The Role of Interleukin-13 in Chronic Airway Diseases: A Cross-Sectional Study in COPD and Asthma–COPD Overlap
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Enrollment and Eligibility Criteria
2.2. Diagnostic Procedures
2.3. Statistical Analysis
3. Results
3.1. Study Population and Baseline Characteristics
3.2. Differences in Treatment Patterns
3.3. Clinical Outcomes and Functional Assessments
3.4. Inflammatory Biomarkers and Phenotypic Traits
3.5. Correlation Analyses in the Total Cohort
3.6. Subgroup Analyses by Disease Type
3.7. Findings in Patients with High Eosinophil Counts
3.8. Multivariate Analysis of IL-13 as Predictor of ACO
3.9. Analysis of ACO Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACO | Asthma–COPD Overlap |
CAT | COPD Assessment Test |
COPD | Chronic Obstructive Pulmonary Disease |
FeNO | Fractional Exhaled Nitric Oxide |
FEV1 | Forced Expiratory Volume in 1 Second |
FVC | Forced Vital Capacity |
GOLD | Global Initiative for Chronic Obstructive Lung Disease |
ICS | Inhaled Corticosteroid |
IgE | Immunoglobulin E |
IL-13 | Interleukin-13 |
mMRC | Modified Medical Research Council Dyspnea Scale |
References
- Barnes, P.J. Cellular and Molecular Mechanisms of Asthma and COPD. Clin. Sci. 2017, 131, 1541–1558. [Google Scholar] [CrossRef]
- Caramori, G.; Casolari, P.; Barczyk, A.; Durham, A.L.; Di Stefano, A.; Adcock, I. COPD Immunopathology. Semin. Immunopathol. 2016, 38, 497–515. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.; Fabbri, L.; Criner, G.; Martinez, F.J.; Mannino, D.; Vogelmeier, C.; Montes de Oca, M.; Papi, A.; Sin, D.D.; Han, M.K.; et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am. J. Respir. Crit. Care Med. 2022, 206, 1317–1325. [Google Scholar] [CrossRef]
- Confalonieri, M.; Braga, L.; Salton, F.; Ruaro, B.; Confalonieri, P. Chronic Obstructive Pulmonary Disease Definition: Is It Time to Incorporate the Concept of Failure of Lung Regeneration? Am. J. Respir. Crit. Care Med. 2023, 207, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Varricchi, G.; Poto, R. Towards Precision Medicine in COPD: Targeting Type 2 Cytokines and Alarmins. Eur. J. Intern. Med. 2024, 125, 28–31. [Google Scholar] [CrossRef]
- Yousuf, A.; Ibrahim, W.; Greening, N.J.; Brightling, C.E. T2 Biologics for Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. Pract. 2019, 7, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- David, B.; Bafadhel, M.; Koenderman, L.; De Soyza, A. Eosinophilic Inflammation in COPD: From an Inflammatory Marker to a Treatable Trait. Thorax 2021, 76, 188–195. [Google Scholar] [CrossRef]
- de Llano, L.P.; Cosío, B.G.; Iglesias, A.; de Las Cuevas, N.; Soler-Cataluña, J.J.; Izquierdo, J.L.; López-Campos, J.L.; Calero, C.; Plaza, V.; Miravitlles, M.; et al. Mixed Th2 and Non-Th2 Inflammatory Pattern in the Asthma-COPD Overlap: A Network Approach. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 591–601. [Google Scholar] [CrossRef]
- Fieldes, M.; Bourguignon, C.; Assou, S.; Nasri, A.; Fort, A.; Vachier, I.; De Vos, J.; Ahmed, E.; Bourdin, A. Targeted Therapy in Eosinophilic Chronic Obstructive Pulmonary Disease. ERJ Open Res. 2021, 7, 00437–02020. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martínez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Arch. Bronconeumol. 2017, 53, 128–149. [Google Scholar] [CrossRef]
- Cosio, B.G.; Soriano, J.B.; López-Campos, J.L.; Calle-Rubio, M.; Soler-Cataluna, J.J.; de-Torres, J.P.; Marín, J.M.; Martínez-Gonzalez, C.; de Lucas, P.; Mir, I.; et al. Defining the Asthma-COPD Overlap Syndrome in a COPD Cohort. Chest 2016, 149, 45–52. [Google Scholar] [CrossRef]
- GOLD. 2024 GOLD Report; Global Initiative Chronic Obstructive Lung Disease–GOLD: Deer Park, IL, USA, 2024. [Google Scholar]
- GINA. 2025 GINA Summary Guide; Global Initiative for Asthma–GINA: Fontana-on-Geneva Lake, WI, USA, 2025. [Google Scholar]
- Durham, A.L.; Caramori, G.; Chung, K.F.; Adcock, I.M. Targeted Anti-Inflammatory Therapeutics in Asthma and Chronic Obstructive Lung Disease. Transl. Res. 2016, 167, 192–203. [Google Scholar] [CrossRef]
- New Drugs Under Development for COPD. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fspiral.imperial.ac.uk%2Fserver%2Fapi%2Fcore%2Fbitstreams%2F3b3e1003-b554-4129-9e5e-8661ee8fb272%2Fcontent&wdOrigin=BROWSELINK (accessed on 24 July 2025).
