The Role of Vitamin D in Small Animal Bone Metabolism
Abstract
:1. Introduction
2. Vitamin D Metabolism in Small Animals
3. Regulation of Calcitriol Synthesis and Catabolism
4. Differences in Vitamin D Metabolism between Miniature and Giant Dog Breeds
5. The VDR Receptor
6. The Functions of Vitamin D Related to Bone Metabolism
6.1. Effects of Vitamin D on the Intestine
6.2. Effects of Vitamin D on the Kidneys
6.3. Effects of Vitamin D on the Parathyroid Gland
6.4. Effects of Vitamin D on Bone Remodeling
6.5. Effects of Vtamin D on Bone Growth and Mineralization
7. Vitamin D Recommendations for Small Animals
8. Vitamin D Deficiency in Dogs and Cats
9. Nutritional Secondary Hyperparathyroidism
10. Vitamin D Toxicosis in Small Animals
11. Vitamin D and Its Nonclassical Actions
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006; ISBN 0309086280. [Google Scholar]
- Battault, S.; Whiting, S.J.; Peltier, S.L.; Sadrin, S.; Gerber, G.; Maixent, J.M. Vitamin D metabolism, functions and needs: From science to health claims. Eur. J. Nutr. 2013, 52, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Zafalon, R.V.; Risolia, L.W.; Pedrinelli, V.; Vendramini, T.H.; Rodrigues, R.B.; Amaral, A.R.; Kogika, M.M.; Brunetto, M.A. Vitamin D metabolism in dogs and cats and its relation to diseases not associated with bone metabolism. J. Anim. Physiol. Anim. Nutr. 2020, 104, 322–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, J.W.; Christakos, S. Biology and mechanisms of action of the vitamin D hormone. Endocrin. Metab. Clin. 2017, 46, 815–843. [Google Scholar] [CrossRef] [PubMed]
- Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef]
- Dusso, A.S.; Brown, A.J.; Slatopolsky, E. Vitamin D. Am. J. Physiol. Renal Physiol. 2005, 289, F8–F28. [Google Scholar] [CrossRef]
- Dittmer, K.E.; Thompson, K.G. Vitamin D metabolism and rickets in domestic animals: A review. Vet. Pathol. 2011, 48, 389–407. [Google Scholar] [CrossRef]
- Wasserman, R.H. Vitamin D and intestinal absorption of calcium: A view and overview. In Vitamin D; Feldman, J.W.P.D., Glorieux, F., Eds.; Academic Press: San Diego, CA, USA, 2005; p. 411. ISBN 9780080543642. [Google Scholar]
- Fujita, H.; Sugimoto, K.; Inatomi, S.; Maeda, T.; Osanai, M.; Uchiyama, Y.; Yamamoto, Y.; Wada, T.; Kojima, T.; Yokozaki, H.; et al. Tight junction proteins claudin-2 and -12 are critical for vitamin D dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell. 2008, 19, 1912–1921. [Google Scholar] [CrossRef] [Green Version]
- St-Arnaud, R. The direct role of vitamin D on bone homeostasis. Arch. Biochem. Biophys. 2008, 473, 225–230. [Google Scholar] [CrossRef]
- Li, Y.C.; Pirro, A.E.; Amling, M.; Delling, G.; Baron, R.; Bronson, R.; Demay, M.B. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc. Natl. Acad. Sci. USA 1997, 94, 9831–9835. [Google Scholar] [CrossRef] [Green Version]
- Baldock, P.A.; Thomas, G.P.; Hodge, J.M.; Baker, S.U.; Dressel, U.; O’Loughlin, P.D.; Nicholson, G.C.; Briffa, K.H.; Eisman, J.A.; Gardiner, E.M. Vitamin D action and regulation of bone remodeling: Suppression of osteoclastogenesis by the mature osteoblast. J. Bone Miner. Res. 2006, 21, 1618–1626. [Google Scholar] [CrossRef]
- Fretz, J.A.; Zella, L.A.; Kim, S.; Shevde, N.K.; Pike, J.W. 1, 25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. J. Mol. Endocrinol. 2006, 20, 2215–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, P.H.; Atkins, G.J. The skeleton as an intracrine organ for vitamin D metabolism. Mol. Asp. Med. 2008, 29, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Hurst, E.A.; Homer, N.Z.; Mellanby, R.J. Vitamin D metabolism and profiling in veterinary species. Metabolites 2020, 10, 371. [Google Scholar] [CrossRef]
- Uhl, E.W. The pathology of vitamin D deficiency in domesticated animals: An evolutionary and comparative overview. Int. J. Paleopathol. 2018, 23, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, D.P.; Abood, S.K.; Fascetti, A.J.; Fleeman, L.M.; Freeman, L.M.; Michel, K.E.; Bauer, C.; Kemp, B.L.E.; Van Doren, J.R.; Willoughby, K.N. Pet feeding practices of dog and cat owners in the United States and Australia. J. Am. Vet. Med. Assoc. 2018, 232, 687–694. [Google Scholar] [CrossRef]
- Verbrugghe, A.D.; Paepe, L.; Verhaert, J.; Saunders, J.; Fritz, J.; Janssens, G.P.J.; Hesta, M. Metabolic bone disease and hyperparathyroidism in an adult dog fed an unbalanced homemade diet. Vlaams Diergeneeskd. Tijdschr. 2011, 80, 61–68. [Google Scholar]
- Dusso, A.S.; Thadhani, R.; Slatopolsky, E. Vitamin D receptor and analogs. Semin. Nephrol. 2004, 24, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Parker, V.J.; Gilor, C.; Chew, D.J. Feline hyperparathyroidism: Pathophysiology, diagnosis and treatment of primary and secondary disease. J. Feline Med. Surg. 2015, 17, 427–439. [Google Scholar] [CrossRef]
- Mellanby, R.J.; Mee, A.P.; Berry, J.L.; Herrtage, M.E. Hypercalcaemia in two dogs caused by excessive dietary supplementation of vitamin D. J. Small Anim. Pract. 2005, 46, 334–338. [Google Scholar] [CrossRef]
