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Abstract: Liquid chromatography coupled to high-resolution mass spectrometry platforms are 

increasingly employed to comprehensively measure metabolome changes in systems biology and 

complex diseases. Over the past decade, several powerful computational pipelines have been 

developed for spectral processing, annotation, and analysis. However, significant obstacles remain 

with regard to parameter settings, computational efficiencies, batch effects, and functional 

interpretations. Here, we introduce MetaboAnalystR 3.0, a significantly improved pipeline with 

three key new features: (1) efficient parameter optimization for peak picking; (2) automated batch 

effect correction; and 3) more accurate pathway activity prediction. Our benchmark studies showed 

that this workflow was 20~100X faster compared to other well-established workflows and produced 

more biologically meaningful results. In summary, MetaboAnalystR 3.0 offers an efficient pipeline 

to support high-throughput global metabolomics in the open-source R environment. 
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1. Introduction 

Global or untargeted metabolomics is increasingly used to investigate metabolic changes of 

various biological or environmental systems in an unbiased manner [1,2]. Liquid chromatography 

coupled to high-resolution mass spectrometry (LC-HRMS) has become the main workhorse for global 

metabolomics [3,4]. The typical LC-HRMS metabolomics workflow involves spectra collection, raw 

data processing, statistical and functional analysis [5]. A wide array of bioinformatics tools have been 

developed to address one or several of these steps [5,6]. Despite significant progress made in recent 

years, critical issues remain with regard to several key steps involved in the current metabolomics 

workflow. 

The first issue is related to peak detection during raw spectra processing. Improving the ability 

to extract real compound signals and reduce noise is crucial to avoid noise inflation prior to statistical 

and functional analyses. Default parameters provided by common spectra processing tools are not 

applicable to all experiments [7], and misuse of parameters can lead to significant issues in data 

quality [8]. To mitigate this issue, commercial tools such as Waters MassLynx™ and open-source 

software such as XCMS [9] and MZmine [10] allow users to specify multiple parameters to define LC-

MS scan signals as chromatographic peaks. Although useful, such manual configuration assumes 

users are familiar with the experiments, which is often not the case. To facilitate the process, several 

tools and protocols have been developed for optimizing parameters for spectra processing. For 

instance, Isotopologue Parameter Optimization (IPO) is an R package designed to estimate the best 
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parameters for XCMS [11]. While the approach is effective, its stepwise optimization based on the 

entire spectra is very time consuming. IPO can often take days to weeks to compute the optimized 

parameters. Another recent tool is AutoTuner [12], which optimizes peak widths based on pre-

defined extracted ion chromatograms (EIC). Despite being more computationally efficient than IPO, 

it may lead to potential errors due to unverified EICs used. Aside from these tools, Design of 

Experiment (DoE) strategies based on diluted samples provide a relative time-saving protocol for 

parameter optimization, but requires an extra series of diluted standards to be prepared [13]. Another 

optimization strategy, One Variable at A Time (OVAT) [14], attempts to maintain the lowest 

coefficient of variation of peaks within a group, but this method takes even more computational time 

than IPO, in our experience. 

The second issue is batch effect, which is commonly associated with large-scale clinical or 

population studies when samples are analyzed in different batches or across a long time period 

[15,16]. Over the course of spectral collection, chromatographic conditions can change and baselines 

can drift [17]. To address this issue, several types of batch correction methods have been developed 

based on quality control (QC) samples, QC metabolites, internal standards, matrix factorization, or 

location-scale normalization [18]. These methods are based on different assumptions with their own 

advantages and limitations. Selecting a suitable batch correction method is critical, as it has a 

significant impact on downstream statistical and functional analysis. 

Finally, biological interpretation of metabolomics data typically requires metabolites to be first 

identified prior to functional analysis. This process is very time consuming and remains a key 

bottleneck in global metabolomics [19,20]. The mummichog algorithm has introduced the concept of 

predicting pathway activity from ranked LC-MS peaks based on matching patterns of putatively 

annotated metabolites [21]. The algorithm is available as Python scripts [22]. To support the broad R 

user community, previous versions of MetaboAnalystR [5,23] implemented mummichog v1.08. The 

recently released version 2 has added several improvements including the use of retention time (RT) 

to refine the grouping of signals into empirical compounds (EC). The inclusion of retention time will 

reduce false-positive annotations to increase the accuracy of pathway activity prediction.  

