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Abstract: Metabolomics analysis generates vast arrays of data, necessitating comprehensive 

workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide 

coherent and high-quality data that enable discovery of robust and biologically significant metabolic 

findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted 

metabolic profiling approaches, utilizing liquid chromatography–mass spectrometry analysis. We 

provide an overview of lab protocols and statistical methods that we commonly practice for the 

analysis of nutritional metabolomics data. The paper is divided into three main sections: the first 

and second sections introducing the background and the study designs available for metabolomics 

research and the third section describing in detail the steps of the main methods and protocols used 

to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and 

interpret the compounds that have emerged as interesting. 

Keywords: metabolomics; LC–MS; mass spectrometry; metabolic profiling; computational 

statistical; unsupervised learning; supervised learning; pathway analysis 

 

1. Introduction 

The rapid technical development of instrumentation for biomolecule analysis has led to a wide 

application of metabolomics in biological and biomedical research. Due to its very high sensitivity 

and the ability to concomitantly assess thousands of molecular features, liquid chromatography 

coupled with mass spectrometry (LC–MS) is making its way as the key analytical tool in the field of 



Metabolites 2020, 10, 135 2 of 35 

 

discovery-driven metabolic profiling. [1–3] The LC–MS platform generates large amounts of 

signals—biological signals from metabolites, their adducts, fragments, isotopes and instrument noise, 

thereby necessitating adequate computational tools to process, analyze and interpret the data [4,5]. 

Although the data processing solutions for complex metabolomics data are accumulating with 

increasing speed, they continue to be the bottleneck within the analysis, especially the metabolite 

identification process [6–8]. Starting from the acquisition of data to the identification of metabolites, 

the metabolic profiling workflow involves numerous steps that require expertise in analytical 

chemistry, biochemistry, bioinformatics and data analysis—click-and-go online tools may therefore 

not provide adequate reliability. To guarantee high quality output from metabolomics experiments, 

cooperation of scientists with various backgrounds and expertise is needed. 

First, the production of high-quality metabolomics data requires high quality samples 

originating from studies with meaningful research questions, adequate sample preparation and 

know-how in operating MS instruments in order to get out the maximum performance of the 

sensitive measurements. The acquired data needs to undergo several preprocessing steps, starting 

from data collection (peak picking), where it is imperative to understand the detection threshold and 

signal-to-noise ratios of the measurement. This is then followed by a multi-step processing phase 

involving imputation, normalization, data reduction and clean-up, which determines the quality of 

the data that is used in downstream data-analysis, metabolite identification and biological 

interpretation of the results. All of these steps need to follow necessary quality assurance and quality 

control procedures for reliable outcome of the metabolomics analysis [9,10]. Finally, the compounds 

that have emerged as interesting in the given study setup need to be identified using a combination 

of automated metabolite identification algorithms and exploration of the raw LC–MS/MS spectral 

data. 

Although the currently proposed non-targeted metabolic profiling workflow is applicable on 

basically any metabolomics study, it has been developed and utilized mainly on food and nutritional 

approaches. Therefore, examples provided here on the presentation of results are from studies within 

that field. In fact, food and nutrition sciences encompass a versatile array of research fields, which 

have adopted metabolomics as one of the most important analytical tools during the past decade [9]. 

For example, metabolic profiling allows a comprehensive analysis of the chemical composition of 

food and estimating the impact of industrial processing and modifications by gut microbiota [11,12]. 

Likewise, when assessing the actual health outcomes of certain diets or specific foods, metabolic 

profiling enables pointing out the areas of metabolism that are reflecting the dietary differences; 

especially when data are correlated with other, traditional clinical variables, they may raise novel 

hypotheses on the molecular-level linkage between diet and health [13–15]. 

Here, we present analytical workflows suitable for any non-targeted metabolic profiling study 

in a systematic manner (Figure 1), with a major focus on data-analysis challenges. We also present a 

new R package: notame (version 0.0.1, https://github.com/antonvsdata/notame), where we have 

bundled many of the data-analysis tools used in our lab so that they are easy to adopt for other 

scientists working in the field of metabolic profiling. This includes the pre-processing steps and 

visualizations in Sections 3.2.2–3.2.5, statistical tests and multivariate models in Section 3.3, as well 

as the visualizations in Section 3.4. The package documentation contains extensive instructions for 

using the package, along with a template script for preprocessing and analyzing data from a single-

batch LC–MS experiment as well as a small example dataset. 

2. Experimental Design 

The non-targeted metabolic profiling analytical workflow presented here includes steps from 

sample preparation and LC–MS analysis all the way to metabolite identification (Figure 1). It is 

noteworthy to mention, however, that the study design and careful planning for the sampling are 

very important part of the study governing the quality of the results and therefore require special 

attention [9]. Herein, we focus on metabolomics analysis performed in one batch (where the number 

of samples typically reaches 200–300 samples). However, the procedures are in general applicable for 

larger, multi-batch experiments, although extra procedures for quality control are in order [10,16]. 
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Figure 1. A general overview of notame workflow containing four important stages; 1. Experimental 

designs and sample collection, 2. sample preparation, 3. data acquisition, 4. data analysis and 

biomarker identification analysis. 

2.1. Materials 

Sample preparation materials: 

a. 96-well plate (Thermo Scientific, Rochester, NY, USA, Cat.No. 260252), 

b. Filter plate (Agilent, Santa Clara, CA, USA, Cat.No. A5969002) 

c. 96-Well cap mats (Thermo Scientific, Roskilde, Denmark, Cat.No. 276002) 

d. Syringe filters (PALL Corporation, Ann Arbor, MI, USA, Cat.No. 4552T) 

e. Syringe Norm-Ject® tuberculin 1 mL (Henke Sass Wolf, Tuttlingen, Germany, Cat.No 4010-

200V0) 

f. Wide orifice pipette tips (Thermo Scientific, Vantaa, Finland, Cat.No. 9405050) 

g. Homogenizer microtubes (OMNI International, Kennesaw, GA, USA, Cat.No 19-620 

LC–MS materials: 

h. Reversed-phase chromatography (RP) column: Zorbax Eclipse XDB-C18, particle size 1.8 µm, 2.1 

× 100 mm (Agilent Technologies, Santa Clara, CA, USA, Cat.No. 981758-902). 

i. Hydrophilic interaction chromatography (HILIC) column: Acquity UPLC BEH Amide 1.7 µm, 

2.1 × 100 mm (Waters Corporation, Milford, MA, USA, Cat.No. 186004801). 

Reagents: 

a. Acetonitrile, ACN (HiPerSolv CHROMANORM, VWR Chemicals, Fontenay-sous-Bois, France, 

Cat.No. 83640.320) 



Metabolites 2020, 10, 135 4 of 35 

 

b. Methanol, MeOH (CHROMASOLV™ LC–MS Ultra, Riedel-de Haën™, Honeywell, Seelze, 

Germany, Cat.No. 14262-2L) 

c. Formic acid (Optima LC/MS, Fisher Chemical, Geel, Belgium, Cat.No. A117-50) 

d. Ammonium formate (CHROMASOLV™ LC–MS Ultra, Honeywell Fluka, Seelze, Germany, 

Cat.No. 14266-25G) 

e. Ultra-pure water (Class 1, ELGA PURELAB Ultra Analytical, Lane End, UK) 

2.2. Equipment 

The current workflow is demonstrated with one suitable LC–MS instrumentation and software 

combination but can likewise employ any other high-accuracy LC–MS setup. 