- Nucera, F.; Bianco, A.; David, T.; Salvato, I.; Adcock, I.M.; Caramori, G. Treatable Traits in COPD Patients. Minerva Med. 2022, 113, 449–459. [Google Scholar] [CrossRef]
- Miravitlles, M.; Alvarez-Gutierrez, F.J.; Calle, M.; Casanova, C.; Cosio, B.G.; López-Viña, A.; Pérez de Llano, L.; Quirce, S.; Roman-Rodríguez, M.; Soler-Cataluña, J.J.; et al. Algorithm for Identification of Asthma-COPD Overlap: Consensus Between the Spanish COPD and Asthma Guidelines. Eur. Respir. J. 2017, 49, 1700068. [Google Scholar] [CrossRef]
- Cataldo, D.; Corhay, J.-L.; Derom, E.; Louis, R.; Marchand, E.; Michils, A.; Ninane, V.; Peché, R.; Pilette, C.; Vincken, W.; et al. A Belgian Survey on the Diagnosis of Asthma-COPD Overlap Syndrome. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 601–613. [Google Scholar] [CrossRef]
- Li, M.; Yang, T.; He, R.; Li, A.; Dang, W.; Liu, X.; Chen, M. The Value of Inflammatory Biomarkers in Differentiating Asthma–COPD Overlap from COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 3025–3037. [Google Scholar] [CrossRef]
- Heffler, E.; Carpagnano, G.E.; Favero, E.; Guida, G.; Maniscalco, M.; Motta, A.; Paoletti, G.; Rolla, G.; Baraldi, E.; Pezzella, V.; et al. Fractional Exhaled Nitric Oxide (FENO) in the Management of Asthma: A Position Paper of the Italian Respiratory Society (SIP/IRS) and Italian Society of Allergy, Asthma and Clinical Immunology (SIAAIC). Multidiscip. Respir. Med. 2020, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, M.; Wu, Y.; Shen, Y.; Chen, L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2567–2575. [Google Scholar] [CrossRef] [PubMed]
- Ramsahai, J.M.; Simpson, J.; Wark, P. Eosinophilia as a Treatable Trait in Three Patients with Asthma and COPD. Respirol. Case Rep. 2018, 6, e00295. [Google Scholar] [CrossRef]
- Bafadhel, M.; Peterson, S.; De Blas, M.A.; Calverley, P.M.; Rennard, S.I.; Richter, K.; Fagerås, M. Predictors of Exacerbation Risk and Response to Budesonide in Patients with Chronic Obstructive Pulmonary Disease: A Post-Hoc Analysis of Three Randomised Trials. Lancet Respir. Med. 2018, 6, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Patel, N.; et al. Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. N. Engl. J. Med. 2024, 390, 2274–2283. [Google Scholar] [CrossRef]
- Jaroenpuntaruk, V.; Pongdee, T. A Phase 3 Trial of Dupilumab for People with Chronic Obstructive Pulmonary Disease and Elevated Peripheral Blood Eosinophil Counts. J. Allergy Clin. Immunol. Pract. 2024, 12, 1394–1396. [Google Scholar] [CrossRef]
- Barnes, P.J. Inflammatory Endotypes in COPD. Allergy 2019, 74, 1249–1256. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.R.; Burdon, J.G.W.; Piitulainen, E.; Sandhaus, R.A.; Seersholm, N.; Stocks, J.M.; Stoel, B.C.; Huang, L.; Yao, Z.; Edelman, J.M.; et al. Intravenous Augmentation Treatment and Lung Density in Severe A1 Antitrypsin Deficiency (RAPID): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2015, 386, 360–368. [Google Scholar] [CrossRef]