Here, we introduce version 3.0 of MetaboAnalystR. Compared to its predecessor, version 3.0 has 

three key features: (1) efficient parameter optimization for spectral peak picking; (2) automatic 

selection of an optimal batch correction approach from 12 well-established methods; and (3) 

incorporation of retention time coupled with updated pathway libraries for improved pathway 

activity prediction. The performances of these new features are assessed in the three case studies 

below. 

2. Results 

MetaboAnalystR 3.0 aims to provide an efficient pipeline to support end-to-end analysis of LC-

HRMS metabolomics data in a high-throughput manner. This open-source R package is freely 

available at the GitHub repository [24]). Detailed tutorials, manuals, example datasets, and R scripts 

are also included in the repository. The enhanced key points in the global metabolomics workflow of 

MetaboAnalystR 3.0 is summarized in Figure 1. 
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Figure 1. MetaboAnalystR 3.0 provides an optimized workflow for global metabolomics. (A) 

optimized peak picking, (B) automized batch effect correction, and (C) improved pathway activity 

prediction. 

In comparison with other currently available parameter optimization tools, MetaboAnalystR 3.0 

adopts an optimization strategy based on regions of interest (ROI) to avoid the time-consuming step 

of recursive peak detection using complete spectra. Briefly, the algorithm first scans the whole spectra 

across m/z and retention time dimensions to select several ROIs that are enriched for real peaks. 

Second, these ROIs are then extracted as new synthetic spectra. Finally, a DoE model is used to 

optimize peak picking parameters based on the synthetic spectra (See Methods, 5.1. Peak Picking 

Optimization for more detail). 

In this study, three benchmark datasets were used to evaluate the performance of 

MetaboAnalystR 3.0 including four standard mixture (SM) samples from a recent benchmark study 

[25], 12 standard reference materials samples from the National Institute of Standards and 

Technology (NIST), and 12 Quality Control (QC) samples from a large-scale metabolomics study on 

inflammatory bowel disease (IBD) [15]. The overall time to complete the parameter optimization by 

the four different tools is shown in Figure 2. Compared to OVAT and IPO, there was a significant 

improvement in terms of speed for MetaboAnalystR 3.0. The CV based OVAT strategy took days to 

complete (>4 days for four samples), which is impractical for real-world datasets. Therefore, OVAT 

was not included in the case studies described in later sections.  

 

Figure 2. Time consumed by One Variable at A Time (OVAT), Isotopologue Parameter Optimization 

(IPO) , MetaboAnalystR, and AutoTuner for parameter optimization on three different datasets. The 

evaluations were performed on a desktop computer (Ubuntu 18.04.3 with an Intel® Core™ i7-4790 

CPU and 32 GB of memory). 

2.1. Peak Identification Benchmark Case Study 

The performance of the optimized parameters for peak picking was evaluated with the SM 

samples consisting of 1100 common metabolites and drugs [25]. The results of the raw data 

processing tools: (i) XCMS-Online with default parameters, XCMS R package (v3.8.2) with parameter 

optimization using (ii) IPO or (iii) AutoTuner, and (iv) MetaboAnalystR 3.0, are shown in Table 1. 
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Table 1. Qualitative peak picking results of the different tools using different settings. 

Methods Total Peaks True Peaks  
Quantified 
Consensus 

Gaussian Peak 
Ratio 

Default 16896 382 350 47.8% 

IPO 24346 744 663 52.0% 

AutoTuner 25517 664 603 40.5% 

MetaboAnalystR 3.0 18044 799 754 64.4% 

True peaks are peaks that match the targeted metabolomics results with m/z ppm <10 and RT 

difference <0.3 min. Qualified consensus refers to the peaks where the relative error of intensity ratio 

between the two groups is less than 50% compared with the actual concentration. Gaussian Peak Ratio 

is the ratio of peaks with shapes following a Gaussian distribution (cor > 0.9 and P < 0.05). 

From Table 1, it is clear that the default parameters for XCMS are not optimal for this dataset. 