- Morita, T.; Awakura, T.; Shimada, A.; Umemura, T.; Nagai, T.; Haruna, A. Vitamin D toxicosis in cats: Natural outbreak and experimental study. J. Vet. Med. Sci. 1995, 57, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Wehner, A.; Katzenberger, J.; Groth, A.; Dorsch, R.; Koelle, P.; Hartmann, K.; Weber, K. Vitamin D intoxication caused by ingestion of commercial cat food in three kittens. J. Feline Med. Surg. 2013, 15, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, V.J.; Bovens, C.P.; Pineda, C.; Hibbert, A.; Finch, N.C. Vitamin D toxicity of dietary origin in cats fed a natural complementary kitten food. J. Feline Med. Surg. 2017, 3, 2055116917743613. [Google Scholar] [CrossRef] [PubMed]
- Gunther, R.; Felice, L.J.; Nelson, R.K.; Franson, A.M. Toxicity of a vitamin D3 rodenticide to dogs. J. Am. Vet. Med. Assoc. 1988, 193, 211–214. [Google Scholar]
- Fooshee, S.K.; Forrester, S.D. Hypercalcemia secondary to cholecalciferol rodenticide toxicosis in two dogs. J. Am. Vet. Med. Assoc. 1990, 196, 1265–1268. [Google Scholar] [PubMed]
- Livezey, K.L.; Dorman, D.C.; Hooser, S.B.; Buck, W.B. Hypercalcemia induced by vitamin-d3 toxicosis in 2 dogs. Canine Pract. 1991, 16, 26–32. [Google Scholar]
- Berry, C.R.; Gallaway, A.; Thrall, D.E.; Carlisle, C. Rodenticide toxicity in fourteen dogs. Vet. Radiol. Ultrasound 1993, 34, 391–396. [Google Scholar] [CrossRef]
- Gerhard, C.; Jaffey, J.A. Persistent increase in serum 25-hydroxyvitamin D concentration in a dog following cholecalciferol intoxication. Front. Vet. Sci. 2020, 6, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Finch, N.C. Hypercalcaemia in cats: The complexities of calcium regulation and associated clinical challenges. J. Feline Med. Surg. 2016, 18, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Durtnell, R.E. Canine vitamin D toxicosis. J. Small Anim. Pract. 1999, 40, 550. [Google Scholar] [CrossRef]
- Hilbe, M.; Sydler, T.; Fischer, L.; Naegeli, H. Metastatic calcification in a dog attributable to ingestion of a tacalcitol ointment. Vet. Pathol. 2000, 37, 490–492. [Google Scholar] [CrossRef] [Green Version]
- Torley, D.; Drummond, A.; Bilsland, D.J. Calcipotriol toxicity in dogs. Br. J. Dermatol. 2002, 147, 1270. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tohyama, N.; Yamasaki, M.; Ohta, H.; Morishita, K.; Takiguchi, M. Hypercalcemia in a dog with chronic ingestion of maxacalcitol ointment. J. Am. Anim. Hosp. Assoc. 2016, 52, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, I.; Hazewinkel, H.A.W.; Voorhout, G.; Carlson, C.S.; Richardson, D. Effect of diets with different calcium and phosphorus contents on the skeletal development and blood chemistry of growing great danes. Vet. Rec. 2000, 147, 652–660. [Google Scholar] [PubMed]
- Tryfonidou, M.A.; Holl, M.S.; Stevenhagen, J.J.; Buurman, C.J.; Deluca, H.F.; Oosterlaken-Dijksterhuis, M.A.; Van Den Brom, W.E.; Van Leeuwen, J.P.; Hazewinkel, H.A. Dietary 135-fold cholecalciferol supplementation severely disturbs the endochondral ossification in growing dogs. Domest. Anim. Endocrinol. 2003, 24, 265–285. [Google Scholar] [CrossRef]
- Cline, J. Calcium and vitamin D metabolism, deficiency, and excess. Top. Companion Anim. Med. 2012, 27, 159–164. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- How, K.L.; Hazewinkel, H.A.W.; Mol, J.A. Dietary vitamin D dependence of cat and dog due to inadequate cutaneous synthesis of vitamin D. Gen. Comp. Endocrinol. 1994, 96, 12–18. [Google Scholar] [CrossRef]
- Morris, J.G. Ineffective vitamin D synthesis in cats is reversed by an inhibitor of 7-dehydrocholestrol-Δ7-reductase. J. Nutr. 1999, 129, 903–908. [Google Scholar] [CrossRef] [Green Version]
- Norman, A. Vitamin D; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Laing, C.J.; Malik, R.; Wigney, D.I.; Fraser, D.R. Seasonal vitamin D status of greyhounds in Sydney. Aust. Vet. J. 1999, 77, 35–38. [Google Scholar] [CrossRef]
- Morris, J.G. Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev. 2002, 15, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Parker, V.J.; Rudinsky, A.J.; Chew, D.J. Vitamin D metabolism in canine and feline medicine. J. Am. Vet. Med. Assoc. 2017, 250, 1259–1269. [Google Scholar] [CrossRef] [PubMed]
- Prosser, D.E.; Jones, G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem. Sci. 2004, 29, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Horst, R.L.; Cullen, D.M.; Armas, L.A. Vitamin D3 distribution and status in the body. J. Am. Coll. Nutr. 2009, 28, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G. Cats discriminate between cholecalciferol and ergocalciferol. J. Anim. Physiol. Anim. Nutr. 2002, 86, 229–238. [Google Scholar] [CrossRef]
- Norman, A.W. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008, 88, 491S–499S. [Google Scholar] [CrossRef] [Green Version]
- Dechant, K.L.; Goa, K.L. Calcitriol. Drugs Aging 1994, 5, 300–317. [Google Scholar] [CrossRef]
- Souberbielle, J.C.; Cavalier, E.; Delanaye, P.; Massart, C.; Brailly-Tabard, S.; Cormier, C.; Chanson, P. Serum calcitriol concentrations measured with a new direct automated assay in a large population of adult healthy subjects and in various clinical situations. Clin. Chim. Acta 2015, 451, 149–153. [Google Scholar] [CrossRef]
- Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current understanding of the molecular actions of vitamin D. Physiol. Ver. 1998, 78, 1193–1231. [Google Scholar] [CrossRef] [Green Version]
- Azam, N.; Zhang, M.Y.H.; Wang, X.M.; Tenenhouse, H.S.; Portale, A.A. Disordered regulation of renal 25-hydroxyvitamin D-1a-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (Hyp) mice. Endocrinology 2003, 144, 3463–3468. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, I.; Aravindan, R.; Horst, R.L.; Drezner, M.K. Abnormal regulation of renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity in X-linked hypophosphatemia: A translational or posttranslational defect. J. Bone Miner. Res. 2003, 18, 434–442. [Google Scholar] [CrossRef]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Armbrecht, H.J.; Christakos, S. Calcitonin, a regulator of the 25-hydroxyvitamin D3 1α-hydroxylase gene. J. Biol. Chem. 2009, 284, 11059–11069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenza, H.L.; Kimmel-Jehan, C.; Jehan, F.; Shinki, T.; Wakino, S.; Anazawa, H.; Suda, T.; DeLuca, H.F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1a-hydroxylase gene promoter. Proc. Natl. Acad. Sci. USA 1998, 95, 1387–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, A.; Takeyama, K.; Kitanaka, S.; Kodera, Y.; Hosoya, T.; Kato, S. The promoter of the human 25-hydroxyvitamin D3 1ahydroxylase gene confers postive and negative responsiveness to PTH, calcitonin, and 1a,25(OH)2D3. Biochem. Biophys. Res. Commun. 1998, 249, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Rost, C.R.; Bikle, D.D.; Kaplan, R.A. In vitro stimulation of 25- hydroxycholecalciferol 1a-hydroxylation by parathyroid hormone in chick kidney slices: Evidence for a role for adenosine 30,50-monophoshate. Endocrinology 1981, 108, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Zierold, C.; Mings, J.A.; Deluca, H.F. Regulation of 25-hydroxyvitamin D3-24-hydroxylase mRNA by 1,25-dihydroxyvitamin D3 and parathyroid hormone. J. Cell. Biochem. 2003, 88, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Rheum. Dis. Clin. 2012, 38, 1–11. [Google Scholar] [CrossRef]
- de Brito Galvao, J.F.; Nagode, L.A.; Schenck, P.A.; Chew, D.J. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease. J. Vet. Emerg. Crit. Care 2013, 23, 134–162. [Google Scholar] [CrossRef]
- Jones, G.; Prosser, D.E.; Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res. 2014, 55, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Norman, A.W.; Okamura, W.H.; Bishop, J.E.; Henry, H.L. Update on biological actions of 1α, 25 (OH) 2-vitamin D3 (rapid effects) and 24R, 25 (OH) 2-vitamin D3. Mol. Cell. Endocrinol. 2002, 197, 1–13. [Google Scholar] [CrossRef]
- Seiler, S.; Heine, G.H.; Fliser, D. Clinical relevance of FGF -23 in chronic kidney disease. Kidney Int. 2009, 76, S34–S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusso, A.S.; Tokumoto, M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: A downward spiral in kidney disease. Kidney Int. 2011, 79, 715–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.C.; Kuro, O.M.; Moe, O.W. Secreted klotho and chronic kidney disease. Adv. Exp. Med. Biol. 2012, 728, 126–157. [Google Scholar] [PubMed] [Green Version]
- Tryfonidou, M.A.; Holl, M.S.; Vastenburg, M.; Oosterlaken-Dijksterhuis, M.A.; Birkenhager-Frenkel, D.H.; Van Den Brom, W.E.; Hazewinkel, H.A. Hormonal regulation of calcium homeostasis in two breeds of dogs during growth at different rates. Anim. Sci. J. 2003, 81, 1568–1580. [Google Scholar] [CrossRef]
- Hazewinkel, H.A.; Tryfonidou, M.A. Vitamin D3 metabolism in dogs. Mol. Cell. Endocrinol. 2002, 197, 23–33. [Google Scholar] [CrossRef]
- Planchot, J.J.; DuBois, M.B.; Halpern, S.; Cournot-Witmer, G.; Garabedian, M.; Balsan, S. In vitro action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on matrix organization and mineral distribution in rabbit growth plate. Metab. Bone Dis. Related Res. 1982, 4, 135–142. [Google Scholar] [CrossRef]
- Boyan, B.D.; Sylvia, V.L.; Dean, D.D.; Schwartz, Z. 24,25-(OH)2D3 regulates cartilage and bone via autocrine and endocrine mechanisms. Steroids 2001, 66, 363–374. [Google Scholar] [CrossRef]
- Burstein, S.; Chen, I.W.; Tsang, R.C. Effects of growth hormone replacement therapy on 1.2 5-dihydroxyvitamin D and calcium metabolism. J. Clin. Endocrinol. Metab. 1983, 56, 1246–1251. [Google Scholar] [CrossRef]
- Brixen, K.; Nielsen, H.K.; Bouillon, R.; Flyvbjerg, A.; Mosekilde, L. Effects of short-term growth hormone treatment on PTH, calcitriol, thyroid hormone, insulin and glucagon. Acta Endocrinol. 1992, 127, 331–336. [Google Scholar] [CrossRef]
- Marcus, R.; Butterfield, G.; Holloway, L.; Gilliland, L.; Baylink, D.J.; Hintz, R.L.; Sherman, B.M. Effects of short term administration of recombinant human growth hormone to elderly people. J. Clin. Endocrinol. Metab. 1990, 70, 519–527. [Google Scholar] [CrossRef]