- Fouka, E.; Papaioannou, A.I.; Hillas, G.; Steiropoulos, P. Asthma-COPD Overlap Syndrome: Recent Insights and Unanswered Questions. J. Pers. Med. 2022, 12, 708. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Doyle, A.D.; Mukherjee, M.; LeSuer, W.E.; Bittner, T.B.; Pasha, S.M.; Frere, J.J.; Neely, J.L.; Kloeber, J.A.; Shim, K.P.; Ochkur, S.I.; et al. Eosinophil-Derived IL-13 Promotes Emphysema. Eur. Respir. J. 2019, 53, 1801291. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Vatrella, A.; Fabozzi, I.; Calabrese, C.; Maselli, R.; Pelaia, G. Dupilumab: A Novel Treatment for Asthma. J. Asthma Allergy 2014, 123. [Google Scholar] [CrossRef] [PubMed]
- Accogli, R.; Marchese, A.; Frizzelli, A.; Simoni, A.D.; Caramori, G.; Chetta, A.; Aiello, M. Improvement of Walking Capacity in Patients with Alpha1-Antitrypsin Deficiency After Augmentation Therapy. Eur. Respir. J. 2024, 64, PA1600. [Google Scholar] [CrossRef]
- Choudhury, P.; Biswas, S.; Singh, G.; Pal, A.; Ghosh, N.; Ojha, A.K.; Das, S.; Dutta, G.; Chaudhury, K. Immunological Profiling and Development of a Sensing Device for Detection of IL-13 in COPD and Asthma. Bioelectrochemistry 2022, 143, 107971. [Google Scholar] [CrossRef] [PubMed]
- Grubek-Jaworska, H.; Paplińska, M.; Hermanowicz-Salamon, J.; Białek-Gosk, K.; Dąbrowska, M.; Grabczak, E.; Domagała-Kulawik, J.; Stępień, J.; Chazan, R. IL-6 and IL-13 in Induced Sputum of COPD and Asthma Patients: Correlation with Respiratory Tests. Respir. Int. Rev. Thorac. Dis. 2012, 84, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.-H.; Kline Leidy, N. Development and First Validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef]
- Cheng, S.-L.; Lin, C.-H.; Wang, C.-C.; Chan, M.-C.; Hsu, J.-Y.; Hang, L.-W.; Perng, D.-W.; Yu, C.-J.; Wang, H.-C. Taiwan Clinical Trial Consortium for Respiratory Disease (TCORE) Comparison Between COPD Assessment Test (CAT) and Modified Medical Research Council (mMRC) Dyspnea Scores for Evaluation of Clinical Symptoms, Comorbidities and Medical Resources Utilization in COPD Patients. J. Formos. Med. Assoc. 2019, 118, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-L.; Zhao, L.-Y. Comparison of Clinical Features and Outcomes for Asthma-COPD Overlap Syndrome vs. COPD Patients: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1495–1510. [Google Scholar] [CrossRef]
- Alshabanat, A.; Zafari, Z.; Albanyan, O.; Dairi, M.; FitzGerald, J.M. Asthma and COPD Overlap Syndrome (ACOS): A Systematic Review and Meta Analysis. PLoS ONE 2015, 10, e0136065. [Google Scholar] [CrossRef]
- Holtjer, J.C.S.; Bloemsma, L.D.; Beijers, R.J.H.C.G.; Cornelissen, M.E.B.; Hilvering, B.; Houweling, L.; Vermeulen, R.C.H.; Downward, G.S.; Maitland-Van der Zee, A.-H. P4O2 consortium Identifying Risk Factors for COPD and Adult-Onset Asthma: An Umbrella Review. Off. J. Eur. Respir. Soc. 2023, 32, 230009. [Google Scholar] [CrossRef]
- Adamek, L.; Jones, P.; Nadeau, G.; Banik, N. GOLD 2011: Combined COPD Assessment of Patients from the European Health-Related Quality of Life Study. Eur. Respir. J. 2012, 40 (Suppl. 65), 1644. [Google Scholar]
