. 2016 [21] | * | Dec |
Timepoint(s) Post-IR | DG | TG | LPC | Radiation Type | Dose (Gy) | Sample Matrix | Analytical Platform | Technique | Source | Species |
---|---|---|---|---|---|---|---|---|---|---|
Day 1 | Dec | Dec | Dec | γ-ray | 6.5 | serum | LC-MS | P | Pannkuk et al., 2017c [66] | NHP |
Day 2–6 | Inc | Inc | *Inc | |||||||
Day 8–12 | Inc | Inc | BL | |||||||
Day 21–28 | Dec | BL | BL | |||||||
Day 1 | * Dec | BL | BL | γ-ray/ neutron | 3 | serum | LC-MS | P + T | Laiakis et al., 2019a [12] | Mouse |
Day 7 | * Dec | * Inc | * Inc |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente, E.; Vujaskovic, Z.; Jackson, I.L. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites 2020, 10, 259. https://doi.org/10.3390/metabo10060259
Vicente E, Vujaskovic Z, Jackson IL. A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites. 2020; 10(6):259. https://doi.org/10.3390/metabo10060259
Chicago/Turabian StyleVicente, Elisabeth, Zeljko Vujaskovic, and Isabel L. Jackson. 2020. "A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury" Metabolites 10, no. 6: 259. https://doi.org/10.3390/metabo10060259
APA StyleVicente, E., Vujaskovic, Z., & Jackson, I. L. (2020). A Systematic Review of Metabolomic and Lipidomic Candidates for Biomarkers in Radiation Injury. Metabolites, 10(6), 259. https://doi.org/10.3390/metabo10060259