All parameter optimization tools (IPO, AutoTuner, and MetaboAnalystR 3.0) significantly improved 

the number of true peaks as well as peaks with consensus qualification. With regard to true peaks 

and quantified consensus peaks, MetaboAnalystR 3.0 increased 109.1% and 115.4%, respectively, 

compared to the default XCMS. For IPO and AutoTuner, as the number of true peaks increased, so 

did the total number of peaks, indicating a potential inflation of noise. Meanwhile MetaboAnalystR 

3.0 maintained a low total number of peaks (increase of 6.79% compared with default XCMS). In 

addition to the quantification of true peaks, we calculated the number of identified peaks following 

a Gaussian distribution. Peaks with a cor estimate over 0.9 and P value less than 0.05 are considered 

Gaussian Peaks. XCMS under different parameters (default, IPO and AutoTuner) displayed different 

performances on the peak simulation. Meanwhile, peaks picked by MetaboAnalystR 3.0 had the 

highest Gaussian Peaks ratio compared with other strategies. 

2.2. Algorithm Reliability Benchmark Case Study 

The reliability of MetaboAnalystR 3.0 and other tools/approaches were evaluated using the NIST 

SRM 1950 diluted serum series [26]. The performance was assessed using the reliability index (RI) as 

defined by Zheng et al. [13]. Briefly, peaks following the linearity in diluted series are considered to 

be reliable peaks, the higher the RI value, the better the data quality [27]. RI is used to describe the 

general relative reliability of all identified peaks, while Linear peaks is the absolute count of peaks 

following linearity. The results from the four approaches are summarized in Figure 3. 

 

Figure 3. Assessment of the performance of different tools utilizing the NIST 1950 serum dilution 

series. (A) Reliability Index (RI) vs. processing speed for three optimization strategies compared to 

the default. (B) A bar graph showing the number of peaks with good linearity (P < 0.001). 

As shown in Figure 3A, compared to the default (no optimization), IPO produces the best RI 

value (6252), however, at the cost of speed (316 minutes in total). Meanwhile MetaboAnalystR 3.0 has 
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both good RI performance (5658) and acceptable speed (total of 49 minutes for optimization and data 

processing). AutoTuner is the fastest for optimization and data processing, but the improvement on 

RI is marginal. The number of peaks that meet the linearity (P < 0.001) are summarized in Figure 3B. 

MetaboAnalystR 3.0 produced the largest number of linear peaks compared to the other options. 

2.3. Overall Workflow Evaluation Using A Large-Scale Clinical Dataset 

To evaluate the performance of the overall workflow, we applied the data processing pipeline 

on 545 clinical metabolomics samples obtained from the Inflammatory Bowel Disease (IBD) 

Multiomics Database [15]. The dataset includes 58 QC samples assayed per every 20 patients’ 

samples. The QCs are a pooled mixture of all patients’ samples. Raw data processing identified a total 

of 8542 peak features using the optimized picking parameters compared to 6653 peaks with the 

default settings. The peak intensity tables were subjected to PCA and batch effect correction as shown 

in Figure 4.  

 

Figure 4. Performance evaluation using Inflammatory Bowel Disease (IBD) data. Principal 

Component Analysis (PCA) of peaks profiled with (A) default parameters and (B) optimized 

parameters. (C) Performance of batch effect correction by different strategies. Among them, EigenMS 

behaved the best (indicated by *). (D) PCA of the optimized and batch corrected data. 

Given that the QC samples are a homogenous mixture of all of the patients’ samples, they are 

expected to locate in the center of the PCA as a tight cluster. However, this was not the case using the 

default parameters (Figure 4A). Using optimized parameters, these pooled QC samples were better 

mixed with the other samples (Figure 4B). However, both A and B showed systematic variations 

among these samples, suggesting batch effects in this large-scale study. In this case, 

MetaboAnalystR3.0 applied batch effect correction with the Combat, Analysis of Covariance 

(ANCOVA) , WaveICA, Quality Control-robust LOESS signal correction (QC-RLSC), and EigenMS 

methods, respectively. The PCA distances among all QC samples are summarized in Figure 4C, 

which indicates that the best correction was performed by EigenMS, a method based on singular 

value decomposition to detect and correct for systematic bias [28]. After applying EigenMS, QCs were 

tightly clustered together and biological samples were clustered based on their biological origins 

(Figure 4D), providing strong evidence for the utility of the batch effect correction method selected 

by MetaboAnalystR 3.0. 