Sample preparation and LC–MS instruments: 

a. Centrifuges: For 96-well plates: Heraus Megafuge 40R (ThermoFisher Scientific, Osterode, 

Germany), for microcentrifuge tubes: Centrifuge 5804R (Eppendorf, Hamburg, Germany) 

b. Vortex: Vortex Genie 2 (Scientific Industries, Bohemia, NY, USA) 

c. Homogenizer: Bead Ruptor 24 Elite with OMNI BR CRYO unit (OMNI International, Kennesaw, 

GA, USA) 

d. Shaker: Multi Reax (Heidolph, Schwabach, Germany) 

e. 1290 Infinity Binary UPLC system (Agilent Technologies, Waldbronn, Karlsruhe, Germany) 

f. 6540 UHD accurate-mass quadrupole-time-of-flight mass spectrometer (qTOF-MS) with 

Jetstream ESI source (Agilent Technologies, Santa Clara, CA, USA) 

Software: 

g. Agilent MassHunter Acquisition B.07.00 (Agilent Technologies), 

h. MS-DIAL version 3.70 [17], 

i. MS-FINDER version 3.24 [18], 

j. R version 3.5.0 [19] 

k. Multiple Experiment Viewer (MeV) version 4.9.0 (http://mev.tm4.org/). 

3. Analytical Procedure and Results 

3.1. LC–MS Analysis 

3.1.1. Sample Preparation 

Sample preparation for the non-targeted metabolite profiling work aimed to extract in a single 

attempt as wide range of metabolites as possible with, in general, minimal sample workup. Therefore, 

straightforward, simple extraction protocols were preferred. Protocol 1 was designed for extracting 

plasma/serum samples at a ratio of 1:5 with ACN and Protocol 2 for extracting homogenized tissue 

samples at a ratio of 1:6 with 80% methanol. 

Protocol 1: Plasma/ Serum Samples 

1. Thaw plasma/serum samples in ice water and keep them on wet ice during all the waiting 

periods. 

2. Place the 96-well plate on wet ice for sample preparation and set the filter plate on it.  

3. Add 400 µL of cold ACN to the filter plate well. 

4. Vortex a plasma/serum sample 10 s at the maximum speed. 

5. Add 100 µL of plasma/serum sample to the same well as ACN. 

6. To prepare the pooled quality control (QC) samples, collect 10 µL aliquots of each sample and 

add them to the same clean microcentrifuge tube and finally, mix properly. 

7. Mix ACN and sample by pipetting four times. Use wide orifice Finn Pipette tips to avoid tip 

clogging. 
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8. Repeat steps 1–5 for all samples. Lastly, use the same procedure for the QC sample. For the 

extraction blank, perform step 3 (cold ACN without sample) and use the same procedure 

thereon. 

9. Filter the precipitated samples by centrifuging the plate for 5 min at 700 x g at 4 °C.  

10. Remove the filter plate and seal the 96-well plate tightly with the 96-well cap mat to avoid 

sample evaporation. 

11. Analyze the samples immediately or store the plate at +4 °C for a maximum of 1 day or at −20 

°C until analysis.  

Protocol 2: Tissue Samples 

12. Weigh a maximum of 300 mg frozen tissue into 2-mL OMNI microtube with beads. Keep the 

samples on dry ice.  

13. Add ice cold 80% methanol in a ratio of 500 µL solvent per 100 mg tissue and keep the tubes on 

wet ice. Include an extraction blank with solvent only. 

14. Optional step: In the case of metabolite-dense sample material (e.g., plants), it might be 

necessary to use a more diluted solvent/sample ratio to avoid analytical problems, such as 

saturation of the detector or overloading of the column.  

15. Homogenize samples with a Bead Ruptor 24 Elite homogenizer. For soft tissues, perform one 

homogenization cycle at the speed 6 m/s at +/− 2 °C for 30 s.  

16. Optional step: In case a homogenizer instrument is not available, manual tissue disruption can 

be performed using mortar and pestle with liquid nitrogen.  

17. Extract the homogenized samples in a shaker for 5 min at RT.  

18. Centrifuge samples for 10 min at 20 000× g at +4 °C. 

19. Collect the supernatants on a 96-well filter plate and centrifuge for 5 min at 700× g at 4 °C. 

20. Optional step: Filter the samples using solvent resistant syringes and PTFE filters into the HPLC 

vials.  

21. Take aliquots (5–25 µL) of filtered samples and combine into one vial to be used as QC sample 

in the analysis. 

22. Analyze the samples immediately or store the plate at +4 °C maximum of 1 day or −20 °C until 

analysis. 

3.1.2. LC–MS Measurement 

The most commonly applied analytical technique in non-targeted metabolic profiling is mass 

spectrometry, often combined with liquid or gas chromatographic separation at the front end. In 

order to cover a wide range of polarities among the analyzable metabolites, different 

chromatographic methods may be utilized, e.g., reversed-phase chromatography (RP) and 

hydrophilic interaction chromatography (HILIC). MS data can then be acquired in both positive (+) 

and negative (−) electrospray ionization (ESI) polarities. 

23. Use the following conditions for RP chromatography: Column oven temperature 50 °C, flow rate 

0.4 mL/min, gradient elution with water (eluent A) and methanol (eluent B) both containing 

0.1% (v/v) of formic acid. Gradient profile for RP separations: 0–10 min: 2  100% B; 10–14.5 min: 

100% B; 14.5–14.51 min: 100  2% B; 14.51–16.5 min: 2% B. Needle wash with 50% ACN. Set the 

injection volume at 2 µL and sample tray at 10 °C. 

24. Use the following conditions for HILIC: Column oven temperature 45 °C, flow rate 0.6 mL/min, 

gradient elution with 50% v/v ACN in water (eluent A) and 90% v/v ACN in water (eluent B), 

both containing 20 mM ammonium formate (pH 3). The gradient profile for HILIC separations: 

0–2.5 min: 100% B, 2.5–10 min: 100% B  0% B; 10–10.01 min: 0% B  100% B; 10.01–12.5 min: 

100% B. Needle wash with 50% ACN. Set the injection volume at 2 µL and sample tray at 10 °C. 

25. To operate at high mass accuracy (< 2 ppm), calibrate the MS daily and use the continuous mass 

axis calibration by monitoring two reference ions from an infusion solution throughout the 

analytical runs. Examples of reference ions in ESI+ mode: m/z 121.050873 and m/z 922.009798, 

and reference ions in ESI− mode m/z 112.985587 and m/z 966.000725. These reference ions are 
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coming from the compounds in the infusion solution. m/z 121 is purine, m/z 112 is trifluoroacetic 

acid and m/z 922 and 966 are HP-0921 (Hexakis (1H,1H,3H-tetrafluoropropoxy) phosphazine) 

[20,21] 

26. Use the following conditions for Jetstream ESI source: drying gas temperature 325 °C and flow 

10 L/min, sheath gas temperature 350 °C with a flow of 11 L/min, nebulizer pressure 45 psi, 

capillary voltage 3500 V, nozzle voltage 1000 V, fragmentor voltage 100 V and skimmer 45 V. 

Use nitrogen as the instrument gas. 