- Condamine, L.; Vztovsnik, F.; Friedlander, G.; Menaa, C.; Garabedian, M. Local action of phosphate depletion and insulin-like growth factor I on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J. Clin. Investig. 1994, 94, 1673–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, B.; Eskildsen, P.C.; Lund, B.; Norman, A.W.O.H. Sorensen calcium and vitamin D metabolism in acromegaly. Acta Endocrinol. 1981, 96, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Grieff, M.; Brown, A.J. Regulation of renal vitamin D-24-hydroxylase by phosphate: Effects of hypophysectomy, growth hormone and insulin-like growth factor I. Biochem. Biophys. Res. Commun. 1997, 233, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Brumbaugh, P.F.; Haussler, M.R. lα, 25-dihydroxyvitamin D3 receptor: Competitive binding of vitamin D analogs. Life Sci. 1973, 13, 1737–1746. [Google Scholar] [CrossRef]
- Haddad, J.G.J. Transport of vitamin D metabolites. Clin. Orthop. Relat. Res. 1979, 142, 249–261. [Google Scholar] [CrossRef]
- Carrilo-Lopez, N.; Fernández-Martín, J.L.; Cannata-Andía, J.B. The role of calcium, calcitriol and its receptors in parathyroid regulation. Nefrología 2009, 29, 103–108. [Google Scholar]
- Haussler, M.R.; Whitfield, G.K.; Haussler, C.A.; Hsieh, J.C.; Thompson, P.D.; Selznick, S.H.; Dominguez, C.E.; Jurutka, P.W. The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J. Bone Miner. Res. 1998, 13, 325–349. [Google Scholar] [CrossRef]
- Jehan-Kimmel, C.; Darwish, H.M.; Strugnell, S.A.; Jehan, F.; Wiefling, B.; DeLuca, H.F. DNA bending is induced by binding of vitamin D receptor-retinoid X receptor heterodimers to vitamin D responsive elements. J. Cell. Biochem. 1999, 74, 220–228. [Google Scholar] [CrossRef]
- Rachez, C.; Freedman, L.P. Mechanisms of gene regulation by vitamin D3 receptor: A network of coactivator interactions. Gene 2000, 246, 9–21. [Google Scholar] [CrossRef]
- Rochel, N.; Wurtz, J.M.; Mitschler, A.; Klaholz, B.; Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell. 2000, 5, 173–179. [Google Scholar] [CrossRef]
- McKenna, N.J.; O’Malley, B.W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002, 108, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Watson, C.T. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res. 2010, 20, 1352–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtakangas, J.A.; Olivera, C.J.; Bishop, J.E.; Zanello, L.P.; Norman, A.W. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1,25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol. 2004, 18, 2660–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massheimer, V.; Boland, R.; De Boland, A.R. Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydropyridine-sensitive cAMPdependent pathway. Cell. Signal. 1994, 6, 299–304. [Google Scholar] [CrossRef]
- Feldman, D.; Pike, J.W.; Glorieux, F.H. Vitamin D, 2nd ed.; Elsevier Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Norman, A.W. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology 2006, 147, 5542–5548. [Google Scholar] [CrossRef] [Green Version]
- Zanello, L.; Norman, A.W. Stimulation by 1,25(OH)2-vitamin D3 of whole cell chloride currents in osteoblastic ROS 17/2.8 cells: A structure-function study. J. Biol. Chem. 1997, 272, 22617–22622. [Google Scholar] [CrossRef] [Green Version]
- Le Mellay, V.; Grosse, B.; Lieberherr, M. Phospholipase C beta and membrane action of calcitriol and estradiol. J. Biol. Chem. 1997, 272, 11902–11907. [Google Scholar] [CrossRef] [Green Version]
- Hoenderop, J.G.; Nilius, B.; Bindels, R.J. Calcium absorption across epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.B.; Watanuki, M.; Kim, S.; Shevde, N.K.; Pike, J.W. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol. Endocrinol. 2006, 20, 1447–1461. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Amling, M.; Pirro, A.E.; Priemel, M.; Meuse, J.; Baron, R.; Delling, G.; Demay, M.B. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998, 139, 4391–4396. [Google Scholar] [CrossRef]
- Van Cromphaut, S.J.; Dewerchin, M.; Hoenderop, J.G.; Stockmans, I.; Van Herck, E.; Kato, S.; Bindels, R.J.; Collen, D.; Carmeliet, P.; Bouillon, R.; et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: Functional and molecular aspects. Proc. Natl. Acad. Sci. USA 2001, 98, 13324–13329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakos, S.; Dhawan, P.; Porta, A.; Mady, L.J.; Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 2011, 347, 9–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol. 2001, 2, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Kutuzova, G.D.; DeLuca, H.F. Gene expression profiles in rat intestine identify pathways for 1, 25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch. Biochem. Biophys. 2004, 432, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best. Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boros, S.; Bindels, R.; Hoenderop, J. Active Ca2þ reabsorption in the connecting tubule. Pflugers Arch. 2009, 458, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoenderop, J.G.J.; Willems, P.H.G.M.; Bindels, R.J.M. Toward a comprehensive molecular model of active calcium reabsorption. Am. J. Physiol. 2000, 278, F352–F360. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Muller, D.; Suzuki, M.; Van Os, C.H.; Bindels, R.J.M. The epithelial calcium channel: Gatekeeper of active calcium reabsorption. Curr. Opin. Nephrol. Hypertens. 2000, 9, 335–340. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Van der Kemp, A.W.C.M.; Hartog, A.; Van de Graaf, S.F.J.; Van Os, C.H.; Willems, P.H.G.M.; Bindels, R.J.M. Molecular identification of the apical Ca21 channel in 1,25-dihydroxyvitamin D-responsive epithelia. J. Biol. Chem. 1999, 274, 8375–8378. [Google Scholar] [CrossRef] [Green Version]