Predicting pathway activities directly from LC-HRMS peaks can significantly accelerate 

biological discoveries in global metabolomics. We have previously implemented mummichog v1.08 
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within MetaboAnalystR 2.0. Now, MetaboAnalystR 3.0 has incorporated a major update of 

mummichog (v2.0) with retention time integration. To demonstrate the improvements to biological 

interpretation stemming from both the optimized pre-processing steps and the updated mummichog 

algorithm, we applied both versions of the mummichog algorithm using the human BiGG and 

Edinburgh Model pathway library (“has_mfn”) to compare the biological significance detected by 

the original pipeline (default peak parameters and non-corrected data, as shown in Figure S1) versus 

the optimized pipeline. For the Crohn’s disease (CD) and non-IBD controls, a total of 3048 features 

were identified using the optimized pipeline and 2364 features using the non-optimized pipeline. For 

the non-optimized dataset, mummichog v1.08 identified no significant pathways (Gamma-adjusted 

P value < 0.05), while mummichog v2.0 identified 16 significantly different pathways (Tables S3 and 

4). Similarly, for the optimized dataset, mummichog v1.08 identified only nine significantly 

perturbed pathways, whilst v2.0 identified 17 significantly perturbed pathways (Table 2). Evidently, 

mummichog v2.0, with its integration of RT information to group related m/z features into empirical 

compounds, reveals more biological insights than its predecessor. Moreover, mummichog results 

(both v1.08 and v2.0) for the optimized versus non-optimized dataset consistently identified 

differences in Bile acid biosynthesis, Vitamin D metabolism, and Vitamin E metabolism between CD 

patients and non-IBD controls. The details of the pathways identified are summarized in Tables S3–

S6. Finally, both versions of mummichog algorithms also consistently identified a higher total 

number of pathways for the optimized dataset, versus the non-optimized dataset. This highlights the 

importance of data calibration to improve the detection of true biological signals. The other 

comparisons (ulcerative colitis vs. non-IBD control) showed similar results, as shown in Figure S2. 

Table 2. The pathway enrichment results (top 20, Crohn’s disease vs. non-IBD) generated by 

mummichog v1.0.8 and v2.0. Insignificant pathways (P value > 0.05) are shown in grey text. 

Mummichog v1.0.8 Mummichog v2.0 

Pathways P Value Pathways P Value 

Bile acid biosynthesis 0.017199 Bile acid biosynthesis 0.011283 

Vitamin D3 (cholecalciferol) 

metabolism 
0.017526 Vitamin E metabolism 0.011321 

Vitamin E metabolism 0.017966 
Vitamin D3 (cholecalciferol) 

metabolism 
0.014207 

Carnitine shuttle 0.018084 Galactose metabolism 0.016026 

Glycosphingolipid 

metabolism 
0.021048 

Glycerophospholipid 

metabolism 
0.020464 

De novo fatty acid 

biosynthesis 
0.026554 Carnitine shuttle 0.021085 

Keratan sulfate degradation 0.031317 
Chondroitin sulfate 

degradation 
0.025739 

Fatty Acid Metabolism 0.032132 
Vitamin B2 (riboflavin) 

metabolism 
0.025739 

N-Glycan Degradation 0.043912 Vitamin H (biotin) metabolism 0.025739 

Phosphatidylinositol 

phosphate metabolism 
0.053756 Fatty acid oxidation 0.025739 

Hexose phosphorylation 0.069236 Omega-6 fatty acid metabolism 0.025739 

Fatty acid activation 0.075044 Glycosphingolipid metabolism 0.041115 

Limonene and pinene 

degradation 
0.078492 

Phosphatidylinositol 

phosphate metabolism 
0.043604 

Chondroitin sulfate 

degradation 
0.082534 Hyaluronan Metabolism 0.04815 

Glycosphingolipid 

biosynthesis - globoseries 
0.082534 

Putative anti-Inflammatory 

metabolites formation from 

EPA 

0.04815 

Saturated fatty acids beta-

oxidation 
0.082534 Electron transport chain 0.04815 

Heparan sulfate degradation 0.082534 Heparan sulfate degradation 0.04815 

Glycerophospholipid 

metabolism 
0.09418 Sialic acid metabolism 0.061564 
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Starch and Sucrose 