27. For data acquisition, use a 2 GHz extended dynamic range mode in both ESI + and ESI - 

ionization modes from m/z 50 to 1600 (may be adjusted according to sample matrix). Collect the 

data in the centroid mode at an acquisition rate of 1.67 spectra/s (i.e., 600 ms/spectrum) with an 

abundance threshold of 150. For automatic data dependent MS/MS analyses, set the precursor 

isolation width to 1.3 Da. From every precursor scan cycle, 4 most abundant ions are selected for 

fragmentation. These ions are excluded after two product ion spectra and released again for 

fragmentation after a 0.25 min hold. Product ion scan time is based on precursor ion intensity, 

ending at 25,000 counts or after 300 ms. Use collision-induced dissociation voltage 10, 20 and 40 

V in subsequent runs. 

28. Generate the worklist containing analytical samples. Inject quality control samples after every 

12 samples and before and after the sample sequence. To monitor contamination during sample 

preparation and liquid chromatography, inject extraction blanks in the beginning (before the QC 

samples) and end of the analysis. The injection order of samples should be randomized. If the 

study contains samples from multiple matrices, such as samples from different organs, it is 

recommended that all the samples of a matrix be injected consecutively, for example first inject 

all heart samples, followed by all liver samples. If there are multiple samples from the same 

individual, it is recommended that the samples of an individual are run consecutively. We use 

an in-house developed software called Wranglr (github.com/antonvsdata/wranglr) to automate 

the generation of sample worklists by automatically randomizing the sample order and adding 

QC and MS/MS samples. Wranglr is an open-source web application developed with the Shiny 

package for R [22]. 

29. Inject 2 blanks and then 15–20 QC samples at the beginning of each run for column conditioning. 

Inject a QC sample after every 12 samples during the analysis. At the end of each run, include 4 

QC samples: 1 for MS analysis, 3 for MS/MS analysis from 3 different collision energies and 

finally, 2 blanks. If the run contains samples from different tissues or species (i.e., different 

expected metabolite profiles), it is recommended to run the MS/MS analysis additionally from 

one sample per different sample type to increase the coverage of available MS/MS data. 

3.2. Data Collection and Preprocessing 

The data collection (peak picking) and subsequent preprocessing of the raw data are critical steps 

in non-targeted metabolomics data-analysis since they determine the quality of the data for all the 

remaining steps (Figure 2). Various peak picking algorithms exist, utilized by vendor-specific and 

open-source software as well as freely available online services. Widely used examples of open-

source software include XCMS (and XCMS Online), MZmine and MS-DIAL. In this workflow, MS-

DIAL (http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/) [17] is used for the peak picking; 

it has user-friendly interphase and contains advanced tools for signal filtering, metabolite annotation, 

chromatogram curation and visualization. After collection of the raw data, pre-processing is required 

to monitor the quality of the data, make any required transformations/corrections to the data, as well 

as reduce/merge the number of features originating from the same metabolite. 
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Figure 2. Workflow of the statistical analysis after the peak-picking step. The choices depend on the 

type of data, the research question and the study design. The tools used for specific steps are listed 

on the right side of the respective steps. Italicized names are names of external R packages, names 

ending with () are major functions from the notame package. For more details, see the package 

documentation. 

3.2.1. Peak Picking and Alignment 

30. Before the peak picking, convert the raw instrumental data (i.e., *.d) to ABF format using Reifycs 

Abf Converter (https://www.reifycs.com/AbfConverter). Follow the vendor-specific instructions 

on the website. 

31. For the peak picking in MS-DIAL (version 3.70), choose the following parameters: 

a. m/z tolerance according to the instrument mass accuracy; however, it is advisable to set a bit 

higher tolerance to avoid screening out peaks close to the threshold, e.g., for QTOF we have used 

tolerance of 0.01 Da or 10 ppm. 

b. minimum peak height 2000 signal counts for QTOF (or at least 5 times the typical noise level of 

the instrument; 3000 signal counts for highly concentrated plant samples). 

c. mass slice width 0.1 Da (suitable for QTOF and other instruments with high mass accuracy). 

d. linear weighted moving average as the smoothing method (smoothing level 3 scans and 

minimum peak width 5 scans, according to developer recommendations). 

e. in positive mode, select [M + H]+, [M + NH4]+, [M + Na]+, [M + K]+, [M + CH3OH + H]+ and [M − 

NH3 + H]+ as the most typical adducts and in-source fragments; in negative mode, select [M − 

H]−, [M − H2O − H]−, [M + Cl]−, [M + HCOOH – H]− and [2M − H]− as the adducts and in-source 

fragments. Depending on previous knowledge, more adducts may be determined. 

32. For the peak alignment, set the retention time tolerance according to method accuracy (for the 

present method we have used 0.05 min and MS1 tolerance at 0.015 Da. Set the detection filter 
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(detected in at least one sample group) at 50%. Unselect the “detected in all QCs” option and 

select gap filling by compulsion. 

33. Once the peak picking is finished, export the alignment result as peak areas into a raw data 

matrix as a tab-separated text file. Transform the data matrix into a datasheet in a spreadsheet 

software, such as Excel. Insert additional columns to each datasheet specifying the 

chromatography and the ionization mode before combining the datasheets into a single file. 

Remove columns containing peak areas from auto-MS/MS data files. 

3.2.2. Drift Correction and Flagging Low-Quality Features 

LC–MS-based metabolomics suffers from systematic intensity drift during an LC–MS run. This 

means that the signal intensity of a molecular feature either decreases or increases systematically 

throughout the experiment. Removing this drift increases the quality of LC–MS data and allows 

estimating the true biological effects more accurately. Unfortunately, some molecular features show 

too much variation in the QC intensities even after drift correction. We use here different quality 

metrics defined by Broadhurst et al. [10] for measuring the quality of a molecular feature before and 

after drift correction. Low-quality features are flagged and not included in downstream data analysis. 

Note that we do not recommend removing low-quality features completely, as they are sometimes 

needed in the metabolite identification phase when searching for specific ions or fragments of known 

molecules. 

34. Make sure that missing values are correctly represented. A peak picking software might use a 

numerical value (such as 0, 1 or -999) to represent missing values, while other software such as 

R have specific ways of representing missing values. For more information on handling missing 

values, see Section 3.2.4. 

35. Molecular features with too low detection rate in the QC samples should be flagged. We 

recommend a threshold is 70%, meaning that a molecular feature needs to be detected in at least 

70% of the QC samples. 

36. Log-transform the features prior to drift correction. Log-transformed data normally conform 

better with the assumptions of the regression model used to model the drift. We use the natural 

logarithm. Replace zeroes with a value slightly above one (e.g., 1.1) to make sure that all log-

transformed values are > 0. 

37. The drift correction should then be performed by repeating steps 38-40 for each molecular 

feature. These procedures are included in notame (function correct_drift()). 

38. Model the drift function (fdrift) by fitting a smoothed cubic spline [23] to the QC samples, where 

the abundance of the molecular feature is predicted by the injection order Figure 3a. Smoothed 

cubic spline regression has one hyperparameter: a smoothing parameter, which controls the 

overall curvature of the drift function. The smoothing prevents the spline from overfitting the 

drift function in the presence of a few deviating QC samples (see Figure 4). A suitable value for 

the smoothing parameter is chosen by leave-one-out cross validation. For the R function 

smooth.spline,[24]we recommend the smoothing parameter to be between 0.5 and 1.5. 