- Hoenderop, J.G.J.; Dardenne, O.; Van Abel, M.; Van Der Kemp, A.W.C.M.; Van Os, C.H.; St-Arnaud, R.; Bindels, R.J.M. Modulation of renal Ca2þ transport protein genes by dietary Ca2þ and 1,25- dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1a-hydroxylase knockout mice. FASEB J. 2002, 16, 1398–1406. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Muller, D.; Van Der Kemp, A.W.; Hartog, A.; Suzuki, M.; Ishibashi, K.; Imai, M.; Sweep, F.; Willems, P.H.; Van Os, C.H.; et al. Calcitriol controls the epithelial calcium channel in kidney. J. Am. Soc. Nephrol. 2001, 12, 1342–1349. [Google Scholar] [PubMed]
- Van Abel, M.; Hoenderop, J.G.J.; Dardenne, O.; St Arnaud, R.; Van Os, C.H.; Van Leeuwen, H.J.P.T.M.; Bindels, R.J.M. 1,25- dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J. Am. Soc. Nephrol. 2002, 13, 2102–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveh-Many, T.; Marx, R.; Keshet, E.; Pike, J.W.; Silver, J. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J. Clin. Investig. 1990, 86, 1968–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquillet, G.; Unwin, R.J. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflügers Arch. Eur. J. Phy. 2019, 471, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, J.; Russell, J.; Sherwood, L.M. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc. Natl. Acad. Sci. USA 1985, 82, 4270–4273. [Google Scholar] [CrossRef] [Green Version]
- Yuen, N.K.; Ananthakrishnan, S.; Campbell, M.J. Hyperparathyroidism of renal disease. Perm. J. 2016, 20, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Hostutler, R.A.; DiBartola, S.P.; Chew, D.J.; Nagode, L.A.; Schenck, P.A.; Rajala-Schultz, P.J.; Drost, W.T. Comparison of the effects of daily and intermittent-dose calcitriol on serum parathyroid hormone and ionized calcium concentrations in normal cats and cats with chronic renal failure. J. Vet. Intern. Med. 2006, 20, 1307–1313. [Google Scholar] [CrossRef]
- IRIS. Treatment recommendations for CKD in dogs. Int. Ren. Interest Soc. 2019, 1–16. [Google Scholar]
- IRIS. Treatment recommendations for CKD in cats. Int. Ren. Interest Soc. 2019, 1–16. [Google Scholar]
- De Borst, M.H.; Hajhosseiny, R.; Tamez, H.; Wenger, J.; Thadhani, R.; Goldsmith, D.J. Active vitamin D treatment for reduction of residual proteinuria: A systematic review. J. Am. Soc. Nephrol. 2013, 24, 1863–1871. [Google Scholar] [CrossRef]
- Li, X.H.; Feng, L.; Yang, Z.H.; Liao, Y.H. Effect of active vitamin D on cardiovascular outcomes in predialysis chronic kidney diseases: A systematic review and meta-analysis. Nephrology 2015, 20, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, N.D.; Damasiewicz, M.J. Do the benefits of using calcitriol and other vitamin D receptor activators in patients with chronic kidney disease outweigh the harms? Nephrology 2017, 22, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.C.; Liao, M.T.; Hsiao, P.J.; Lu, C.L.; Hsu, Y.J.; Lu, K.C.; Chu, P. Antiproteinuria effect of calcitriol in patients with chronic kidney disease and vitamin D deficiency: A randomized controlled study. J. Ren. Nutr. 2020, 30, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Kanda, E.; Iimori, S.; Naito, S.; Noda, Y.; Kawasaki, T.; Sato, H.; Ando, R.; Sasaki, S.; Sohara, E.; et al. The use of vitamin D analogs is independently associated with the favorable renal prognosis in chronic kidney disease stages 4–5: The CKD-route study. Clin. Exp. Nephrol. 2017, 21, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Canaff, L.; Hendy, G.N. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydroxyvitamin D. J. Biol. Chem. 2002, 277, 30337–30350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie, M.T.; Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Ver. 1999, 20, 345–357. [Google Scholar] [CrossRef]
- Suda, T.; Ueno, Y.; Fujii, K.; Shinki, T. Vitamin D and bone. J. Cell. Biochem. 2003, 88, 259–266. [Google Scholar] [CrossRef]
- Kitazawa, S.; Kajimoto, K.; Kondo, T.; Kitazawa, R. Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter. J. Cell. Biochem. 2003, 89, 771–777. [Google Scholar] [CrossRef]
- Kondo, T.; Kitazawa, R.; Maeda, S.; Kitazawa, S. 1a,25 Dihydroxyvitamin D3 rapidly regulates the mouse osteoprotegerin gene through dual pathways. J. Bone Miner. Res. 2004, 19, 1411–1419. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Yoshizawa, T.; Fukuda, T.; Shirode-Fukuda, Y.; Yu, T.; Sekine, K.; Sato, T.; Kawano, H.; Aihara, K.; Nakamichi, Y.; et al. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 2013, 154, 1008–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naja, R.P.; Dardenne, O.; Arabian, A.; St. Arnaud, R. Chondrocyte-specific modulation of Cyp27b1 expression supports a role for local synthesis of 1,25-dihydroxyvitamin D3 in growth plate development. Endocrinology 2009, 150, 4024–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- European Pet Food Industry Federation (FEDIAF). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; FEDIAF: Bruxelles, Belgium, 2020; 96p. [Google Scholar]