Metabolism 
0.13566 Vitamin A (retinol) metabolism 0.061564 

Ascorbate (Vitamin C) and 

Aldarate Metabolism 
0.14503 

Saturated fatty acids beta-

oxidation 
0.061564 

3. Discussion 

The previous version (v2.0) of MetaboAnalystR provided an end-to-end workflow to process 

raw LC-HRMS metabolomics data [5]. This new version (v3.0) has further enhanced three key steps 

of this workflow by focusing on efficient optimization for peak picking, improved batch effect 

correction, and more meaningful putative compound annotations for pathway analysis. 

Parameter optimization remains a computational bottleneck in current raw LC-HRMS spectra 

data processing. Most tools rely on users to manually adjust the default parameters, which is 

inconvenient as users need to be very familiar with their MS instruments and experimental setup. 

The key concept of our optimization strategy is to use a subset of spectra based on multiple ROIs that 

are enriched for real peaks, instead of using complete spectra. These ROIs are selected based on the 

characteristics of the eluted compounds’ peaks across the whole chromatogram to extract peaks with 

wide m/z ranges (see Materials and Methods for more detail). The subsequent optimization is 

performed on peaks in these ROIs. One potential criticism we anticipate is the “bias” toward high-

intensity peaks. We would like to point out that this is generally not the case - low intensity peaks are 

sufficiently represented in these ROIs due to the sparse nature of LC-HRMS spectra (see Figure 5 in 

Materials and Methods). By focusing computational resources on real signals instead of noise, our 

approach has significantly accelerated the process for practical applications. Meanwhile, users can 

manually adjust the default m/z or RT window for selecting ROIs. The qualitative and quantitative 

efficacy of this approach have been demonstrated by two benchmark datasets. In particular, a 

significant improvement on the identification of true peak features has been observed using a known 

standards benchmark dataset [25]. This resulted from the increased emphasis on the Gaussian fitting 

and peak group stability at the same time, rather than only focusing on the number of detected 

isotopes. The quantitative improvement of the parameters optimized by MetaboAnalystR 3.0 was 

also illustrated using the NIST SRM 1950 datasets. It should be noted that this data contains only two 

replicates for each concentration, which is a limiting factor for this validation.  

Finally, the IBD data was first processed using the optimized parameters, followed by batch 

correction based on QC samples. The PCA revealed clear group patterns according to different IBD 

groups. Furthermore, more metabolic pathways were reported when using our optimized 

metabolomics workflow. The majority of these pathways are biologically meaningful according to 

previous studies including bile acid [28,29], vitamin E [30], vitamin D3 [31,32], galactose [33], 

glycerophospholipid [33], fatty acid [29,34], and hyaluronan [35] metabolism pathways. Similarly, 

other comparisons between the different IBD groups also produced more perturbed metabolic 

pathways by our optimized workflow in MetaboAnalystR 3.0.  

Using the IBD samples, we also compared the performances of the mummichog algorithm 

implemented in MetaboAnalystR 2.0 versus that in MetboAnalystR 3.0. The main difference between 

their implementations is that retention time information is integrated when performing the putative 

compound annotation. This step moves pathway enrichment from the compound space to the 

empirical compound space formed by grouping co-eluting m/z features. Our results show that the 

new version improves both the number and quality of significant pathways that can be identified, as 

it identified perturbed pathways that are more consistent with IBD literature, as stated above. 

4. Conclusions 

MetaboAnalystR 1.0 provided the comprehensive statistical and functional analysis underlying 

the MetaboAnalyst web application, while MetaboAnalystR 2.0 equipped v1.0 with comprehensive 

raw LC-MS data processing and pathway activity prediction from MS peaks. MetaboAnalystR 3.0 

has further enhanced three key aspects of the LC-MS data processing workflow including parameter 

optimization for peak picking, adaptive batch effect correction, and improved annotation of putative 
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compounds for pathway activity prediction. MetaboAnalystR 3.0 represents our latest efforts toward 

developing an efficient pipeline for high-throughput global metabolomics.  