39. Correct the abundance of each sample using the following formula (for a sample with injection 

order i): 

����������(�) =  ���������(�) + ��������� − ������(�) (1) 

40. Reverse the log transformation by applying the corresponding exponential function. 

41. The drift correction procedure is visualized (Figures 3 and 4) by drawing a scatter plot of the 

abundances against the injection order before and after drift correction. A line representing the 

drift function should be added to the scatter plot before correction. To reduce the amount of 

manual inspection, we usually only inspect potential candidate molecular features selected from 

downstream statistical tests. 
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Figure 3. A molecular feature before (a) and after (b) drift correction by smoothed cubic spline 

regression. The horizontal lines represent 2 standard deviations from the mean of quality control (QC) 

samples and biological samples, respectively. The systematic effect of the drift is reduced upon 

correction. 

 

Figure 4. A molecular feature in the presence of an outlying quality control (QC) sample (circled) 

before (a) and after (b) drift correction by smoothed cubic spline regression. The horizontal lines 

represent 2 standard deviations from the mean of QC samples and biological samples, respectively. 
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Due to the smoothing, the correction method is robust against the deviating QC sample and adjusts 

seemingly adequately for the global drift trend. 

42. Optional step: Compute the quality metrics after drift correction and keep only the drift-

corrected values for the molecular features where the change in quality metrics indicate that the 

data quality has been improved. For the other molecular features, retain the original values. 

43. Flag or remove low-quality features. As recommended by Broadhurst et al. [10], only the 

molecular features with RSD < 0.2 and D-ratio < 0.4 should be retained. In notame, this can be 

done with the function flag_quality(). 

3.2.3. Quality Control 

The raw data obtained from the peak picking software requires careful examination to estimate 

the need for additional preprocessing such as drift correction (see 3.2.2.). In the now proposed 

workflow, the data quality is monitored at each step of the preprocessing with a set of visualizations. 

Example figures are based on RP positive data from a dietary intervention study [25], before and after 

drift correction and removal of low-quality features. All the visualizations described in this section 

are available in notame (see the visualizations vignette for details). 

44. Draw the visualizations in steps 46-52 before drift and after drift correction. 

45. Flag low-quality features to monitor data quality and the effect of preprocessing. 

46. Apply a linear model to each feature, where the feature levels are predicted by injection order. 

Fit the model separately for QC samples, biological samples and all samples. Then visualize the 

effect of drift correction to individual features by drawing histograms of the p-values for the 

regression coefficient of injection order (Figure 5). We represent the expected uniform 

distribution by a horizontal line. Ideally, the p-values should roughly follow the expected 

uniform distribution, which would mean that there is no systematic dependency between 

feature abundances and injection order[26]. Unfortunately, this is rarely the case, but the closer 

the distribution is to uniform, the better. It is recommended to apply this procedure separately 

on QC samples and biological samples, which allows observing the drift patterns in both parts 

of the dataset. 

 

Figure 5. The six histograms illustrate p-values from linear regression models between each feature 

and injection order. The dashed red lines represent the uniform distribution. The a.1 and a.2 

histograms show the p-values from before (a.1) and after drift correction (a.2) in all the samples. The 

b.1 and b.2 histograms focus only in the biological samples before (b.1) and after (b.2) drift correction. 

Finally, the c.1 and c.2 histograms show only the p-values from the quality control (QC) samples 

before and after drift correction. In this case, we have a strong drift in the LC–MS data because the p-
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values of the QCs (c.1) tend to gather close to zero. After the drift correction, (c.2), p-values for the 

QCs are increased. 

47. Draw boxplots (Figure 6) where each individual boxplot represents the distribution of all feature 

levels in a sample: in the first boxplot order the samples by study group (a.1, a.2) (and possibly 

time point). This can reveal systematic changes in the global feature levels across samples. In the 

second type (b.1, b.2) order the samples by injection order, highlighting the QC samples. This 

allows us to observe any systematic drift across the feature levels in the samples. 

 

Figure 6. Boxplots of feature intensities per sample. The boxplots (a.1), where the samples are ordered 

by study group (a.1) and (b.1), where the samples are ordered by injection order and quality control 

(QC) samples are colored distinctly (b.1), show a clear systematic decrease in signal intensity during 

the injection sequence. After the drift correction, the drift pattern is no longer observable (in boxplots 

a.2 and b.2). 

48. Before subsequent visualizations, mean center the features and divide by standard deviation. 

49. Visualize the distribution of the Euclidean distances between samples using a density plot. The 

plot should feature two distributions, the distribution of distances between QC samples and the 

distances between biological samples. Ideally, the distribution of QC sample distances should 

be narrow and well separated from the distribution of study samples (Figure 7). 
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Figure 7. The density plot (a) shows a clear overlap between the distribution of quality control (QC) 

samples and the biological samples, which indicates poor data quality. After drift correction and 

quality control (b), the distributions are no longer overlapping. 

Principal component analysis (PCA)[27–29] or t-distributed stochastic neighbor embedding (t-

SNE)[30] can be used for observing patterns in the data by drawing scatter plots of the samples in a 

low-dimensional space (Figures 8 and 9). PCA is a linear method, while t-SNE can also reveal non-

linear patterns. Unlike t-SNE, PCA offers information on loadings, i.e., on how the principal 

components are constructed from original features. For these reasons, we consider PCA and t-SNE 

as complementary methods. For conciseness we only show t-SNE figures here. 

50. Draw scatterplots of the data points using PCA and t-SNE. Samples can be highlighted by 

coloring the points in the scatter plot with a study factor (e.g., treatment groups or time points) 

to observe trends in the data. Ideally, QC samples should cluster together (Figure 8). We also 

draw separate plots where the samples are colored by injection order to observe drift patterns 

(Figure 9). If the data quality is high, there should be no visible patterns according to injection 

order (Figure 9b). 

 

Figure 8. Investigating drift correction patterns using the t-SNE method. The quality control (QC) 

samples are shifting systematically before drift correction (the line trend of the purple crosses symbol) 
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(a), whereas after the drift correction (b), the line trend of the QCs is gone and the QCs are now group 

nicely. 

 

Figure 9. The drift pattern in the injection order (the color trend) using the t-distributed stochastic 

neighbor embedding (t-SNE) method is visible before drift correction (a), whereas after drift 

correction (b), the samples are more randomly scattered. 

51. Optional step: If there is a large number of samples and the points in the t-SNE plots tend to 

overlap, draw a hexbin version of t-SNE scatter plots colored by injection order (Figure 10), 

where the plot area is divided into hexagons and each hexagon is colored by the mean of the 

injection orders of the points inside that hexagon. As before, in an ideal case, there should be no 

visible drift patterns. 

 

Figure 10. The hexbin plots show similar patterns as the scatterplots in Figure 9: The drift pattern in 

the injection order (the color trend) using the t-distributed stochastic neighbor embedding (t-SNE) 

method is visible before drift correction (a), whereas after drift correction (b), the samples are more 

randomly scattered. The color of each hexagon corresponds to the mean injection order of the data 

points in that hexagon. 
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52. Apply hierarchical clustering [31,32] to the samples and visualize the result in a dendrogram 

(Figure 11a,b). The QC samples should cluster together early. We also draw a heatmap (Figure 

11c,d) representing pairwise distances between samples, where samples on the x and y axes are 

ordered by hierarchical clustering. The QC samples should have smaller inter-sample distances 

than other samples. Several techniques can be used for clustering. However, we have 

consistently achieved good results with hierarchical clustering using Euclidean distances and 

Ward’s criterion for linking clusters [32]. 