- Maniscalco, M.; Paris, D.; Melck, D.J.; Molino, A.; Carone, M.; Ruggeri, P.; Caramori, G.; Motta, A. Differential Diagnosis between Newly Diagnosed Asthma and COPD Using Exhaled Breath Condensate Metabolomics: A Pilot Study. Eur. Respir. J. 2018, 51, 1701825. [Google Scholar] [CrossRef]
- Díaz, A.A.; Pinto-Plata, V.; Hernández, C.; Peña, J.; Ramos, C.; Díaz, J.C.; Klaassen, J.; Patino, C.M.; Saldías, F.; Díaz, O. Emphysema and DLCO Predict a Clinically Important Difference for 6MWD Decline in COPD. Respir. Med. 2015, 109, 882–889. [Google Scholar] [CrossRef]
- Goldin, J.; Cascella, M. Diffusing Capacity of the Lungs for Carbon Monoxide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Semantic Scholar. Accuracy of a New Algorithm to Identify Asthma-COPD Overlap (ACO) Patients in a Cohort of Patients with Chronic Obstructive Airway Disease. Available online: https://www.semanticscholar.org/paper/Accuracy-of-a-New-Algorithm-to-Identify-Asthma-COPD-Llano-Cos%C3%ADo/5734f183fb28c92ba226f1a7ed91d76da2f8e4e7 (accessed on 14 August 2025).
- Verbanck, S.; Hughes, M. Impaired Diffusion at Submaximal Lung Inflation in Asthma and Copd Patients. Respir. Physiol. Neurobiol. 2024, 328, 104304. [Google Scholar] [CrossRef]
- Ogata, H.; Katahira, K.; Enokizu-Ogawa, A.; Jingushi, Y.; Ishimatsu, A.; Taguchi, K.; Nogami, H.; Aso, H.; Moriwaki, A.; Yoshida, M. The Association Between Transfer Coefficient of the Lung and the Risk of Exacerbation in Asthma-COPD Overlap: An Observational Cohort Study. BMC Pulm. Med. 2022, 22, 22. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, A.G.; Pleasants, R.A.; Croft, J.B.; Ohar, J.A.; Heidari, K.; Mannino, D.M.; Liu, Y.; Strange, C. Gender and Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome. J. Asthma Off. J. Assoc. Care Asthma 2016, 53, 720–731. [Google Scholar] [CrossRef]
- Chedraoui, C.; Fakhry, B.; Sleiman, J.; Hu, B.; Attaway, A.; Bazeley, P.; Jo Kim, H.; Zhang, P.; Zein, J.G. Sex Differences in Lung Function in Asthma Across the Ages. CHEST Pulm. 2024, 2, 100047. [Google Scholar] [CrossRef]
- To, T.; Zhu, J.; Gray, N.; Feldman, L.Y.; Villeneuve, P.J.; Licskai, C.; Gershon, A.; Miller, A.B. Asthma and Chronic Obstructive Pulmonary Disease Overlap in Women. Incidence and Risk Factors. Ann. Am. Thorac. Soc. 2018, 15, 1304–1310. [Google Scholar] [CrossRef]
- Rea, I.M.; Gibson, D.S.; McGilligan, V.; McNerlan, S.E.; Alexander, H.D.; Ross, O.A. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front. Immunol. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Çolak, Y.; Afzal, S.; Marott, J.L.; Vestbo, J.; Nordestgaard, B.G.; Lange, P. Type-2 Inflammation and Lung Function Decline in Chronic Airway Disease in the General Population. Thorax 2024, 79, 349–358. [Google Scholar] [CrossRef]
- Park, H.J.; Byun, M.K.; Kim, H.J.; Ahn, C.M.; Lee, J.H.; Shin, K.C.; Uh, S.T.; Ra, S.W.; Yoo, K.H.; Jung, K.S. Asthma-COPD Overlap Shows Favorable Clinical Outcomes Compared to Pure COPD in a Korean COPD Cohort. Allergy Asthma Immunol. Res. 2017, 9, 431–437. [Google Scholar] [CrossRef] [PubMed]