- Association of American Feed Control Officials. AAFCO Dog and Cat Food Nutrient Profiles; 2018 official publication; Association of American Feed Control Officials: Oxford, UK, 2018; ISBN 978-0-9983250-3-3. [Google Scholar]
- Mellanby, E. A further demonstration of the part played by accessory food factors in the aetiology of rickets. J. Physiol. 1918, 52, 53–54. [Google Scholar]
- Arnold, A.; Elvehjem, C.A. Nutritional requirements of dogs. J. Am. Vet. Med. Assoc. 1939, 95, 187–194. [Google Scholar]
- Michaud, L.; Elvehjem, E.A. The nutritional requirements of the dog. N. Am. Vet. 1944, 25, 657–666. [Google Scholar]
- Tryfonidou, M.A.; Stevenhagen, J.J.; Van Den Bemd, G.J.; Oosterlaken-Dijksterhuis, M.A.; DeLuca, H.F.; Mol, J.A.; Van Den Brom, W.E.; Van Leeuwen, J.P.; Hazewinkel, H.A. Moderate cholecalciferol supplementation depresses intestinal calcium absorption in growing dogs. J. Nutr. 2002, 132, 2644–2650. [Google Scholar] [CrossRef] [Green Version]
- Gershoff, S.N.; Legg, M.A.; O’connor, F.J.; Hegsted, D.M. The effect of vitamin D-deficient diets containing various Ca: P ratios on cats. J. Nutr. 1957, 63, 79–93. [Google Scholar] [CrossRef]
- Morris, J.G.; Earle, K.E.; Anderson, P.A. Plasma 25-hydroxyvitamin D in growing kittens is related to dietary intake of cholecalciferol. J. Nutr. 1999, 129, 909–912. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.G.; Earle, K.E. Growing kittens require less dietary calcium than current allowances. J. Nutr. 1999, 129, 1698–1704. [Google Scholar] [CrossRef] [Green Version]
- Takeda, E.; Yamamoto, H.; Taketani, Y.; Miyamoto, K.I. Vitamin D-dependent rickets type I and type II. Pediatr. Int. 1997, 39, 508–513. [Google Scholar] [CrossRef] [PubMed]
- LeVine, D.N.; Zhou, Y.; Ghiloni, R.J.; Fields, E.L.; Birkenheuer, A.J.; Gookin, J.L.; Roberston, I.D.; Malloy, P.J.; Feldman, D. Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets in a Pomeranian Dog Caused by a Novel Mutation in the Vitamin D Receptor Gene. J. Vet. Intern. Med. 2009, 23, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Laing, C.; Davis, P.E.; Allan, G.S.; Wigney, D.I. Rickets in a litter of racing greyhounds. J. Small Anim. Pract. 1997, 38, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. Mayo Clin. Proc. 2011, 86, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatun, S.; Ozkan, B.; Orbak, Z.; Doneray, H.; Cizmecioglu, F.; Toprak, D.; Calikoglu, A.S. Vitamin D deficiency in early infancy. J. Nutr. 2005, 135, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Wharton, B.; Bishop, N. Rickets. Lancet 2003, 362, 1389–1400. [Google Scholar] [CrossRef]
- Johnson, K.A.; Church, D.B.; Barton, R.J.; Wood, A.K.W. Vitamin D-dependent rickets in a Saint Bernard dog. J. Small Anim. Pract. 1988, 29, 657–666. [Google Scholar] [CrossRef]
- Schreiner, C.A.; Nagode, L.A. Vitamin D-dependent rickets type 2 in a four-month-old cat. J. Am. Vet. Med. Assoc. 2003, 222, 337–339. [Google Scholar] [CrossRef]
- Godfrey, D.R.; Anderson, R.M.; Barber, P.J.; Hewison, M. Vitamin D-dependent rickets type II in a cat. J. Small Anim. Pract. 2005, 46, 440–444. [Google Scholar] [CrossRef]
- Tanner, E.; Langley-Hobbs, S.J. Vitamin D-dependent rickets type 2 with characteristic radiographic changes in a 4-month-old kitten. J. Feline Med. Surg. 2005, 7, 307–311. [Google Scholar] [CrossRef]
- Geisen, V.; Weber, K.; Hartmann, K. Vitamin D-Dependent Hereditary Rickets Type I in a Cat. J. Vet. Intern. Med. 2009, 23, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Grahn, R.A.; Ellis, M.R.; Grahn, J.C.; Lyons, L.A. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA. J. Feline Med. Surg. 2012, 14, 587–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teshima, T.; Kurita, S.; Sasaki, T.; Matsumoto, H.; Niina, A.; Abe, D.; Kanno, N.; Koyama, H. A genetic variant of CYP2R1 identified in a cat with type 1B vitamin D-dependent rickets: A case report. BMC Vet. Res. 2019, 15, 62. [Google Scholar] [CrossRef]
- Berry, J.L.; Davies, M.; Mee, A.P. Vitamin D metabolism, rickets, and osteomalacia. Semin. Musculoskelet. Radiol. 2002, 6, 173–181. [Google Scholar] [CrossRef] [PubMed]
- de Fornel-Thibaud, P.; Blanchard, G.; Escoffier-Chateau, L.; Segond, S.; Guetta, F.; Begon, D.; Delisle, F.; Rosenberg, D. Unusual case of osteopenia associated with nutritional calcium and vitamin D deficiency in an adult dog. J. Am. Anim. Hosp. Assoc. 2007, 43, 52–60. [Google Scholar] [CrossRef]
- Tal, M.; Parr, J.M.; MacKenzie, S.; Verbrugghe, A. Dietary imbalances in a large breed puppy, leading to compression fractures, vitamin D deficiency, and suspected nutritional secondary hyperparathyroidism. Can. Vet. J. La Rev. Vet. Can. 2018, 59, 36–42. [Google Scholar]
- Cloutier, M.; Gascon-Barré, M.; Amour, P.D. Chronic adaptation of dog parathyroid function to a low-calcium-high-sodium-vitamin D-deficient diet. J. Bone Miner. Res. 1992, 7, 1021–1028. [Google Scholar] [CrossRef]