 

Figure 11. The hierarchical clustering algorithm clusters quality control (QC) samples together even 

before drift correction (a) whereas, after performing drift correction (b), the QC samples cluster more 

clearly together. In the heatmap after the drift correction (d) a QC “block” pattern (purple color code), 

is more clearly visible than in the heatmap before drift correction (c). 

3.2.4. Imputation, Transformation, Normalization and Scaling 

Missing data occur in metabolomics datasets for various reasons and managing this missingness 

is highly challenging [33]. Imputation is the procedure of replacing missing data with reasonable 

values using a priori knowledge or information available from the existing data. In this workflow, 

we perform random forest (RF)-based imputation using the missForest package [33,34], although 

several other procedures are available [35,36]. Data distributions can affect statistical analysis, 

especially for variance-based models [37]. Consequently, transformation and normalization can be 

used to adjust for data heteroscedasticity and skewed distributions among the molecular features. 

Depending on the type of multivariate analysis chosen we will proceed with different normalization 

and transformation approaches [38], however in the case of the feature-wise univariate analysis 

(Section 3.3.1) only imputation is performed. All the preprocessing methods mentioned here are 

provided in notame (see the preprocessing vignette for details). 

53. Impute missing values using random forest imputation. QC samples should be removed prior 

to imputation to ensure that the imputation is based on patterns in the biological data. 
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54. Transform the data using either natural logarithmic (nlog) or the generalized logarithmic (glog) 

function when the data are heavily skewed.[38] 

55. Normalize the data by probabilistic quotient normalization (PQN) [38,39]. 

56. Perform mean centering and scaling by standard deviation (autoscaling), before multivariate 

analysis; this is necessary with GLM-based methods as well as PCA and PLS-DA. However, this 

is not required for scale invariant techniques such as RF [40]. 

3.2.5. Clustering Molecular Features Originating from Same Metabolite 

Now used peak picking software can detect isotopes, most common adducts and some in-source 

fragments and combine those features into one entry in the data matrix. However, in LC–MS analysis, 

unpredictable adduct behavior and neutral loss formation occurs frequently, resulting in the same 

metabolite being redundantly represented in the data matrix, causing problems not only for the 

identification of the compounds but also potentially in the data-analysis step due to multiple 

collinearities. 

We present here a method for clustering and combining these features. This approach was 

developed bespoke to our workflow [41]. Partially similar methods to tackle this problem have been 

published also elsewhere [42–44]. Features originating from the same compound are assumed to be 

strongly correlated and have a small difference in their retention time. Thus, the algorithm initially 

identifies pairs of correlated features within a specified retention time window. The user specifies 

both the correlation threshold and the size of the retention time window. For illustration, a correlation 

coefficient threshold of 0.9 and a retention time window of ±1 s are used. Spearman’s correlation 

coefficient is used, as the relationship between features originating from the same compound is 

assumed linear. However, this assumption may not hold true if some measured features are close to 

lower or upper limit of quantification (LLOQ and ULOQ) of the instrument. 

Next, an undirected graph of all the connections between the features is generated, where each 

node represents a feature and each edge represents the corresponding correlation coefficient under 

the retention time constraint (Figure 12a). The algorithm recursively identifies clusters presumed to 

reflect the same analyte. In brief, this is achieved using a connectivity criterion, i.e., that the features 

within a cluster should have strong correlation to a sufficient number of the other features within the 

cluster. A detailed explanation of the algorithm is beyond the scope of this paper and has been 

included in the Supplementary Materials (Section 1: Clustering features originating from the same 

compound) for more advanced (bio) computational scientists. 

 

Figure 12. (a) An example graph, where every node is a molecular feature and every edge represents 

a high correlation coefficient and a small retention time difference between the features. (b) The graph 

after the clustering procedure. Each color corresponds to a distinct cluster of features. 
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After clustering, the feature with the largest median peak area per cluster is retained. All the 

features that are clustered together are recorded for future reference. Figure 12b shows the state of 

the graph from Figure 12a after clustering, with each final cluster colored differently. 

57. Cluster the molecular features from each analytical mode separately using the algorithm 

described above. Represent each cluster with the feature with the highest median abundance. 

Use these features for multivariate analysis and the clustering information for metabolite 

identification. The algorithm is provided in notame through the cluster_features() function. 

3.3. Data Analysis 

Once the raw data are checked for quality and analytical drift and the features originating from 

same metabolites merged to reduce the data matrix, the next phase is to utilize data analytical 

methods to discover the metabolites of biological importance within the taken study set-up. 

Preferably, a combination of feature-wise and multivariate analyses can be applied (Figure 2). 

Notame provides an interface for all the statistical tools mentioned in this section (see the statistics 

vignette for details). 

58. Combine the features from the different analytical modes to a single data matrix. In notame, this 

is achieved with the function merge_metabosets, which simply concatenates the data matrices 

and feature information tables row-wise (each row corresponds to a feature) and preserves the 

sample information unchanged. Note that combining analytical modes inevitably results in 

increased redundancy in the data matrix, as many compounds are detected in multiple 

analytical modes. However, combining the analytical modes is necessary so that all available 

information is available for multivariate analysis methods. 

3.3.1. Feature-Wise (Univariate) Analysis 

In feature-wise analysis, two types of testing may be used depending on the data: parametric 

and non-parametric test [45]. The choice of the test statistical depends on the data and the biological 

questions of the study. Most typically parametric tests are used, but if the features do not satisfy the 

assumptions of parametric tests, they may be replaced with non-parametric alternatives. Non-

parametric methods perform better when dealing with non-normal populations, unequal variances 

and unequal small sample sizes. 

59. For study designs with two groups and no covariates, such as case versus control studies, use a 

simple Welch’s t-test, i.e., the extension of Student’s t-test to manage unequal variances between 

groups. For a non-parametric alternative, consider a Mann-Whitney U test. 

60. For studies with multiple groups, first apply Welch’s one-way analysis of variance (ANOVA), 

which can manage unequal variances between groups, to select interesting features based on 

overall p-value. To investigate differences between groups, conduct post-hoc pairwise Welch’s 

t-tests. 

61. For studies with two categorical study factors, apply two-way ANOVA, which allows examining 

the main effect of each factor and their interaction. If one or both factors have multiple levels, 

select interesting features based on overall p-values and conduct post-hoc pairwise t-tests as 

above (bullet 59). For a non-parametric alternative, consider Friedman test. 

62. For studies with repeated measurements, use a linear mixed effects model with the time point, 

group and their interaction factors as fixed effects and the subjects as a random effect. If there 

are no more than two groups or time points, use t-tests on the regression coefficients to assess 

the significance of the effects. In the case of multiple groups and/or time points, use type III F-

tests for ANOVA-like tables, e.g., with the help of the R packages lme4 and lmerTest that provide 

all the necessary tests [46,47]. 

63. To test the strength of association between molecular features or between molecular features 

and other variables, use Pearson correlation or Spearman correlation as a non-parametric 

alternative. This can also be done post-hoc, after identification of key metabolites [14]. 
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64. After performing feature-wise tests, p-values should be adjusted for multiple testing. We 

recommend using the Benjamini–Hochberg false discovery rate (FDR) approach. Note that FDR-

adjusted p-values are frequently referred to as q-values. [45,48,49]. 