5. Materials and Methods 

5.1. Peak Picking Optimization 

The steps for parameter optimization include representative peaks extraction using the 

PerformDataTrimming function and parameter optimization based on the extracted peaks with the 

PerformParamsOptimization function. The concepts and mathematical details behind each function are 

provided below. 

5.1.1. Extraction of Representative Peaks from Regions of Interest (ROIs) 

The extraction of representative MS peaks is performed with the PerformDataTrimming function, 

which reads raw MS data of common formats (mzXML, mzML, etc.) into memory and extracts peaks 

using three strategies. The first strategy (default option) is named “Standards Simulation Method” 

(ssm). As its first step, at the m/z dimension, ssm divides the whole mass spectra into m/z bins and 

detects the signal intensity with a sliding window in parallel for all bins. The windows with the 

highest scan intensity sum within each bin will be retained, as shown in Figure 5A. Second, at the RT 

dimension, the sliding window method is used again to detect the scan signal intensity and returns 

the window with the highest values (Figure 5B). Synthetic spectra are created based on the returned 

ROIs defined by the two dimensions (m/z and RT). Peaks are extracted from the synthetic spectra to 

simulate standards across the whole m/z range (Figure 5C). These ROIs are enriched for true peaks, 

which are characterized by overall high-intensity signals distributed across the window. It is 

important to note that ROIs still contain a sufficient number of low-intensity signals for optimization, 

as shown in Figure 5D. The RT sliding window is also manually adjustable to cover different 

percentages (0, 100%] of RT dimension to further overcome the potential bias. If there are internal 

standards or quality control metabolites included within the user’s samples, peaks with specific m/z 

and/or RT can be extracted or removed with the modes named “mz_specific” or “rt_specific”. 

 

Figure 5. The selection process of regions of interest (ROIs) that are enriched for true peak signals. 

Red dashes in (A) represent the bin boundaries used for sliding windows’ working to contain the 

most signal points. The whole spectrum is divided evenly into four bins. Four m/z windows (light 
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red area) will slide within each bin respectively in parallel and select the window with the highest 

scan intensity sum in the retained m/z window. RT window (light red area) in (B) will slide across the 

entire RT dimension to get retention time regions with the highest scan signal intensity. (C) The 

intersected MS scan signals from both the m/z and RT dimensions containing four ROIs. (D) The 

zoomed-in view of the ROIs (note low intensity peaks are still abundant). 

5.1.2. Design of Experiment (DoE) Based Optimization 

Once the representative peaks are obtained, the parameter optimization based on these peaks is 

performed with the PerformParamsOptimization function. The noise level (including noise and prefilter 

parameters) and the m/z variation (ppm) of a certain ROI is first evaluated with the kernel density 

estimator model developed by AutoTuner. Then, other detailed peak width and alignment 

parameters (peak width min, peak width max, mzdiff, s/n_thershold and bandwidth) are optimized with the 

DoE model based on the Box–Behnken method, as used by IPO. Unlike IPO, the optimization effects 

during the process is evaluated with the response variable, Quality Score (QS), defined below. 

�� =
���/�

′��� ������ − ���
∗ ��� ∗ ���� 

where RP is the reliable peaks and LIP is the low-intensity peaks, as defined by IPO according to the 

isotopes detected by CAMERA. Briefly, RPs refers to peaks with detectable isotopes. “all peaks” means 

all peaks detected including reliable and unreliable peaks. LIP refers to a group of peaks with the 

intensity of their isotopes too low (less than the average of the lowest 3% peak intensity in the 

spectra). Unlike IPO, the exponential factor for RP was lowered to 1.5 to reduce the sensitivity for 

peak picking and to avoid the inflation of noise. GR is the Gaussian peaks ratio. An exponential factor 

of 2 was empirically used to put more emphasis on the peak shape. QcoE is the quality coefficient. 

GR and QcoE are defined as below.  