Measurement | Equipment/Method | Measurement Units |
---|---|---|
FeNO | Medisoft Equipment (Sorrines, Belgium) | Ppb |
Blood Eosinophils | Laser light scatter and myeloperoxidase cytochemical staining for leukocyte differential (ADVIA 2120, Siemens Healthineers, Erlangen, Germany)) | Cells/mcl |
Blood Neutrophils | Laser light scatter and myeloperoxidase cytochemical staining for leukocyte differential (ADVIA 2120, Siemens Healthineers, Erlangen, Germany)) | Cells/mcl |
Total IgE | UniCAP fluoroimmunoassay (ThermoFisher, Uppsala, Sweden) | IU/mL |
Sputum Eosinophils | Cytology analysis by an experienced cytology technician | Presence/Absence |
Interleukin-13 | ELISA (BioVendor, Laboratory Medicine, Brno, Czech Republic). The method involved the use of microtiter plates, monoclonal antibodies targeting IL-13, biotin-labeled secondary antibodies, and spectrophotometric measurement of IL-13 concentration at a wavelength of 450 nm. The detection range was 1.6–100 pg/mL with a limit of detection of 0.7 pg/mL and an analytical imprecision of 6.0% | pg/mL |
Criteria Type | Group | Criteria Description |
---|---|---|
Inclusion | COPD |
|
ACO | Diagnosed with COPD plus:
| |
Exclusion | Both COPD and ACO |
|
Variable | COPD N = 126 | ACO N = 89 | p-Value |
---|---|---|---|
Age mean (median, range) | 70.5 (69.5. 48–88) | 69.3 (70. 42–92) | 0.460 |
Gender n (%) Females (F) Males (M) | 65 (51.6%) 61 (48.4%) | 50 (56.2%) 39 (43.8%) | 0.507 |
BMI mean (median, range) | 26.34 (25.94. 14.3–47.05) | 28.25 (27.6. 18.22–45.7) | 0.005 |
Smoking history Pack/years Mean ± SD | 44.6 ± 22.6 | 31.0 ± 22.0 | <0.001 |
Smoking history n (%) Never smoker Ex-smoker Active smoker | 9 (7.1%) 66 (52.4%) 51 (40.5%) | 14 (15.7%) 40 (44.9%) 35 (39.3%) | 0.123 |
Asthma diagnosed before the age of 40 n (%) | 0 (0%) | 20 (22.5%) | <0.001 |
Variable | COPD N = 126 | ACO N = 89 | p-Value |
---|---|---|---|
Bronchodilator tests Positive n (%) Negative n (%) | 10 (7.9%) 116 (92.1%) | 34 (38.2%) 55 (61.8%) | <0.001 |
FEV1/FVC (%) Mean (median, range) | 43.87 (43.6. 21–77%) | 52.315 (54. 23–72) | <0.001 |
FEV1 (%) Median (range) | 46 (17–114) | 71 (18–158) | <0.001 |
GOLD grade of severity of postbronchodilatory airflow obstruction n (%) of patients I II III IV | 21 (16.7) 28 (22.2) 50 (39.7) 27 (21.4) | 32 (35.8) 23 (25.8) 29 (35.5) 5 (5.6) | 0.001 |
DLCO (%) Mean (median, range) | 55.0 (49.5. 12–114) | 72.2 (71, 20–139) | <0.001 |
KCO (%) Mean ± SD | 63.7 ± 23.9 | 75.5 ± 24.8 | 0.001 |
AER Mean (median, range) | 0.70 (0, 0–8) | 0.47 (0, 0–4) | 0.044 |
CAT Mean (median, range) | 18.2 (19, 1–34) | 16.7 (18, 1–32) | 0.181 |
mMRC (median, range) | 2 (0–4) | 2 (0–4) | 0.055 |
Variable | COPD N = 126 | ACO N = 89 | p-Value |
---|---|---|---|
FeNO (ppb) Median (range) | 18 (4–86) | 21 (3–363) | 0.019 |
Sputum eosinophils Positive n (%) Negative n (%) | 0 (0) 126 (100) | 37 (41.6) 52 (58.4) | <0.001 |