3.3.2. Multivariate Analysis 

There are several powerful multivariate tools for analysis of metabolomics data. Dimensionality 

reduction methods like PCA or t-SNE enable us to explore the data to identify outliers and patterns 

among samples. Unsupervised clustering methods, such as hierarchical clustering are useful for 

validating findings from dimensionality reduction methods, as they allow us to observe clustering 

patterns in high-dimensional space. 

Supervised learning techniques, such as partial least squares (PLS) and random forest (RF) are useful 

for identifying the most interesting molecular features [50,51]. Both the PLS and RF algorithms can 

be used for both regression and classification purposes. In the case of classification, the PLS model is 

normally referred to as partial least squares discriminant analysis (PLS-DA). Contrary to the 

unsupervised methods, supervised methods rely on known outcome or response (e.g., class 

membership) of each sample and can be used for predictive and descriptive modeling as well as for 

discriminative variable selection. RF is highly flexible with 3 main advantages over PLS: RF does not 

assume Gaussian distribution of the variables; RF does not assume linear relationships between 

response and (latent) predictor variables; Finally, RF is scale invariant, which circumvents issues with 

scaling and transformations of metabolomics data. On the other hand, it should be noted that PLS 

can produce stronger models if model assumptions are met. Both PLS and RF offer statistics for 

evaluating the importance of individual features, such as the variable importance in projection (VIP) 

values in PLS and Gini index or mean increased error in RF. 

65. Apply multivariate algorithms for prediction and variable selection. We employ the MUVR 

package in R which includes both RF and PLS [50]. For each analysis, three different models are 

obtained: the minimal-optimal (‘min’), ‘mid’ and all-relevant (‘max’) models (Figure 13). The 

‘max’ model corresponds to maximum information content once the non-informative features 

have been removed and includes the highest numbers of relevant molecular features, thought it 

may include some redundant features or highly correlated features. This model is normally 

selected when e.g., pathway analysis will be applied afterwards. The ‘min’ model corresponds 

to the minimal-optimal set of molecular features where the strongest biomarker candidates are 

likely to be found. The ‘mid’ model corresponds to a compromise (geometric mean) between the 

‘min’ and ‘max’ options, representing and with some redundancy between molecular features. 

In the end, the selection of the model depends on the research interest and study question, such 

as pathway analysis (‘max’), best prediction (‘mid’) or biomarker discovery (‘min’). 

66. Optional Step: Follow this step if the MUVR package is not available (for example if other 

software than R is used). Evaluate performance of the multivariate model. Use cross-validation 

for PLS and out-of-bag error estimate for RF (for more information see [51])If the model 

performance is satisfactory, record variable importance metric (VIP value for PLS and rise in 

error rate for RF) for each feature. 
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Figure 13. Modelling error measured as the number of miss-classification during internal cross-

validation in MUVR. The overall modelling error (black curve) initially decreases when removing 

noisy variables until the ‘max’ model. Further removal of variables until the ‘min’ model removes 

redundant features while keeping modeling error almost constant. The ‘mid’ model represents a 

compromise between the ‘min’ and ‘max’ models and a theoretical optimum model. Light and dark 

grey lines represent higher level of detail in the validation procedure and we refer to Shi et al. [50] for 

details. 

3.3.3. Ranking and Filtering for Variable Selection 

After the completion of both feature-wise and multivariate analysis, results are combined via a 

ranking method in order to determine the most robust and presumably biologically relevant 

metabolic features to undergo identification. 

67. The first step is to sort the molecular features according to their ranks that received though the 

variable selection process, with the lowest rank or the most important rank (depending on the 

software) being the 1st rank and the biggest rank or the least important rank being the nth rank 

(n here is equal to the total number of molecular features available from the variable selection 

method). In the MUVR package, the output from the ‘min’, ’mid’ or’ max’ models provides the 

ranks for each of the molecular features already sorted by the smallest rank. The smallest rank 

represents that this particular molecular feature is the most important one. 

68. Similarly, for each univariate model, the molecular features are sorted based on their q. The 1st 

rank is given for the feature with the lowest q-values from the FDR correction and the nth rank 

for the largest one. 

69. Then, the rank from the RF model e.g., ‘mid’ model for each molecular feature is added together 

with the rank from the same molecular feature for the feature-wise model creating a new column 

with the Final Ranks. 

70. The choice of the total number of the molecular features that are selected in the end for further 

analysis e.g., identification or pathway analysis is dependent strictly on the user. 
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71. Optional Step: In case the MUVR package is not used for variable selection, the procedure of 

ranking the molecular features stays the same for any type variable selection is chosen. 

3.4. Visualization of Results 

After feature-wise and multivariate analysis, we recommend visualization of patterns of the 

dataset, both on a feature level and a global level as well as visualization of the p-values and effect 

size measures, to offer a broad view of the results. All the visualizations in this section are provided 

in notame unless stated otherwise (see the visualizations vignette for details). 

3.4.1. Feature-Wise Graphs 

While t-SNE figures (Figures 8 and 9) provide a solid overview of the overall patterns in the 

data, visualizing effects of study factors on a molecular feature level is useful when interpreting the 

results. The visualization type used depends on study design. 

72. If the study has multiple study groups, the differences between groups can be illustrated by 

beeswarm boxplots separately for each group (Figure 14). 

 

Figure 14. Beeswarm boxplots for a molecular feature subdivided into study group. 

73. If the study contains samples from multiple time points, the effect of time can be visualized with 

a line plot using one line per subject together with a thicker line representing the mean at every 

time point (Figure 15). 
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Figure 15. The change in the abundance of a molecular feature as a function of time in each subject. 

The thick red line represents the sample mean. 

If the study contains both multiple groups and multiple time points, consider the following 

visualizations: 

For repeated measures data, plot least square means from the repeated measures model for each 

study group. You should also add whiskers around the points representing 95% confidence intervals, 

standard deviation or other measure of variability (Figure 16). 
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Figure 16. The change in the abundance of a molecular feature as a function of time in each study 

group. The whiskers depict 95% confidence intervals. 

74. Draw a line plot similar to the one in step 73, but color the subject lines according to group and 

draw separate mean lines for each group (Figure 17a). If the figure gets too cluttered, consider 

plotting each group separately in small multiples, with a common y-axis (Figure 17b). 
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Figure 17. The change in abundance of a molecular feature between two time points in each subject, 

colored by group (a). Data with time series from multiple groups is easier to read when divided to 

small multiples (b). The bold lines represent group means. Note that the bold mean lines do not 

necessarily reflect an overall trend present in each subject. 

3.4.2. Comprehensive Visualization of Results 

Here, we present ways of visualizing results from both feature-wise and multivariate analysis. 

For illustration, we use a simple case from the RP positive mode of an intervention study, where the 

samples were taken from two time points, before and after an intervention. For feature-wise analysis, 
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we used a linear model with individual molecular feature as the dependent variable and the time 

point as the independent variable. We also calculated fold change between the two time points for a 

scale-free measure of effect size. For multivariate analysis we fit a PLS-DA model predicting the time 

point from the features. 

75. Visualize the patterns in the final dataset using unsupervised dimensionality reduction 

techniques such as PCA [28] (Figure 18) and t-SNE. If the PCA score plot reveals interesting 

patterns, use a PCA loadings plot to reveal which features contribute the most to the visualized 

components. 

 

Figure 18. Principal component analysis (PCA) plot of samples from an intervention study, before 

and after the intervention. The time points are somewhat separated, but no clear clusters or outliers 

are visible. 