- Garabedian, M.; Tanaka, Y.; Holick, M.F.; Deluca, H.F. Response of intestinal calcium transport and bone calcium mobilization to 1,25-Dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology 1974, 94, 1022–1027. [Google Scholar] [CrossRef]
- Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best. Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 333–343. [Google Scholar] [CrossRef]
- Tomsa, K.; Glaus, T.; Hauser, B.; Flückiger, M.; Arnold, P.; Wess, G.; Reusch, C. Nutritional secondary hyperparathyroidism in six cats. J. Small Anim. Pract. 1999, 40, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Rumbeiha, W.K.; Kruger, J.M.; Fitzgerald, S.F.; Nachreiner, R.F.; Kaneene, J.B.; Braselton, W.E.; Chiapuzio, C.L. Use of pamidronate to reverse vitamin D3-induced toxicosis in dogs. Am. J. Vet. Res. 1999, 60, 1092–1097. [Google Scholar] [PubMed]
- Selby, P.L.; Davies, M.; Marks, J.S.; Mawer, E.B. Vitamin D intoxication causes hypercalcaemia by increased bone resorption which responds to pamidronate. Clin. Endocrinol. 1995, 43, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.S. Vitamin D metabolite-mediated hypercalcemia. Endocrin. Metab. Clin. 1989, 18, 768–778. [Google Scholar] [CrossRef]
- Gerber, B.; Hauser, B.; Reusch, C.E. Serum levels of 25-hydroxycholecalciferol and 1,25dihydroxycholecalciferol in dogs with hypercalcaemia. Vet. Res. Commun. 2004, 28, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Selting, K.A.; Sharp, C.R.; Ringold, R.; Thamm, D.H.; Backus, R. Serum 25-hydroxyvitamin D concentrations in dogs–correlation with health and cancer risk. Vet. Comp. Oncol. 2016, 14, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Wakshlag, J.J.; Rassnick, K.M.; Malone, E.K.; Struble, A.M.; Vachhani, P.; Trump, D.L.; Tian, L. Cross-sectional study to investigate the association between vitamin D status and cutaneous mast cell tumours in Labrador retrievers. Br. J. Nutr. 2011, 106, S60–S63. [Google Scholar] [CrossRef] [Green Version]
- Weidner, N.; Woods, J.P.; Conlon, P.; Meckling, K.A.; Atkinson, J.L.; Bayle, J.; Verbrugghe, A. Influence of various factors on circulating 25 (OH) vitamin D concentrations in dogs with cancer and healthy dogs. J. Vet. Intern. Med. 2017, 31, 1796–1803. [Google Scholar] [CrossRef]
- Kraus, M.S.; Rassnick, K.M.; Wakshlag, J.J.; Gelzer, A.R.M.; Waxman, A.S.; Struble, A.M.; Refsal, K. Relation of vitamin D status to congestive heart failure and cardiovascular events in dogs. J. Vet. Intern. Med. 2014, 28, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Osuga, T.; Nakamura, K.; Morita, T.; Lim, S.Y.; Nisa, K.; Yokoyama, N.; Takiguchi, M. Vitamin D status in different stages of disease severity in dogs with chronic valvular heart disease. J. Vet. Intern. Med. 2015, 29, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Allenspach, K.; Rizzo, J.; Jergens, A.E.; Chang, Y.M. Hypovitaminosis D is associated with negative outcome in dogs with protein losing enteropathy: A retrospective study of 43 cases. BMC Vet. Res. 2017, 13, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, A.G.; Else, R.; Evans, H.; Berry, J.L.; Herrtage, M.E.; Mellanby, R.J. Hypovitaminosis D in dogs with inflammatory bowel disease and hypoalbuminaemia. J. Small Anim. Pract. 2011, 52, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Lalor, S.; Schwartz, A.M.; Titmarsh, H.; Reed, N.; Tasker, S.; Boland, L.; Mellanby, R.J. Cats with inflammatory bowel disease and intestinal small cell lymphoma have low serum concentrations of 25-hydroxyvitamin D. J. Vet. Intern. Med. 2014, 28, 351–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titmarsh, H.F.; Gow, A.G.; Kilpatrick, S.; Cartwright, J.A.; Milne, E.M.; Philbey, A.W.; Mellanby, R.J. Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy. PLoS ONE 2015, 10, e0137377. [Google Scholar] [CrossRef] [Green Version]
- Titmarsh, H.; Gow, A.G.; Kilpatrick, S.; Sinclair, J.; Hill, T.; Milne, E.; Philbey, A.; Berry, J.; Handel, I.; Mellanby, R.J. Association of vitamin D status and clinical outcome in dogs with a chronic enteropathy. J. Vet. Intern. Med. 2015, 29, 1473–1478. [Google Scholar] [CrossRef]
- Kim, D.I.; Kim, H.; Son, P.; Kang, J.H.; Kang, B.T.; Yang, M.P. Serum 25-hydroxyvitamin D concentrations in dogs with suspected acute pancreatitis. J. Vet. Med. Sci. 2017, 79, 1366–1373. [Google Scholar] [CrossRef] [Green Version]
- Laws, E.J.; Kathrani, A.; Harcourt-Brown, T.R.; Granger, N.; Rose, J.H. 25-Hydroxy vitamin D3 serum concentration in dogs with acute polyradiculoneuritis compared to matched controls. J. Small Anim. Pract. 2018, 59, 222–227. [Google Scholar] [CrossRef]
- Cortadellas, O.; Fernandez del Palacio, M.J.; Talavera, J.; Bayón, A. Calcium and phosphorus homeostasis in dogs with spontaneous chronic kidney disease at different stages of severity. J. Vet. Intern. Med. 2010, 24, 73–79. [Google Scholar] [CrossRef]
- Galler, A.; Tran, J.L.; Krammer-Lukas, S.; Höller, U.; Thalhammer, J.G.; Zentek, J.; Willmann, M. Blood vitamin levels in dogs with chronic kidney disease. Vet. J. 2012, 192, 226–231. [Google Scholar] [CrossRef]
- Gerber, B.; Hässig, M.; Reusch, C.E. Serum concentrations of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol in clinically normal dogs and dogs with acute and chronic renal failure. Am. J. Vet. Res. 2003, 64, 1161–1166. [Google Scholar] [CrossRef]