�� =
�������� �����

��� �����
 

where Gaussian Peaks refer to the peaks that have shapes that follow the Gaussian distribution (cor 

estimate ≥ 0.9 and P value ≤ 0.05). 

���� = ����(RCS) + ����(GS) + ����(CV) 

where RCS is the retention time correction score and GS is the grouping score and both are defined 

by IPO [11]. Briefly, they are used to evaluate the retention time shift and peak number within a peak 

group, respectively. Higher values of RCS and GS mean more stable and reliable peaks have been 

included and grouped as a peak feature. CV, the coefficient of variation, refers to the CV of peak 

intensity in a group, as described by Sascha K [14]. This index highlights the importance of the peak 

intensity within a group. RCS, GS, and CV are normalized using the unit-based method. QcoE is 

further normalized to 0 to 1 and by weighted RCS, GS, and CV with 0.4, 0.4, and 0.2, respectively. 

The SetPeakParam function provides initial parameters for different platforms including Ultra 

Performance Liquid Chromatography (UPLC)- Q-Exactive (Q/E) Orbitrap, UPLC- Quadrupole Time-

of-Flight (Q/TOF), UPLC- Triple TOF (T/TOF), UPLC-Ion trap, UPLC-G2-S, High-performance liquid 

chromatography (HPLC)-Q/TOF, HPLC-Ion Trap, HPLC-Orbitrap, and HPLC- Single Quadrupole 

(S/Q). The best parameter combination is the one that produces the greatest number of reliable peaks, 

whose peak shapes follow a Gaussian distribution and show stable peak groups, as defined by the 

formula for Quality Score. The step is performed in parallel using multicores to accelerate the process. 

5.2. Adaptive Batch Effort Correction 

Batch effect correction can be achieved with the updated PerformBatchCorrection function. All 

correction strategies are summarized in Table 3. At least three method candidates are available for all 

experimental designs. To identify the most suitable method for a given dataset, the correction results 
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will be evaluated using PCA or the CCA model according to the gradient length along the first axis 

of DCA analysis. If the value is over 3, PCA is an appropriate method, otherwise, CCA will be used 

[36]. The results showing minimum inter-batch distances will be returned. QC-RLSC could be 

specified to adjust the signal drift.  

Table 3. Batch effect correction methods available in MetaboAnalystR 3.0. 

Categories Methods 

QC Sample Independent Combat [37], WaveICA [18], Eigens MS [38]  

QC Sample Dependent QC-RLSC [16], ANCOVA [39]  

QC Metabolite Dependent RUV-random [40], RUV2 [41], RUVseq [42]  

Internal Standards Dependent NOMIS [43], CCMN [44]  

5.3. Mummichog 2 for Pathway Activity Prediction 

The R implementation of mummichog [21] was described in the previous version [5]. 

Mummichog version 2 has incorporated retention time in grouping ions and introduced the concept 

of empirical compounds (ECs). ECs are putative metabolites as measured by LC-HRMS, possibly 

containing a mixture of enantiomers, stereoisomers, and positional isomers that are not resolved by 

the instruments. Thus, ECs are similar to the “feature groups” referred by Mahieu and Patti (2017) 

[45]. Whilst the Python version is available on GitHub as a separate project, our implementation in 

MetaboAnalystR 3.0 is as follows: 

1) All m/z features are matched to potential compounds considering isotopes and adducts. 

Then, per compound, all matching m/z features are split into ECs based on whether they 

match within an expected retention time window. By default, the retention time window (in 

seconds) is calculated as the maximum retention time * 0.02. This results in the initial EC list. 

Users can either customize the retention time fraction (default is 0.02) or retention time 

tolerance in general in the UpdateInstrumentParameters function (rt_frac and rt_tol, 

respectively). 

2) ECs are merged if they have the same m/z, matched form/ion, and retention time. This results 

in the merged empirical compounds list. 