76. If PLS(-DA) is used, visualize the samples in a PLS score plot (see Figure 19). 
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Figure 19. Score plot of the first two components of a partial least squares-discriminant analysis (PLS-

DA) model trained to predict the time point of samples from an intervention study. The background 

color indicates the prediction of the model: samples in the blue area are classified to time point 

“beginning” and samples in the red area to time point “end”. Note that the time points are clearly 

more separated than in the corresponding principal component analysis (PCA) plot (Figure 18). This 

is to be expected, as PLS-DA finds components that specifically separate the two time points. 

77. To visualize overall changes with respect to time in studies with multiple time points, use PCA 

and t-SNE figures with arrows depicting change in each individual. The arrows should start at 

the first time point and end at the last time point for each individual. We recommend plotting 

each study group separately, as the plot can get crowded since the arrows occupy significantly 

more space than points (Figure 20). 

 

Figure 20. Changes in each subject between two time points visualized as arrows between points in a 

principal component analysis (PCA) plot. Samples in different groups are separated into subplots. 

While no group shows a systematic direction of change, we can observe that the subjects in group A 

show greater overall change that subjects in the other groups. 
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78. Visualize the distribution of p-values from feature-wise analysis in a histogram. Use a line to 

depict the expected uniform distribution (under null hypothesis). If the distribution of the p-

values deviates from the line as in Figure 21, it can be argued that we are observing a real effect. 

 

Figure 21. The distribution of p-values from linear models testing the difference in feature abundance 

between two time points. Since the distribution clearly deviates from the uniform distribution 

depicted by the red line, it can be argued that there is a true difference between the two time points. 

79. Visualize the results of feature-wise tests in a volcano plot. Volcano plots are scatter plots with 

p-values on the y axis and effect size (such as fold change) on the x-axis. Add a horizontal line 

representing the significance threshold for FDR-adjusted q-values. To co-visualize multivariate 

results, the features can be colored by their relevance score in the multivariate prediction (Figure 

22). 
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Figure 22. A volcano plot of p-values (negative log10 scale) from linear models testing the difference 

of feature abundances between two time points against fold changes between samples taken before 

and after a dietary intervention (log2 scale). The features are colored by variable importance in 

projection (VIP)-value from a partial least squares-discriminant analysis (PLS-DA) model trained to 

separate the two time points. We can observe that the features with the smallest p-values tend to have 

fold changes below 1, indicating that they are less abundant at the end of the intervention. Other 

metrics of effect size, like Cohen’s d values, can also be used in volcano plots. 

Manhattan plots are commonly used in genome-wide association studies (GWAS) to visualize 

the location of the most significant single nucleotide polymorphisms on the genome. Manhattan plots 

can be applied in metabolomics by using mass-to-charge ratio or retention time on the x-axis. In 

addition, in cases where direction of effect can be determined, we can multiply the y-axis by the sign 

of the effect to create so-called directed Manhattan plots. The Manhattan analogy is not lost since the 

downward points represent the reflection of the skyline on the Hudson River. Note that Manhattan 

plots should always be drawn separately for each column and ionization mode, as the metabolite 

classes corresponding to certain m/z and retention time values depend on the column and ionization 

mode used. 

80. Use a Manhattan plot to connect the results of statistics to biochemical properties of the 

molecular features. The Manhattan plot should have either retention time or mass-to-charge 

ratio as the x-axis and –log10(p-value) on the y-axis. For a directed Manhattan plot, multiply –

log10(p-value) by the sign of the effect. The points in the Manhattan plot can be colored by the 

respective VIP value from PLS-DA or another similar metric. Similar to volcano plots, add a 

horizontal line to represent the significance threshold for FDR-adjusted q-values. Figure 23a,b 

show Manhattan plots with mass-to-charge ratio and retention time on the x-axis, respectively. 
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Figure 23. (a) A directed Manhattan plot of p-values from linear models testing the difference of 

feature abundances between two time points with mass-to-charge ratio of the features as x-axis. The 

points are colored by variable importance in projection (VIP)-value from a partial least squares-

discriminant analysis (PLS-DA) model trained to separate the two time points. The most interesting 

groups of molecular features seem to have m/z ratios around 350 and around 800. Both groups are 

predominantly lower in the end of the intervention. (b) A similar directed Manhattan plot, only with 

retention time of the features as y-axis. The most interesting groups of molecular features seem to 

have retention times around 9–10 min and around 11 min. The first group is predominantly lower in 

the end of the intervention, while the features in the second group have mixed associations. 
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81. To combine the information of both Manhattan plots, consider a scatter plot with m/z and 

retention time on the x- and y-axis, with the size of the point reflecting p-value and potentially 

colored by variable importance from multivariate modelling (e.g., VIP; Figure 24) or by effect 

size (e.g., fold change; not shown). While size is not an accurate metric in visualizations, this 

visualization combines mass and retention time so that the most interesting metabolite classes 

can be identified. As with Manhattan plots, these plots should be drawn separately for each 

column and ionization mode. 

 

Figure 24. Scatter plot of molecular features in m/z vs retention time space, with the size of the points 

reflecting p-values from linear models testing the difference in feature abundances between two time 

points. The points are colored by variable importance in projection (VIP)-value from a partial least 

squares-discriminant analysis (PLS-DA) model trained to separate the two time points. To avoid too 

many overlapping points, only points with VIP value > 1 are drawn. We can observe that the most 

interesting group of features has retention times around 9–10 min and m/z ratios around 350. 

We utilize Multiple Experiment Viewer (http://mev.tm4.org/) for k-means clustering and 

hierarchical clustering analyses, which group metabolites into separate clusters or into a hierarchy 

tree, respectively. Multiple Experiment Viewer is a useful option for post-hoc analysis as it requires 

no programming expertise. Readers familiar with programming can use other tools for similar 

results. 

The heat maps produced from the analyses can be used to assess the impact of the intervention 

and the number and proportion of metabolites behaving in a certain manner (Figure 25). We also use 

the notame R package to produce heat maps of the identified metabolites and their associations with 

e.g., clinical markers, in which case additional information may be added to each cell, such as the 

statistical significance with circles, where a larger circle represents a lower p-value. 
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Figure 25. Heat map of all the 12 579 molecular features detected in reversed phase negative mode 

from cereal samples with some of the annotated compounds highlighted. k-Means clustering was 

applied to the dataset, dividing it into distinct clusters (n = 13) based on the relative abundance of the 

features across samples. 

82. For the clustering in Multiple Experiment Viewer, first normalize the rows (signal abundances) 

and select appropriate color scale limits for the normalized abundances (0 to 10% of features can 

be off limits). For hierarchical clustering, choose whether to cluster only the features or samples 

as well. Use Pearson correlation and average linkage clustering. For k-means clustering, choose 

cluster genes, use Pearson correlation, calculate k-means and choose a low number of clusters 

(e.g., 4) for the initial run. Repeat the procedure by increasing the number of clusters until no 

more clusters with a unique pattern emerge and choose the highest number of clusters based on 

this visual optimization. 

3.5. Identification of Metabolites 

The identification and annotation of metabolites is a critical step in any metabolomics study to 

attribute biological meaning to the data analytical results and to enable further hypotheses to be 

developed for subsequent studies. In recent years, the development of new software and online tools 

as well as the emergence and expansion of publicly available spectral databases of metabolites have 

greatly facilitated the identification process [52,53]. Nevertheless, metabolite identification remains 

perhaps the most time-consuming task where manual curation is necessary and where not all 

detected molecular features can be identified, leaving knowledge gaps for the interpretation of the 

results. Alongside with the challenges related to the instrumental differences and matching the 

obtained MS/MS data to databases, a key bottleneck restricting the level and number of identifications 

is the lack of reference data for the vast number of metabolites produced by living organisms, 

estimated up to one million for the plant kingdom [54] and more than 40,000 for humans [55]. 