Eosinophil Blood Cell Count (cells/µL) Median (range) | 135 (0–260) | 180 (0–1170) | <0.001 |
Neutrophil Blood Cell Count (cells/µL) Median (range) | 5265 (1180–16,370) | 4760 (1700–13,280) | 0.058 |
Total Immunoglobulin E (kIU/L) Median (range) | 52.5 (2–3450) | 63 (2–1607) | 0.278 |
Interleukin-13 (pg/mL) Median (range) | 0.1 (0–863) | 0.5 (0–12,189) | 0.167 |
Variable | Coefficient | SE | Wald | p-Value | OR | 95% CI for OR |
---|---|---|---|---|---|---|
Age (years) | 0.0073835 | 0.0238782 | 0.09639 | 0.756 | 1.0074 | 0.9615–1.0555 |
Sex (male) | −0.97961 | 0.46385 | 4.4602 | 0.035 | 0.3755 | 0.1513–0.9320 |
BMI (kg/m2) | 0.016913 | 0.043039 | 0.1544 | 0.694 | 1.0171 | 0.9348–1.1066 |
CRP (mg/L) | −0.014537 | 0.025343 | 0.329 | 0.566 | 0.9856 | 0.9378–1.0358 |
Blood neutrophils (cells/µL) | 0.000033876 | 0.0001007 | 0.1132 | 0.736 | 1.00 | 0.9998–1.0002 |
Blood eosinophils (cells/µL) | 0.0042856 | 0.002332 | 3.3772 | 0.066 | 1.0043 | 0.9997–1.0089 |
Sputum eosinophils (present) | 23.181118 | 6322.15461 | 0.000013 | 0.997 | 1.17 × 1010 | – |
Total IgE (kIU/L) | 0.00033132 | 0.00043649 | 0.5761 | 0.448 | 1.0003 | 0.9995–1.0012 |
Interleukin-13 (pg/mL) | 0.001276 | 0.0012637 | 1.0195 | 0.313 | 1.0013 | 0.9988–1.0038 |
FeNO (ppb) | 0.016517 | 0.010378 | 2.5331 | 0.1115 | 1.0167 | 0.9962–1.0375 |
DLCO (%) | 0.061369 | 0.018344 | 11.1928 | 0.001 | 1.0633 | 1.0257–1.1022 |
KCO (%) | −0.041758 | 0.019225 | 4.7181 | 0.030 | 0.9591 | 0.9236–0.9959 |
Bronchodilator test (+) | 2.6837 | 0.53691 | 24.9845 | <0.001 | 14.6391 | 5.1108–41.9314 |
mMRC score | 0.083014 | 0.22258 | 0.1391 | 0.709 | 1.086 | 0.7024–1.6808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perković, M.; Vukičević Lazarević, V.; Perković, P.; Perković, T.; Dolenec, V.; Hađak, A.; Šupak Smolčić, V.; Bulat Kardum, L. The Role of Interleukin-13 in Chronic Airway Diseases: A Cross-Sectional Study in COPD and Asthma–COPD Overlap. Diseases 2025, 13, 287. https://doi.org/10.3390/diseases13090287
Perković M, Vukičević Lazarević V, Perković P, Perković T, Dolenec V, Hađak A, Šupak Smolčić V, Bulat Kardum L. The Role of Interleukin-13 in Chronic Airway Diseases: A Cross-Sectional Study in COPD and Asthma–COPD Overlap. Diseases. 2025; 13(9):287. https://doi.org/10.3390/diseases13090287
Chicago/Turabian StylePerković, Marina, Vesna Vukičević Lazarević, Pavo Perković, Tomislav Perković, Vanja Dolenec, Ana Hađak, Vesna Šupak Smolčić, and Ljiljana Bulat Kardum. 2025. "The Role of Interleukin-13 in Chronic Airway Diseases: A Cross-Sectional Study in COPD and Asthma–COPD Overlap" Diseases 13, no. 9: 287. https://doi.org/10.3390/diseases13090287
APA StylePerković, M., Vukičević Lazarević, V., Perković, P., Perković, T., Dolenec, V., Hađak, A., Šupak Smolčić, V., & Bulat Kardum, L. (2025). The Role of Interleukin-13 in Chronic Airway Diseases: A Cross-Sectional Study in COPD and Asthma–COPD Overlap. Diseases, 13(9), 287. https://doi.org/10.3390/diseases13090287