3) Primary ions are enforced (defined in the UpdateInstrumentParameters function 

[force_primary_ion]), only ECs containing at least one primary ion are kept. Primary ions 

considered are ‘M+H[1+]’, ‘M+Na[1+]’, ‘M−H2O+H[1+]’, ‘M−H[−]’, ‘M−2H[2−]’, 

‘M−H2O−H[−]’, ‘M+H [1+]’, ‘M+Na [1+]’, ‘M−H2O+H [1+]’, ‘M−H [1−]’, ‘M−2H [2−]’, and 

‘M−H2O−H[1−]’. This produces the final EC list. 

4) Pathway libraries are converted from “Compound” space to “Empirical Compound” space. 

This is done by converting all compounds in each pathway to all empirical compound 

matches. Then, the mummichog/GSEA algorithm works as before to calculate pathway 

enrichment.  

5) To use the updated algorithm, set the version parameter in SetPeakEnrichMethod to “v2”. 

5.4. Benchmark Case Studies 

5.4.1. Known Standards Mixture 

The SM dataset produced by the HPLC-Q/E HF system consists of two samples with five 

replicates for each sample, as described by Li et al. 2018 [25]. The global mass spectra were inspected 

with the PerfromDataInspect function. The extremely anomalous high-intensity dimethyl sulfoxide 

(DMSO) contaminant peak ([2*M+H] at m/z 157.035) was removed to avoid mistakenly 

overwhelming the parameter optimization process. The total ion chromatogram (TIC) of the data is 

shown in Figure S2. The parameter optimization was performed with HPLC-Q/E initial parameters 
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based on two samples randomly selected from each group. The optimized parameters are provided 

in Table S1. 

5.4.2. NIST-1950 Serum Diluted Series 

The NIST 1950 serum dilution samples of 1, 0.2, 0.1, 0.05, and 0.025 were obtained from the 

MassIVE database (MSV0000083469). This dataset was generated by Pieter Dorrestein et al. using a 

Q Exactive Orbitrap (Thermo Fisher Scientific) in positive mode. Scanning m/z range was set between 

133.0000 to 1981.0000 Thomson. The raw spectra were first converted to centroided mzXML format 

with ProteoWizard (v3.0.19073) msConvert [46]. Parameter training was performed using the 

dilutions of 1 and 0.2 starting from the UPLC-Q/E default settings. TICs of the data are shown in 

Figure S3. The optimized parameters are provided in Table S1. 

5.4.3. Clinical Inflammatory Bowel Disease Data 

The Clinical IBD data was obtained from the Inflammatory Bowel Disease Multiomics Database 

[15]. A large cohort of IBD patients were included for this study. The stool samples of CD (n = 266), 

UC (n = 144), and non-IBD (n = 135) were collected. The extraction and purification steps have already 

been described previously [29]. The quality control (QC, n = 59) samples were also included. All 

clinical information from the samples is summarized in Table S2. The data format conversion and 

initial parameters were identical to the NIST dilution series above. The TICs of the data are shown in 

Figure S4. Parameter optimization was performed using four QC samples from each group randomly 

selected from the whole batch. The optimized parameters are provided in Table S1. The data analysis 

was finished with the whole MetaboAnalystR 3.0 workflow. Functional analysis was performed by 

integration with Mummichog2 for the comparisons between different groups (cutoff of P value 

2.0×10-62.0e-6). 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/5/186/s1, Figure 

S1: Bar plots of mummichog pathway enrichment results applied on Crohn’s disease patients versus non-IBD 

controls, Figure S2: Scatter plots of the mummichog pathway enrichment results applied on ulcerative colitis 

patients versus healthy controls, Figure S3: TICs of benchmark 1 (known standard data) before and after 

optimization, Figure S4: TICs of benchmark 2 (NIST series) before and after optimization, Figure S5: TICs of 

benchmark 3 (IBD data) before and after optimization, Table S1: Optimized parameters summary of all datasets, 

Table S2: Clinical characteristics summary of IBD subjects, Table S3: Mummichog (v.1) pathways (Top 20) of 

non-optimized IBD data (CD vs. non-IBD), Table S4: Mummichog (v.2) pathways of non-optimized IBD data 

(CD vs. non-IBD), Table S5: Mummichog (v.1) pathways (Top 20) of optimized IBD data (CD vs. non-IBD), Table 

S6: Mummichog (v.2) pathways (Top 20) of optimized IBD data (CD vs. non-IBD). 
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