Likewise, matching the obtained MS/MS data to existing databases is not straightforward due to 

differences in experimental conditions used for collecting the reference data. Other limitations may 

be related to poor quality or lack of mass spectra from metabolites with low abundance in the sample. 

We utilize MS-DIAL [18] in the initial semi-automated step of metabolite identification, where 

the experimental characteristics (exact m/z, retention time where applicable and MS/MS spectra in 

CID voltages 10, 20 and 40 V) are compared with those in databases available in NIST MSP format. 
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These databases include MassBank [53], MoNA [56] and others available from the RIKEN Center for 

Sustainable Resource Science website (http://prime.psc.riken.jp/Metabolomics_Software/) combined in single 

files for the positive and negative ionization mode. Additionally, we have included our in-house 

spectral library in the MSP files. The semi-automated identification process annotates metabolites 

with similarity score 80% or above, after which the annotations are manually curated by assessing 

the similarity of the MS/MS spectra and the alternative annotations proposed by the software. 

After the curation of the metabolites annotated by MS-DIAL, the remaining unknown 

metabolites undergo additional searches in databases that are primarily available online, including 

METLIN [52] for small metabolites and LIPID MAPS [57] for unknown metabolites with RP retention 

time in the lipid region (> 9 min). Additional attempts to characterize the unknowns are made 

utilizing MS-FINDER [18], which 1) calculates and scores the possible molecular formulas based on 

the exact mass and isotopic pattern, 2) searches for compounds corresponding to the likely molecular 

formulas from non-spectral chemical libraries and 3) compares the experimental MS/MS spectrum of 

the unknowns with in silico-generated MS/MS spectra of the candidate structures. 

3.5.1. Comparison with Pure Standard Compounds (MSI level 1) 

83. For the identification of metabolites (identification level 1 according to the Metabolomics 

Standards Initiative)[58], compare the molecular features against an in-house library (i.e., a 

reference standard analyzed previously with the same platform in the same chromatographic 

conditions). Apply the following criteria: 

a. matching m/z (within 10 ppm or according to instrument mass accuracy); 

b. similar retention time (ΔRT < 0.2–0.5 min), taking into consideration any possible near-

eluting isomers. 

c. MS/MS spectra (main fragments matching within 0.02 Da in one or more CID voltage) 

3.5.2. MS/MS Fragmentation and Database Comparison (MSI levels 2–3) 

84. For the putative annotation of metabolites (ID level 2), compare the mol features against publicly 

available spectral databases, including a database file (compiled in MSP format for using within 

MS-DIAL) and online databases. The annotation has acceptable reliability if the main fragments 

(excluding the molecular ion) match between the experimental and reference MS/MS spectra in 

only one proposed metabolite. In case several alternatives exist with similar MS/MS, the 

common denominator of all the alternatives (e.g., a compound class, ID level 3) is given as the 

annotation instead. Apply the following criteria: 

a. matching m/z (within 10 ppm or according to instrument mass accuracy) 

b. MS/MS spectra (main fragments matching within 0.02 Da) 

85. For the putative characterization of compound class (ID level 3), use the following approaches 

to obtain characteristic information of the metabolite: 

a. Compare the experimental MS/MS with in-silico generated spectra in MS-FINDER; 

b. Use the calculated molecular formula, retention time and diagnostic MS/MS fragments to 

determine the compound class. 

3.5.3. Pathway Analysis 

Once molecular features are annotated as metabolites, pathway analysis may be conducted to 

better understand the biological relevance of the metabolites, as well as their involvement in 

metabolic pathways, e.g., related to intervention effects of disease etiology [1], [3]. We consider 

identification of metabolites until level 2 (putative annotation) to be essential prior to pathway 

analysis. Of the several pathway analysis tools that are freely available, we use predominantly 

MetaboAnalyst and Cytoscape. For both tools, conversion of metabolite name to HMDB or KEGG ID 

that are generally recognizable by the pathway analysis software is essential, since one molecule can 

have multiple names according to the preference of each research group. 
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86. Option 1: In MetaboAnalyst [59] (https://www.metaboanalyst.ca/) use Enrichment or Pathway 

Analysis which enables enrichment and visualization of metabolic pathways in which the 

metabolites could potentially be involved. For more detailed information about metabolic 

regulation, the Network Explorer enables inclusion of fold change data, along with gene 

expression data. 

87. Option 2: Cytoscape [60] (https://cytoscape.org/) is a powerful stand-alone tool that is used by 

biomedical researchers to visualize and dynamically analyze gene/protein/metabolite 

interaction networks. The strength of Cytoscape is even more apparent when linked to 

databases, e.g., MetScape [61], which allows for visualizing and interpreting metabolomic data 

in the context of human metabolic networks. 

A step-by-step instruction to use the software is listed in the Supplementary Materials (Section 

2: Tutorial on Pathway Analyses Tools). It is worth to mention that pathway analysis may not be 

helpful for lipids, due to i) the limitation of the non-targeted LC–MS metabolomics platform to 

differentiate the position of the double bonds within the lipid molecule, which impairs the translation 

of lipid identity to KEGG or HMDB ID and; ii) that most pathway analysis tools would group certain 

lipid classes that vary greatly based on their fatty acid composition to one node, which may not be 

biologically meaningful. As an example, phosphatidylcholines with different acyl composition, will 

be grouped into one node of phosphatidylcholine regardless of the acyl composition, which may not 

accurately represent acyl transfer in vivo. This gap hence emphasizes the need of pathway analysis 

tool specialized for lipid molecules. 

3.6. Biological Interpretation of the Results 

The analytical procedure described above is aimed to identify metabolites and metabolic 

pathways that are affected in the chosen study design e.g., differences in circulating metabolites after 

dietary or other interventions or processing-induced alterations to the phytochemical composition of 

a certain food. While the described workflow is efficient in elucidating such metabolites, the ultimate 

value lies in the demonstration of biological significance. The findings need to be related to the 

scientific context and interpreted in the light of existing biological knowledge. Optimally, findings 

can be validated e.g., in subsequent studies, where the most interesting/important metabolite species 

may be chosen for additional analysis, often encompassing development of targeted, quantitative 

analytical approaches and analyzed in different study populations. An example of such approach is 

the recent discovery of various trimethylated compounds related to whole grain consumption [62] 

and the establishment of a quantitative method within another cohort [63]. 

4. Conclusions 

Non-targeted metabolic profiling analysis employing liquid chromatography and mass 

spectrometry analysis has proven its usefulness in various fields of natural and medical sciences 

during the last couple of decades and has greatly improved our capabilities to explore and 

understand the chemical space in biological samples. Notame workflow encompasses all the essential 

steps in metabolic profiling studies, from generation of samples to the interpretation of the results 

and is aimed to serve as a general guideline for setting up and executing metabolomics studies, as 

well as support users with an in-housed developed R package (notame, version 0.0.1 

https://github.com/antonvsdata/notame). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Section 1: Clustering 

features originating from the same compound, Section 2: Tutorial on Pathway Analyses Tools 
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