- Parker, V.J.; Harjes, L.M.; Dembek, K.; Young, G.S.; Chew, D.J.; Toribio, R.E. Association of vitamin D metabolites with parathyroid hormone, fibroblast growth factor-23, calcium, and phosphorus in dogs with various stages of chronic kidney disease. J. Vet. Intern. Med. 2017, 31, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Lalor, S.M.; Mellanby, R.J.; Friend, E.J.; Bowlt, K.L.; Berry, J.; Gunn-Moore, D. Domesticated cats with active mycobacteria infections have low serum vitamin D (25 (OH) D) concentrations. Transbound. Emerg. Dis. 2012, 59, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cortes, A.; Martori, C.; Martinez-Florez, A.; Clop, A.; Amills, M.; Kubejko, J.; Llull, J.; Nadal, J.M.; Alberola, J. Canine Leishmaniasis progression is associated with vitamin D deficiency. Sci. Rep. 2017, 7, 3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, C.T.; Schoeman, J.P.; Berry, J.L.; Mellanby, R.J.; Dvir, E. Hypovitaminosis D in dogs with spirocercosis. J. Vet. Intern. Med. 2013, 27, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Titmarsh, H.F.; Lalor, S.M.; Tasker, S.; Barker, E.N.; Berry, J.; Gunn-More, D.; Mellanby, R.J. Vitamin D status in cats with feline immunodeficiency virus. Vet. Med. Sci. 2015, 1, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Titmarsh, H.; Kilpatrick, S.; Sinclair, J.; Boag, A.; Bode, E.F.; Lalor, S.M.; Gaylor, D.; Berry, J.; Bommer, N.X.; Gunn-Moore, D.; et al. Vitamin D status predicts 30 day mortality in hospitalised cats. PLoS ONE 2015, 10, e0125997. [Google Scholar] [CrossRef]
- Barroga, E.F.; Kadosawa, T.; Okumura, M.; Fujinaga, T. Effects of vitamin D and retinoids on the differentiation and growth in vitro of canine osteosarcoma and its clonal cell lines. Res. Vet. Sci. 1999, 66, 231–236. [Google Scholar] [CrossRef]
- Kunakornsawat, S.; Rosol, T.J.; Capen, C.C.; Middleton, R.P.; Hannah, S.S.; Inpanbutr, N. Effects of 1,25 (OH) 2D3, EB1089, and analog V on PTHrP production, PTHrP mRNA expression and cell growth in SCC 2/88. Anticancer Res. 2001, 21, 3355–3363. [Google Scholar]
- Kunakornsawat, S.; Rosol, T.J.; Capen, C.C.; Omdahl, J.L.; Leroy, B.E.; Inpanbutr, N. Effects of 1, 25 (OH) 2D3, 25OHD3, and EB1089 on cell growth and Vitamin D receptor mRNA and 1α-hydroxylase mRNA expression in primary cultures of the canine prostate. J. Steroid Biochem. Mol. Biol. 2004, 89, 409–412. [Google Scholar] [CrossRef]
- Kunakornsawat, S.; Rosol, T.J.; Capen, C.C.; Reddy, G.S.; Binderup, L.; Inpanbutr, N. Effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its analogues (EB1089 and analog V) on canine adenocarcinoma (CAC-8) in nude mice. Biol. Pharm. Bull. 2002, 25, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Rassnick, K.M.; Muindi, J.R.; Johnson, C.S.; Balkman, C.E.; Ramnath, N.; Yu, W.D.; Engler, K.L.; Page, R.L.; Trump, D.L. In vitro and in vivo evaluation of combined calcitriol and cisplatin in dogs with spontaneously occurring tumors. Cancer Chemother. Pharmacol. 2008, 62, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, E.K.; Rassnick, K.M.; Wakshlag, J.J.; Russell, D.S.; Al-Sarraf, R.; Ruslander, D.M.; Johnson, C.S.; Trump, D.L. Calcitriol (1,25-dihydroxycholecalciferol) enhances mast cell tumour chemotherapy and receptor tyrosine kinase inhibitor activity in vitro and has single-agent activity against spontaneously occurring canine mast cell tumours. Vet. Comp. Oncol. 2010, 8, 209–220. [Google Scholar] [CrossRef] [PubMed]
Minimum | Maximum | |||
---|---|---|---|---|
Dog | Cat | Dog | Cat | |
NRC (2006) (IU/Mkcal) | 110 a/136 b | 56 a/70 b | 800 | 7520 |
FEDIAF (2020) (IU/Mkcal) | 138 c/159 d | 62.5 e/83.3 f | 800 | 7500 |
AAFCO (2018) (IU/Mkcal) | 125 | 70 | 750 | 7520 |
Minimum | Maximum | |||
---|---|---|---|---|
Dogs | Cats | Dogs | Cats | |
NRC (2006) (IU/Mkcal) | 110 a–136 b | - a/56 b | 800 | 7520 |
FEDIAF (2020) (IU/Mkcal) | 125 c/138 d | 70 | 800 | 7500 |
AAFCO (2018) (IU/Mkcal) | 125 | 70 | 750 | 7520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafalon, R.V.A.; Ruberti, B.; Rentas, M.F.; Amaral, A.R.; Vendramini, T.H.A.; Chacar, F.C.; Kogika, M.M.; Brunetto, M.A. The Role of Vitamin D in Small Animal Bone Metabolism. Metabolites 2020, 10, 496. https://doi.org/10.3390/metabo10120496
Zafalon RVA, Ruberti B, Rentas MF, Amaral AR, Vendramini THA, Chacar FC, Kogika MM, Brunetto MA. The Role of Vitamin D in Small Animal Bone Metabolism. Metabolites. 2020; 10(12):496. https://doi.org/10.3390/metabo10120496
Chicago/Turabian StyleZafalon, Rafael Vessecchi Amorim, Bruna Ruberti, Mariana Fragoso Rentas, Andressa Rodrigues Amaral, Thiago Henrique Annibale Vendramini, Fernanda Chicharo Chacar, Marcia Mery Kogika, and Marcio Antonio Brunetto. 2020. "The Role of Vitamin D in Small Animal Bone Metabolism" Metabolites 10, no. 12: 496. https://doi.org/10.3390/metabo10120496
APA StyleZafalon, R. V. A., Ruberti, B., Rentas, M. F., Amaral, A. R., Vendramini, T. H. A., Chacar, F. C., Kogika, M. M., & Brunetto, M. A. (2020). The Role of Vitamin D in Small Animal Bone Metabolism. Metabolites, 10(12), 496. https://doi.org/10.3390/metabo10120496